
ILP-Based Identification of Redundant Logic Insertions for
Opportunistic Yield Improvement During Early Process Learning

Tuck-Boon Chan1, Wei-Ting Jonas Chan2 and Andrew B. Kahng2,3
1Qualcomm Technologies, Inc., San Diego, CA 92121

2ECE and 3CSE Departments, UC San Diego, La Jolla, CA 92093
tuckboon@qti.qualcomm.com, {wechan, abk}@ucsd.edu

Abstract—As semiconductor technology advances, leading-edge
product companies must rapidly improve yield for designs that seek to
reach mass production while early in the adoption of a new technology
node; otherwise, products may be unviable in the marketplace. In this
paper, we are the first to study the possible mitigation by opportunistic,
last-stage redundant logic insertion to mitigate yield loss in early
advanced-node production. We describe a yield estimation methodology,
and propose an integer linear programming (ILP)-based optimization
of redundant logic insertion for opportunistic yield optimization. In
our approach, we first identify potential logic clusters for replication
by top-down application of multilevel FM partitioning. We then select
promising clusters whose replication maximizes design yield without
hurting design timing. Our experimental results show the potential for
significant yield improvement with minor timing impact.

I. INTRODUCTION

Defect-limited yield is always a challenge in new technology
nodes because manufacturing recipes are still being refined and
processing steps are not tightly controlled. Low yield during the
adoption stage of a new technology node significantly impacts
product schedules. Defect-limited yield can be improved by
duplicating logic gates (redundancy), but this approach has not been
seriously considered in mature nodes because it incurs obvious
gate area overheads. However, in advanced technology nodes,
achievable placement utilization is decreasing due to increasing
placement and routing congestion, constrained pin accessibility,
and complex design rules [6]. As a result, redundancy insertion
becomes feasible. Figure 1 qualitatively summarizes interactions
among design parameters and design metrics. When we have more
redundant cells, yield is potentially improved due to the redundancy.
However, more cells imply that (replicated) cell clusters have more
cuts – i.e., terminals – and thus consume more whitespace and
timing slack while worsening congestion. Decreased whitespace,
decreased timing slack, and worse congestion then limit insertion
of redundant cells.

Our present paper focuses on opportunistic replication to mitigate
yield loss due to random defects. (Parametric yield is beyond scope;
we assume that it has been addressed by proper signoff criteria.) We
propose an algorithm that exploits multiple facets of design slack –
area, timing, routing congestion – that may exist in late stages of
physical implementation. In our approach, we add redundant logic
cells to a design and then add multiplexers (MUX cells) to switch
between original logic cells and redundant logic cells. Furthermore,
we consider timing and congestion as we add the redundant logic
and MUX cells.

We assume that the control logic to select clusters can be realized
using programmable memories. With extra testing effort, designers
can reprogram the control logic to select non-defective logic. We
leave the testing strategy and controller design for future work, and
focus solely on the strategy to insert redundancy.

A. Previous Works
For random defect analysis, previous works use critical area

as a surrogate to evaluate yield. Ghaida et al. [11] propose a
infrastructure of critical area evaluation considering cell layouts.
Papadopoulou [23] proposes a framework to calculate critical area
using Voronoi diagrams. Since manufacturing yield has always
been a major determinant of die cost, many previous works have
investigated yield improvement from different perspectives. Nardi
and Sangiovanni-Vincentelli [21] propose a synthesis framework
to improve yield by reducing the number of instances of standard
cells with higher critical areas. Wo et al. [24] consider block-level
critical areas during architecture optimization. Iizuka et al. [15] and
Bourai and Shi [2] reduce critical area by relaxing layout spacings

#clone

yield whitespace

congestion#cut/#
MUXtiming

Positive correlation Negative correlation

To loosen constraint To tighten constraint

Fig. 1: The interactions among yield, amount of redundancy, and
other design parameters.

of standard cells at the cost of higher area. In the arena of placement
and routing (P&R), yield improvement has been achieved by a wide
variety of approaches: (1) whitespace modulation during detailed
placement [1]; (2) track and layer assignment with critical-area
awareness during detailed routing [18] [8] [19]; and (3) post-route
optimization to reduce critical area by widening wires [7], inserting
redundant vias and wires [5] [20] [3], and non-tree routing [16].
Although introduction of redundant logic is considered in the
literature, previous works focus on majority voting to reduce single-
event upset. By contrast, here our goal is to provide opportunistic
instance-level redundancy insertion when utilization and timing
criticality allow this.1

B. Problem Statement and Proposed Methodology
We state our problem as follows. Our objective is to minimize

random-defect yield loss. A problem instance consists of a routed
design, timing constraints, and a post-redundancy insertion target
utilization. We seek to determine a post-engineering change order
(post-ECO) design that maximizes redundant logic area while
meeting timing and utilization constraints.

