Learning-Based Prediction of Embedded Memory Timing Failures During Initial Floorplan Design
Wei-Ting J. Chan, Kun Young Chung, Andrew B. Kahng, Nancy D. MacDonald and Siddhartha Nath
CSE and ECE Departments, UC San Diego, La Jolla, CA, USA
Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, Korea
ClariPhy Communications, Irvine, CA, USA
{wechan, abk, sinath}@ucsd.edu, kun.chung@samsung.com, nancy.macdonald@clariphy.com

Abstract—Embedded memories are critical to success or failure of complex system-on-chip (SoC) products. They can be significant yield detractors as a consequence of occupying substantial die area, creating placement and routing blockages, and having stringent Vccmin and power integrity requirements. Achieving timing-correctness for embedded memories in advanced nodes is costly (e.g., closing the design at multiple (logic-memory) cross-corners). Further, multiphysics (e.g., crosstalk, IR, etc.) signoff analyses make early understanding and prediction of timing (-correctness) even more difficult. With long tool and design closure subflow runtimes, design teams need improved prediction of embedded memory timing failures, as early as possible in the implementation flow. In this work, we propose a learning-based methodology to perform early prediction of timing failure risk given only the netlist, timing constraints, and floorplan context (wherein the memories have been placed). Our contributions include (i) identification of relevant netlist and floorplan parameters, (ii) the avoidance of long P&R tool runtimes (up to a week or even more) with early prediction, and (iii) a new implementation of Boosting with Support Vector Machine regression with focus on negative slack outcomes through weighting in the model construction. We validate accuracy of our prediction models across a range of “multiphysics” analysis regimes, and with multiple designs and floorplans in 28FDISI foundry technology. Our work can be used to identify which memories are “at risk”, guide floorplan changes to reduce predicted “risk”, and help refine underlying SoC implementation methodologies. Experimental results in 28nm FDSOI technology show that we can predict P&R slack with multiphysics analysis to within 253ps (average error less than 10ps) using only post-synthesis netlist, constraints and floorplan information. Our predictions are 40% more accurate than the predictions (worst-case error of 358ps and average error of 42ps) of a nonlinear Support Vector Machine model that uses only post-synthesis netlist information.

I. INTRODUCTION

Timing closure in modern systems-on-chip (SoCs) is complex and time-consuming, due to multiple iterations between various analyses and design fixes. Early, accurate prediction of post-layout slack can potentially deliver dramatic design turnaround time and design cost reductions. However, to the best of our knowledge, no existing tool can predict slack at an early design stage (in particular, the post-synthesis, physical floorplanning stage). Predicting post-layout slack without physical synthesis or trial placement information is challenging because wire delay must be estimated without spatial embedding information. The prediction problem becomes even more difficult because of (i) embedded memories, and (ii) “multiphysics” analysis.

Embedded memories (SRAMs) complicate SoC physical implementation on several fronts [8] [31]. They occupy significant die area [13] and are typically placed in arrays, which not only makes floorplanning difficult, but also creates placement and routing blockages. Timing analysis and closure are costly, e.g., with respect to cross-corners in low-power, split-rail designs. Hence, despite long tool run times and complex design subflows, SoCs with multiple SRAMs can have unpredictable timing at the post-P&R stage, not to mention in silicon.

Verification of timing correctness in advanced nodes increasingly demands analyses that close the loop across crosstalk, IR and power integrity [19] [25], i.e., more than one “physics”. We use multiphysics analysis to mean performing multiple analyses such as IR, thermal, reliability, crosstalk, etc., and then performing static timing analysis (STA) using reports from these analyses. Timing assessments can vary widely with the specific analyses performed, e.g., turning SI mode on can worsen slack by 100ps due to crosstalk [16].