Algorithm 1 Overview of our proposed physical implementation
flow for redundancy insertion.

Input: Original routed design
Output: Post-ECO design with redundancy, signed-off timing and yield evaluation

1: Extract design parameters (timing, topologies, and cell masters)
2: Generate cluster candidates by iteratively calling MLPart (using RentCon)
3: Use ILP to identify clusters for replication (maximizing yield, subject to timing

constraints)
4: Netlist editing and MUX insertion in P&R tool
5: ECO place and route
6: Post-ECO timing optimization
7: Signoff and yield evaluation
8: return Layout with redundancy, signed-off timing and evaluated yield

We describe our proposed methodology in Algorithm 1. We
start from the routed design and extract netlist, critical paths,
and available whitespace. Based on the extracted information, we

1Razor [10] is a self-repair mechanism for parametric timing error.
Although it can improve parametric yield, it addresses a different yield loss
mechanism and use case.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.48

269

generate cluster candidates and identify optimum combination of
clusters. We then edit the netlist and duplicate clusters. We add
MUX cells to the output nets of clusters. The P&R tool uses the
edited netlist to execute ECO placement and route. We apply timing
optimization and yield evaluation after the ECO flow.

In the rest of this paper, we first describe our yield model to
evaluate the benefit of inserting redundant logic in Section II.
Section III then presents our heuristics to identify logic clusters
for redundancy. We present experimental results in Section IV, and
conclude in Section V. Table I summarizes the notations that we
use in this paper.

TABLE I: Description of notations used in our formulation.

Term Meaning
i grid index in yield analysis
k cluster index
j cell index in a cluster

Fnand Defect rate of a NAND2 cell
Ui metal utilization of grid i
λ Poisson exponent used in the yield model

Y , YBEOL, design yield, BEOL yield,
YFEOL, YMUX , FEOL yield, MUX yield,

Yredun, Ynon−redun and yield w/ and w/o redundancy
Aredun, AMUX areas of redundant logic, MUX cells,
Achip, Ainit, Ak chip footprint, cells in input design

and the kth cluster
n, m index of timing paths and timing points

N number of extracted critical paths

Mn number of timing points of nth path
K number of candidate clusters
ck logic cluster
Ck binary variable of selection of a cluster

DMUX MUX cell delay

SLn path slack of nth path
SLmin minimum slack after redundancy insertion

Pm,n binary indicator of whether mth

timing point of nth path has a MUX
D target utilization in post-ECO design

II. YIELD IMPROVEMENT BY EXPLOITING REDUNDANCY

We now describe our yield model and our methodology to
improve yield by adding redundant logic cells.

A. Yield Impact Evaluation During Early Process Learning
For random defects, the probabilities of failure in redundant

and non-redundant logic area are independent. Therefore, we can
calculate design yield with redundancy as

Y = Ynon−redun · (YMUX · Y 2
redun+

2 · YMUX · Yredun(1 − Yredun))

= Ynon−redun · YMUX · Yredun · (2 − Yredun) (1)

where Y is design yield, Ynon−redun is yield of non-redundant area,
Yredun is yield of redundant area, and YMUX is yield of MUX area
(for logic redundancy). The first term in the parentheses denotes the
yield while original and redundant clusters have no defects, and the
second term denotes the yield while exactly one of the original and
redundant clusters is defective. For a design with area A, random
defect yields can be modeled by the Poisson yield model [27]

Y = e−λ·A (2)

where λ is a process-dependent Poisson exponent. Given a design
of area A, if we duplicate Aredun area of the design, with MUX
area AMUX , yield of the design with redundancy is given by

Y = Ynon−redun · (YMUX · Y 2
redun+

2 · YMUX · Yredun(1 − Yredun))

= Ynon−redun · YMUX · Yredun(2 − Yredun)

= e−λ·(A−Aredun) · e−λ·AMUX · e−λ·Aredun ·
(2 − e−λ·Aredun)

= e−λ·A · e−λ·AMUX · (2 − e−λ·Aredun)

yield gain = e−λ·AMUX · (2 − e−λ·Aredun) (3)

Equation (3) shows that yield improvement from redundancy is a
function of redundant logic and MUX areas (and independent of
A). Figure 2 shows yield improvements for various Aredun and
AMUX with λ = 10−6. Based on the figure, we can see that yield
improvement increases with Aredun/AMUX ratio and saturates for
a fixed Aredun. This implies that achievable yield improvement is
limited by Aredun. We also notice that Aredun/AMUX ratio must
be sufficiently large (e.g., larger than 2) to achieve noticeable yield
improvement.

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 5 10 15 20

Yi
el

d
ga

in
 (%

)

Redundant Logic/Mux Area Ratio

Dup area = 20000 Dup area = 30000 Dup area = 40000

Fig. 2: Projected yield improvement by our model. Three different
areas of redundant logic (cell area in redundant clusters) are
projected in this simulation.

B. Yield Model
To connect the cluster-level yield calculation in Equation (1) with

component-level (cells and nets) yield, we split the yield of a logic
cluster into back-end-of-line (BEOL) and front-end-of-line (FEOL)
yields. Therefore, the yield of a redundant cluster can be determined
as given by Equation (5).

Ycluster = YBEOL(nets) · YFEOL(cells) (4)

Yredun = YBEOL(redun nets) · YFEOL(redun cells) (5)

We then estimate YBEOL and YFEOL in different ways. For
YFEOL, we make assumption regarding the defect rate of the
minimum NAND2 cell and then extrapolate defect rates of other
cells based on the area ratio, as shown in Equation (6). The NAND2
defect rate (Fnand) is assumed to be 1ppm in our experiments. The
overall FEOL yield is given by the product of all the cells, as shown
in Equation (7).

ln(Ycell) = ln((1 − Fnand) · Anand2/Acell) (6)

YFEOL =
∏

j∈all cells
Ycell (7)

For the BEOL, we interpolate the yield based on the calibration
of Mentor Calibre. We first characterize the yield of a routed design
in a 28nm FDSOI foundry technology, and then use the yield data
for curve fitting. We first run through the P&R flow to generate a
GDSII file, then use Mentor Calibre Yield Analyzer [27] to estimate
the BEOL yield for each 10um by 10um grid. The probability
distribution of defect sizes is obtained from the Calibre reference
flow. We use six metal layers in this yield characterization and other
experiments. Since the pitches are the same for each layer, we use
the same BEOL yield model for each of six layers. The yield of
BEOL is given by the following equations.

YBEOL =
∏

i∈all grids
Yi, (8)

where Yi = e−λ(Ui) (9)

The Poisson exponent is assumed to be a function of track
utilization Ui, and the data points of exponent λ(Ui) are given by

270

the Calibre result. Based on the curve fitting against Calibre data,
we use a = 3.91×10−7 and b = 2.9×10−9 in our yield evaluation.

λ(Ui) = a · Ui + b, (10)

where i is the grid index

We obtain the YBEOL in Equation (9) by decomposing the design
into grids, calculating Ui of each grid, and using the fitting equation
in Equation (10) to derive Yi. We need per-net yield for design yield
calculation in Equation (5) after adding redundancy. The per-net
yield Ynet is then derived from the yield YBEOL by the following
equations.

YBEOL =
∏

all nets
Ynet (11)

Ynet = e
ln(YBEOL)
TOTAL WL

·NET WL
(12)

III. METHODOLOGY FOR REDUNDANT LOGIC INSERTION

Analysis in Section II shows that to maximize yield gain, we
need to maximize area of redundant logic with minimized MUX
area overhead. Our redundant logic insertion methodology addresses
this through two optimization steps. First, we identify high-quality
candidate logic clusters with large ratio of logic area to MUX
area. Second, we select clusters using an ILP solver to maximize
redundant area without undue timing degradation.2 Details of these
optimization steps are described in the rest of this section.