We show two examples to illustrate the challenges of predicting post-layout slack. (1) Sensitivity of slack to spacing between memories. Figure 2(a) shows a floorplan with five embedded SRAMs, blockages, and a rectilinear standard-cell placement region. Figure 2(b) shows variation of worst timing slack (at any timing endpoint in a given SRAM) across these five SRAMs when the spacing (i.e., channel width) between memories is varied in steps of 10μm. Due to congestion, buffer placement, etc., the difference in slack can be larger than 300ps at a spacing of 10μm, andslack vary in a highly non-obvious and/or noisy manner as the spacing is changed. (2) Sensitivity of IR drop map to power pad locations. Figures 3(a)–(c) show three IR drop maps when the locations of power pads are varied. When power pads are placed uniformly on all edges of the die as in Figure 3(a), the IR map has very few hotspots. When the power pads are placed only on the left and right edges of the die as in Figure 3(b), or on the bottom and top edges as in Figure 3(c), the IR drop map has multiple hotspots. The IR drop map, and timing slacks, have similarly challenging sensitivities to SRAM placement relative to power distribution network stripes (PDN stripes), the availability of buffer placement locations within or near memory channels, etc.

In this work, we apply machine learning to achieve accurate predictive modeling of slack at embedded SRAM timing endpoints. Given only a post-synthesis netlist, constraints and a floorplan, we predict (i) post-P&R slack, and (ii) slack with multiphysics analysis, of SRAMs.

Figure 4 shows the stages of physical implementation that we must comprehend with our modeling, as well as the stages from which we can extract available modeling parameters. We estimate the combined effects of placement, clock network synthesis, routing, extraction and timing using our modeling function f as shown in the figure. Our
Our main contributions are summarized as follows.

- To the best of our knowledge, we are the first to propose a modeling methodology that can effectively predict post-P&R slack values at endpoints on embedded SRAMs, using information available at the floorplanning stage. Our model applies machine learning techniques to predict post-P&R slack within a worst-case error of 224ps and average error of 4.0ps across all designs and floorplans tested in a 28nm foundry FDSOI technology.

work envisages two basic use scenarios. (1) For products in the early planning stage, our predicted slacks enable floorplans and constraints – as well as physical implementation methodology – to be adjusted to prevent post-layout timing failures on SRAMs. (2) For products in the production stage, our model enables designers to filter out floorplans and constraints that have high risk of post-layout timing failures under voltage and frequency scaling, or process variation. Our model can and constraints that have high risk of post-layout timing failures under production stage, our model enables designers to filter out floorplans and constraints – as well as physical implementation methodology – to be adjusted to

- We confirm the robustness of our prediction methodology by predicting slack values after multiphysics analysis – a very difficult prediction problem – to within a worst-case error of 253ps and average error of 9.0ps. A model that uses information from the post-synthesis netlist results in multiphysics slack worst-case prediction error of 358ps.3

- We automate using commercial EDA tools the extraction of relevant model parameters, and prediction of timing failure risks, from given netlist, constraints and floorplan context. By predicting multiphysics slack for every embedded memory endpoint, our model enables early filtering and improvement of floorplans that would otherwise eventually lead to timing failures at the post-layout and signoff stages.

- We advance application of machine learning for predictive IC design with a new implementation of the Boosting technique that uses Support Vector Machines (SVMs) as weak learners. We also propose a weighting strategy for negative-slack outcomes during our model construction, to accurately focus our model on avoidance of critical timing failures. SVM in Boosting reduces worst-case prediction errors by 30ps relative to use of SVM only.

In the following, Section II reviews related literature, while Section III describes our multiphysics analysis methodology, selection of modeling parameters and our modeling methodology with machine learning techniques. Section IV describes our testcases, design of experiments and results. We give conclude in Section V.