A. Two-Way FM-Based Cluster Generation
Previous works have proposed Rent-based netlist clustering to

generate high-quality logic clusters [13] [22] [12]. The Rent-based
netlist clustering reduces the number of terminals of a given
cluster to save routing resources in the P&R flow. Inspired by
Rent-based netlist clustering, we propose to use recursive min-cut
bipartitioning to generate candidate clusters.3 We use MLPart [4],
a well-known implementation of multilevel two-way Fiduccia-
Mattheyses (FM) [9].

Recursive bipartition is implemented based on the infrastructure
of RentCon [28], which recursively calls MLPart, to bipartition
clusters as long as a lower bound constraint on cluster size
(numbers of cells in a cluster), denoted by Smin satisfied. An
area balance constraint of 10% is imposed in each call to
bipartitioning. RentCon’s top-down application of MLPart identifies
a given netlist’s intrinsic (partitioning-based) Rent parameter (i.e.,
the lowest-slope trace possible in the plot of log(T) (y-axis) versus
log(C) (x-axis), where C is the size of a cluster of logic gates and
T is the associated number of terminals (cut nets at the boundary
of the cluster)). See Figure 4 of [12]. We avoid using large Smin

values because a large cluster is more difficult to be duplicated
due to placement and routing congestions, as well as utilization
constraints. Also, a larger cluster is more likely to degrade circuit
timing during logic redundancy insertion. On the other hand, a small
Smin is likely to produce small clusters which incur proportionally
larger area overheads when replicated. Therefore, we fix Smin to
200 (∼2% of smaller testcase (AES)) in this work.

B. ILP-based Cluster Selection
The quality of identified logic cluster during the redundancy

insertion has a significant impact on P&R quality after ECO
placement and route. We use MUX cells, which not only occupy
available whitespace but also increase the risk of worse post-ECO
timing, to switch between logic clusters. To reduce the overhead,
our methodology first identifies low-overhead logic clusters and then
selects compatible clusters which do not hurt the existing critical
paths. Details will be described in the rest of this section.

In order to avoid timing impact on the design, we apply an
ILP-based cluster selection flow to duplicate a maximum amount

2We use ILP to obtain optimum cluster selection solutions, and use only
critical timing paths to help maintain tractable problem scales.

3Inadequate cluster choice can ruin the redundancy insertion. An extreme
example is to choose a single NAND2 cell as the cluster. The area overhead
to use a MUX cell for function selection will be high.

of logic under given timing constraints. The formulation uses
binary variables to denote if a selected cluster will impact any
timing-critical path due to the MUX cells associated with the
cluster. The details of our ILP formulation are described as follows.

Maximize

K∑

k=1

Ak · Ck (13)

Subject to:

For 1 ≤ n ≤ N,

SLn −
Mn∑

m=1

Pm,n · DMUX ≥ SLmin (14)

For 1 ≤ n ≤ N, 1 ≤ m ≤ Mn, 1 ≤ k ≤ K

Pm,n ≥ Ck, (15)

where Ck and Pm,n are binary variables,

(
K∑

k=1

Ak · Ck + Ainit)/Achip ≤ D (16)

Our objective in Equation (13) guides the ILP to maximize the
area of redundant logic clusters. To avoid the inserted MUX cells
from hurting critical timing paths, we extract timing paths with
less than 200ps slack from P&R tool and use Equation (14) and
(15) to account for the timing slack after inserting redundancy. To
prevent the inserted redundancy from excessively using available
whitespace, we use Equation (16) to constraint the target die
utilization after redundancy insertion.

IV. EXPERIMENTS AND RESULTS

We implement our flow with C++ code and commercial
physical implementation tools [26] [29]. We solve the ILP
formulation by calling IBM ILOG CPLEX4 and feed our solutions
to commercial tools. We use a 28nm FDSOI foundry technology in
our experiments. The three testcases AES, LEON3, and NETCARD
are obtained from OpenCores [30] and ISPD contests [31].

The main results are presented in Table II. Since the initial layouts
constrained at lower frequencies and initial utilizations show better
yield improvement, we report details of these data points to show
the design tradeoffs under different settings. For redundant logic
insertion, we target 10%, 20%, and 30% of the total core area.
Thus, for each design, we show metrics targeting 60%, 70%, and
80% utilizations.