II. RELATED WORK

Very few previous works predict timing of SRAMs in early stages of the design flow. We categorize previous works into (i) P&R timing prediction from netlist, (ii) applications of machine learning for prediction of physical design metrics, and (iii) applications of Boosting [7] and Support Vector Machine (SVM) [9] for regression.4

In the category of post-P&R timing prediction from netlist. Alpert et al. [2] propose the adoption of physical synthesis in design flows to have better correlation with post-layout metrics such as worst negative slack (WNS), at the post-synthesis stage. Alpert et al. [3]

3We use parameters N1 through N6 from Table I and use three different modeling techniques – LASSO, linear SVM and SVM with a Radial Basis Function (RBF) as kernel – to predict multiphysics slack. The worst-case (resp. average) prediction errors are 565ps (resp. 87ps) for LASSO, 412ps (resp. 55ps) for linear SVM method, and 358ps (resp. 42ps) for SVM with RBF kernel. The SVM model with RBF kernel has smaller prediction errors as compared to those of linear SVM and LASSO models. Therefore, we compare our results with those from the SVM model with RBF kernel.

4As noted in the Conclusions below, an eventual target for methods such as what we describe here is the prediction of embedded memory defectivity in silicon (and, floorplan guidance to correct or avoid such defectivity). The difficulty and significance of such a prediction is noted in such works as [31]. While we have not had access to SoC design and product/test engineering data that would allow us to attempt this future application, our work has been motivated by (and kept consistent with) such an end goal.
propose analytical buffered delay models in the presence of blockages and report errors within 1% for three-pin nets. The authors propose integration of their models within a floorplanner for fast and accurate estimation of timing. Clarke et al. [4] propose detection of congestion-induced timing issues during synthesis, and prevention of congestion by avoiding decomposition of complex cells such as MUX and XOR to NAND and AOI cells during logic synthesis so as to reduce pin counts. Hutton and Karchmer [11] propose efficient design-space exploration of metrics such as operating speed, power and area during synthesis of FPGAs. The authors propose to create models using regression on existing synthesized designs. Jones et al. [12] derive wireload models to estimate wire delay due to parasitics at the placement stage. The authors propose to divide the block into equal-sized regions, perform Steiner tree routing and use Rent’s rule for fanout distributions in each region. Kim et al. [17] characterize standard cells and parasitics at different temperatures and propose thermal-aware delay models at the floorplanning stage. Vukovic [22] proposes the use of multiple wireload models during synthesis for better correlation of post-layout wire delay. Yaldiz et al. [23] develop a closed-form model of SRAM latency that comprehends inter- and intra-die process variations. The authors demonstrate accuracy of their models in 90nm and report errors within 15%.

In the category of applications of machine learning to predict physical design metrics, Huang et al. [10] use SVM classification to predict defects in analog chips at the post-silicon stage. They use low noise amplifiers as their test circuit and are able to predict defects within an error of 2.9%. Kalang et al. [15] propose use of nonlinear machine learning-based models to estimate cell delay and slew under noise in the power delivery network (PDN), and clock skew after clock tree synthesis.

In the category of applications of Boosting and SVM for regression, Kotisantis et al. [18] create an ensemble of regressors by using Bagging [9], Boosting with SVM without a kernel, and Random Forests [9]. The authors then combine outcomes of each regressor using weights that are proportional to the inverse of the error of the outcomes from each regressor. In their method the weights are calculated based on error in the test set, and not on the training set. Ogutu et al. [20] compare Random Forests, Boosting with a linear regressor, and SVM to predict genomic breeding values. The authors conclude that SVM is more accurate than the other two techniques. Our implementation of Boosting builds on [7] [18] by using SVM with a nonlinear kernel.

III. OUR METHODOLOGY

We now describe the key elements of our work: multiphysics analysis flow, model parameter selection, and machine learning-based modeling methodology. We also note how our analyses and modeling flows would be reproduced in a new environment.

A. Multiphysics STA

Figure 5 shows our multiphysics analysis flow. Due to the very large number of testcase implementations, we focus on an IR-STA multiphysics analysis loop. We perform STA using Synopsys PrimeTime-SI (PTSI) [32]. The inputs to the tool are Liberty timing libraries characterized at multiple voltage corners, Verilog netlist of the design, SPEF parasitics [30] with coupling capacitances, and Synopsys Design Constraints (SDC) [5] with timing constraints as well as back-annotated rail voltages of all instances based on the IR drop map. Note that STA is always performed with SI enabled in our flows.