The limited yield gain of AES is caused by the following reasons.
First, achievable redundant area is a strong function of original
design area. AES has an original logic area of 84400um2, which
is much smaller than LEON3 and NETCARD. Based on analysis
in Figure 2, we do not expect any significant yield gain for such
a small design. For LEON3 (70× size of AES), the yield gain
is noticeably larger. For the same testcase, we observe that the
yield improvement increases when more redundant logic cells are
inserted. For example, the yield improvements of LEON3 are 1.20×,
1.41× and 1.62× when target utilizations after redundancy insertion
are 60%, 70% and 80%, respectively. We observe timing degradation
right after ECO place and route, and the timing slacks are restored
after optimization, which is indicated by near-zero worst negative
slack (WNS) and total negative slack (TNS) in LEON3. NETCARD
also shows high yield improvement because of larger design area,
but we notice that DRC violations occur in NETCARD since its
physical implementation is wire-dominanted.

For all testcases, the power, leakage, and routed wirelength
increase with higher amount of redundancy. We observe high power
overhead in the post-ECO results, due to the logic redundancy
including flip-flops. In addition, we propagate switching activity
(we use an activity factor of 0.02) from output pins of flip-flops in
vectorless power estimation; this makes the flip-flop power overhead
more obvious. Note that the timing of AES is tight and hence the
ILP is infeasible at high clock frequency. We use “–” in those rows.

4The runtimes of the two-way partitioning and ILP are less than 178
minutes for LEON3 (440K gate count) on a Xeon E5-2690 machine.

271

TABLE II: Yield improvement and attributes of (1) original routed layouts (Orig), (2) post-ECO layouts with redundant logic (ECO), and
(3) post-optimization layouts (Opt).

Design Clock Init. Target #Insts Area Final Yield WNS TNS Ptot Pleak WL #DRC #MUX Redundant MUX Redundant
(ns) (ns) Util. Util. (μm2) Util. (ps) (ns) (mW) (mW) (μm) Cells Area Area (μm2)

AES 2.0 50% 60% Orig 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0
ECO 1.23x 1.19x 1.19x 1.00x -504 -12.941 1.12x 1.83x 1.44x 103 55 2559 161 1422
Opt 1.23x 1.19x 1.19x 1.00x 0 0.001 1.12x 1.94x 1.44x 93 55 2559 161 1430

AES 2.0 50% 70% Orig 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0
ECO 1.42x 1.36x 1.36x 1.00x -549 -17.111 1.24x 2.83x 1.74x 102 125 4743 367 2685
Opt 1.42x 1.36x 1.37x 1.00x -8 -0.011 1.29x 2.89x 1.74x 67 125 4743 367 2692

AES 2.0 50% 80% Orig 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0
ECO 1.57x 1.50x 1.50x 1.01x -990 -66.251 1.47x 4.00x 2.01x 171 221 6280 649 3608
Opt 1.57x 1.51x 1.51x 1.01x -21 -0.051 1.47x 4.22x 2.01x 183 221 6280 649 3616

AES 2.0 50% 90% Orig 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0
ECO 1.67x 1.66x 1.67x 1.01x -1538 -134.501 1.82x 5.94x 2.30x 1000 380 7360 1116 4494
Opt 1.68x 1.67x 1.67x 1.01x 3 0.001 1.88x 6.56x 2.30x 1000 380 7360 1117 4504

AES 0.8 50% 90% Orig 11942 10242 60.8% 97.9% -5 -0.011 6.1 1.74 146107 65 0 0 0 0
ECO – – – – – – – – – – – – – –
Opt – – – – – – – – – – – – – –

AES 0.8 80% 90% Orig 11719 9538 90.5% 98.1% -17 -0.161 5.8 1.5 120016 77 0 0 0 0
ECO – – – – – – – – – – – – – –
Opt – – – – – – – – – – – – – –

LEON3 4 50% 60% Orig 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0
ECO 1.17x 1.18x 1.18x 1.21x -1213 -10854.600 1.20x 1.46x 1.21x 0 3456 71694 10153 102006
Opt 1.17x 1.18x 1.18x 1.20x -18 -0.070 1.20x 1.47x 1.21x 1 3456 71694 10153 102029

LEON3 4 50% 70% Orig 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0
ECO 1.33x 1.35x 1.35x 1.41x -1585 -30674.900 1.42x 2.09x 1.42x 7 8350 136489 24532 194484
Opt 1.33x 1.36x 1.36x 1.41x -26 -0.082 1.43x 2.14x 1.42x 7 8350 136489 24533 194523

LEON3 4 50% 80% Orig 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0
ECO 1.47x 1.51x 1.51x 1.63x -1694 -48297.300 1.67x 2.77x 1.66x 0 13324 196155 39145 279319
Opt 1.48x 1.52x 1.52x 1.62x -31 -0.091 1.68x 2.87x 1.66x 1 13324 196155 39145 279361

NETCARD 4 50% 60% Orig 303000 399021 50.2% 44.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0
ECO 1.15x 1.17x 1.17x 1.09x -2276 -755.229 1.24x 1.67x 1.19x 1000 3870 41472 11370 54595
Opt 1.15x 1.17x 1.17x 1.09x -22 -0.038 1.24x 1.71x 1.19x 1000 3870 41472 11377 54725

NETCARD 4 50% 70% Orig 303000 399021 50.2% 44.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0
ECO 1.29x 1.33x 1.33x 1.18x -3468 -5453.600 1.49x 2.46x 1.38x 1000 8546 79095 25108 104952
Opt 1.29x 1.33x 1.33x 1.17x -234 -1.311 1.51x 2.61x 1.38x 1000 8546 79095 25151 105227

NETCARD 4 50% 80% Orig 303000 399021 50.2% 39.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0
ECO 1.42x 1.48x 1.48x 1.43x -3506 -18876.000 1.76x 3.33x 1.56x 1000 13709 114146 40277 152329
Opt 1.43x 1.50x 1.50x 1.41x -1590 -30.580 1.81x 3.68x 1.57x 1000 13709 114146 40436 152620

V. CONCLUSION

Yield is now a dominant challenge in a new technology node, and
yield loss during early learning stages of a new process can make
leading-edge product chips economically unviable. To mitigate yield
loss due to random defects, we propose a redundant logic insertion
methodology that copies clusters of logic cells and connects their
outputs (i.e., fanouts) to original nets through MUX cells. Based
on a Poisson yield model, we derive yield gain as a function
of redundancy cells and MUX areas. We show that maximum
achievable yield gain is determined by redundant cell area.

Our methodology optimizes redundant logic insertion through
two optimization steps. First, we extract candidate clusters with
minimum cuts through a recursive bipartitioning algorithm. Second,
we maximize area of redundant logic by selecting the best clusters
via solution of an integer-linear program. Experimental results on
our benchmark circuits show that for large design areas, logic
redundancy can improve defect-limited yield by up to 1.62× from
an initial value of 28.1%. Such a yield improvement could be highly
significant especially for products in a new technology node, where
profit margins are large due to the lack of competition.

Although our study focuses on defect-limited yield, the concept of
opportunistic redundant logic insertion, as well as our methodology,
can be applied toward other purposes such as (i) improvement of
product lifetime against aging through redundancy, (ii) mitigation
of impact of random soft defects on chip performance, etc.
Our ongoing and future works include early stage routability
consideration, timing recovery, and exploration of algorithms to
improve the quality of clusters for purposes of redundancy insertion
for yield gain. For example, the use of top-down multilevel FM
bipartitioning might be adapted to incorporate elements of classic
“replication cut” approaches [14] [17]. Another potential direction
is to select optimum clusters from a richer set that is derived
using multiple runs of partitioning. Intelligent heuristics to choose
minimum cluster size for different designs may also improve the
current approach.

REFERENCES

[1] C. Bamji and E. Malavasi, “Enhanced Network Flow Algorithm for
Yield Optimization”, Proc. DAC, 1996, pp. 746-751.

[2] Y. Bourai and C.-J. R. Shi, “Layout Compaction for Yield Optimization
via Critical Area Minimization”, Proc. DATE, 2000, pp. 122-127.

[3] M. T. Buehler, J. M. Cohn, D. J. Hathaway, J. D. Hibbeler and J. Koehl,
“Use of Redundant Routes to Increase the Yield and Reliability of a
VLSI Layout”, US patent US7308669 B2, 2007.

[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Algorithms
for Hypergraph Bipartitioning”, Proc. ASP-DAC, 2000, pp. 661-666.

[5] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, L. Chen and B. Han, “Full-
Chip Routing Considering Double-Via Insertion”, IEEE TCAD 27(5)
(2008), pp. 844-857.