IR (voltage drop) analysis is the first dimension of multiphysics analysis that must be joined with timing analysis. To assess the vulnerability of various floorplans to timing failures from IR drops, we parameterize the stripe width and pitch of on-chip PDNs, the width of power rings, the metal layers that are used for the PDN stripes, and the placement of memories relative to the nearest power pad. To supply power to memories, we generate secondary meshes on a metal layer that is different from the ones used for PDN stripes. For standard cells, we use M2 metal layers to connect PDN stripes. We connect power meshes and stripes in the lower metal layers to the standard cells, we use M2 metal layers to connect PDN stripes. To supply power to memories, we generate secondary meshes on a metal layer that is different from the ones used for PDN stripes. For standard cells, we use M2 metal layers to connect PDN stripes. We connect power meshes and stripes in the lower metal layers to the upper metal layers (M9 and M10) through via stacks, as in normal SoC methodology. We perform vectorless dynamic voltage drop (DVD) analysis using ANSYS RedHawk [28], inputs consist of the post-layout design database, technology Layout Exchange Format (LEF) [29] files, Liberty timing libraries, and the minimum and maximum, rise and fall arrival timing windows of all signal pins as reported from PrimeTime-SI [32]. Our DVD IR analysis is vectorless due to lack of representative simulation vectors; to our understanding, this reflects common industry practice. We place power pads uniformly along the block periphery so that the IR drop tends to be worst at the block center.

Once we have obtained an IR drop map, we back-annotate individual cell instances with rail voltage in PrimeTime-SI, and perform STA using timing libraries that have been characterized at multiple voltage and temperature corners using Synopsys SiliconSmart [32]. Again, we view this STA as “multiphysics” in its integration of the IR drop map on a per-instance basis. The standard practice in industry is to perform the above-described multiphysics analysis once. But, recall from Figure 1(a) above that more than one iteration can help remove pessimism in timing analysis by up to 15ps.

B. Model Parameter Selection

We use model parameters that span netlist structure, floorplan context and layout constraints. The modeling problem is high-dimensional when we consider multiple knobs in commercial tools, as well as multiple netlist and layout context parameters. To make our modeling methodology practically applicable, we focus on only those parameters that we have so far found to affect modeling accuracy. We assess the sensitivity of slack to each parameter independently by varying values of one parameter at a time and keeping the remaining parameters the same. We also assess the combined impact of various parameters on the slack of memories using variance inflation factor (VIF) [1]. We choose parameters whose VIF values are less than 0.5 [15] and let the modeling techniques (described in Section III-C) combine relevant parameters. Some of our parameters are for the entire layout, whereas the remaining parameters are for each memory instance so that the modeling can capture variable number of memories in the netlist, variations of floorplans, and the placement of memories within these floorplans. Table I lists our modeling parameters. The first column gives the parameter identifier; the second column describes the parameter; the third column shows whether the parameter is of type netlist, floorplan or constraint; and the last column indicates that the parameter is obtained per memory instance when it is “Yes”. Some of our modeling parameters are based on guidance provided in [2], [4] and [15].
TABLE I
PARAMETERS USED IN OUR MODELING.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Poly-silicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Max delay across all timing paths at the post-synthesis stage</td>
<td>Netlist</td>
<td>Yes</td>
</tr>
<tr>
<td>N2</td>
<td>Area of cells in the intersection of staple fanout and endpoint fanout cones of max-delay incident path</td>
<td>Netlist</td>
<td>Yes</td>
</tr>
<tr>
<td>N3</td>
<td>Number of stages in the max-delay incident path</td>
<td>Netlist</td>
<td>Yes</td>
</tr>
<tr>
<td>N4, N5, N6</td>
<td>Max, max-avg, and max-avg of transitive fanout and topmost fanout endpoints</td>
<td>Netlist</td>
<td>Yes</td>
</tr>
<tr>
<td>N7</td>
<td>Width and height of memories</td>
<td>Netlist</td>
<td>Yes</td>
</tr>
<tr>
<td>TPI</td>
<td>Aspect ratio of floorplan</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TP2</td>
<td>Standard cell utilization</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TP3</td>
<td>Power density width and pitch</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TPS</td>
<td>Sum of buffer counts around memories</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TPR</td>
<td>Lower left placement coordinates of memories</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TPW</td>
<td>Width, height of channel for memories</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TPW1</td>
<td>Width, height of channel for memories</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>TPW2</td>
<td>Width, height of channel for memories</td>
<td>Floorplan</td>
<td>No</td>
</tr>
<tr>
<td>C1</td>
<td>Sum of west and spacing of top-three routing layers after applying non-default rules (NDRs)</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C2</td>
<td>% cells that are LVT</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C3, C4</td>
<td>Max fanout of any instance in data and clock paths</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C5, C6</td>
<td>Max transition time of any instance in data and clock paths</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C7</td>
<td>Delay of the largest buffer expressed as Fmax delay</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C8</td>
<td>Clock period used for P&R expressed as Pmax delays</td>
<td>Constraint</td>
<td>No</td>
</tr>
<tr>
<td>C9</td>
<td>Ratio of clock periods used during synthesis and P&R</td>
<td>Constraint</td>
<td>No</td>
</tr>
</tbody>
</table>