[6] A. Ceyhan, M. Jung, S. Panth, S. K. Lim and A. Naeemi, “Impact of
Size Effects in Local Interconnects for Future Technology Nodes: A
Study Based on Full-Chip Layouts”, Proc. ITC/AMC, 2014, pp. 345-
348.

[7] V. K. R. Chiluvuri and I. Koren, “Layout-Synthesis Techniques for
Yield Enhancement”, IEEE Trans. on Semiconductor Manufacturing
8(2) (1995), pp. 178-187.

[8] M. Cho, H. Xiang, R. Puri and D. Z. Pan, “TROY: Track Router with
Yield-Driven Wire Planning”, Proc. DAC, 2007, pp. 55-58.

[9] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for
Improving Network Partitions”, Proc. DAC, 1982, pp. 175-181.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D.
Blaauw, T. Austin, K. Flautner and T. Mudge, “Razor: A Low-Power
Pipeline Based on Circuit-Level Timing Speculation”, Proc. Micro,
2003, pp. 7-18.

[11] R. S. Ghaida, K. Doniger and P. Zarkesh-Ha, “Random Yield Prediction
Based on a Stochastic Layout Sensitivity Model”, IEEE Trans. on
Semiconductor Manufacturing 22(3) (2009), pp. 329-337.

[12] L. Hagen, A. B. Kahng, F. J. Kurdahi and C. Ramachandran,
“On the Intrinsic Rent Parameter and Spectra-Based Partitioning
Methodologies”, IEEE TCAD 13(1) (1994), pp. 27-37.

[13] B. Hu and M. Marek-Sadowska, “Congestion Minimization During
Placement without Estimation”, Proc. ICCAD, 2002, pp. 739-745.

[14] J. Hwang and A. El-Gamal, “Optimal Replication for Min-Cut
Partitioning”, Proc. ICCAD, 1992, pp. 432-435.

[15] T. Iizuka, M. Ikeda and K. Asada, “Timing-Driven Cell Layout De-
Compaction for Yield Optimization by Critical Area Minimization”,
Proc. DATE, 2006, pp. 1-6.

[16] A. B. Kahng, B. Liu and I. I. Măndoiu, “Nontree Routing for Reliability
and Yield Improvement”, IEEE TCAD 23(1) (2004), pp. 148-156.

[17] C. Kring and A. R. Newton, “A Cell-Replicating Approach to Min-Cut
Based Circuit Partitioning”, Proc. ICCAD, 1991, pp. 2-5.

[18] S.-Y. Kuo, “YOR: A Yield-Optimizing Routing Algorithm by
Minimizing Critical Areas and Vias”, IEEE TCAD 12(9) (1993), pp.
1303-1311.

[19] Y.-W. Lee, Y.-H. Lin and Y.-L. Li, “Minimizing Critical Area on
Gridless Wire Ordering, Sizing and Spacing”, J. of Information Science
and Engineering 30(1) (2014), pp. 157-177.

[20] K.-Y. Lee, C.-K. Koh, T.-C. Wang and K.-Y. Chao, “Fast and Optimal
Redundant Via Insertion”, IEEE TCAD 27(12) (2008), pp. 2197-2208.

[21] A. Nardi and A. L. Sangiovanni-Vincentelli, “Synthesis for
Manufacturability: a Sanity Check”, Proc. DATE, 2004, pp. 796-801.

[22] T. K. Ng, J. Oldfield and V. Pitchumani, “Improvements of a Mincut
Partition Algorithm”, Proc. ICCAD, 1987, pp. 470-473.

[23] E. Papadopoulou, “Net-aware Critical Area Extraction for Opens in
VLSI Circuits via Higher-Order Voronoi Diagrams”, IEEE TCAD 20(5)
(2011), pp. 583-597.

[24] Z. Wo, I. Koren and M. Ciesielski, “An ILP Formulation for Yield-
driven Architectural Synthesis”, Proc. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 12-20.

[25] IBM ILOG CPLEX. http://www.ilog.com/products/cplex/
[26] Cadence Innovus User Guide.
[27] Mentor Calibre User’s Manual.
[28] RentCon. http://vlsicad.ucsd.edu/WLD/RentCon.pdf
[29] Synopsys Design Compiler User’s Manual.
[30] OpenCores. http://opencores.org
[31] ISPD Contest Website. http://www.ispd.cc/contests/

272