C. Modeling Techniques

Recall from Figure 4 that we seek to model (i) multiple stages of the physical design flow such as placement, clock network synthesis, routing, extraction, etc., (ii) inherent noise in commercial tools, and (iii) a very high-dimensional space of parameters that span across netlists, floorplan contexts and timing constraints. Interactions between parameters are complex, e.g., an increase in PDN stripe density can cause a large congestion on upper metal layers and thereby increase coupling capacitances which will ultimately result in timing failures even when the IR drop is small. The type of timing analysis can contribute to large difference in slack, e.g., turning SI mode on can worsen slack by 100ps or more [16].

We use both linear as well as nonlinear machine learning techniques. We use LASSO regression with L1 regularization [21] as a linear technique, and Support Vector Machine (SVM) regression [9] with a Radial Basis Function (RBF) kernel [9], Artificial Neural Networks (ANN) [9], and Boosting [7] with a weak SVM learner as the nonlinear techniques. The Boosting learning technique combines predictions of multiple weak learning techniques to create an accurate learning model. Learning techniques such as linear classification and regression trees are used commonly as weak learners. For a comprehensive discussion on LASSO, SVM, ANN and Boosting, see [9]. For each technique, we use training and validation data sets that are 50% and 10% of the total data points, respectively, and we search for values of hyperparameters using grid search such that the training and validation mean-square errors (MSEs) are comparable. We use SVM with RBF kernel, the hyperparameters are ϵ along with the cost C that control the margin errors of the support vectors, and the width parameter γ of the RBF kernel. For ANN, we define the architecture as one input and one output layer and two hidden layers. The hyperparameters are the number of epochs for back propagation and the number of neurons per hidden layer. For LASSO, the hyperparameter is the regularization coefficient λ. For Boosting with SVM, the hyperparameters are ϵ, C, γ, and the number of iterations.

For each machine learning technique, we perform five-fold cross-validation so as to make the models generalizable. We normalize the parameters to within $[0, 1]$ before we proceed with modeling. The nonlinear techniques (SVM, ANN and Boosting) help to capture complex interactions between parameters. Our preliminary studies indicate that SVM with a RBF kernel method achieves higher accuracy (less than 300ps worst-case error) than linear SVM without a kernel (more than 335ps worst-case error). Therefore, we use SVM with a kernel method. The LASSO technique has large modeling error (greater than or equal to 300ps) when the number of parameters is larger than five. So, we use the linear LASSO technique to make predictions with a simplified model and use the outcomes of this linear technique as the bias in the final step in which we combine outcomes of all the techniques using Hybrid Surrogate Modeling (HSM) [15] to obtain the final predicted slack of each memory instance. Even though the procedure to combine predictions from various linear and nonlinear techniques is not obvious, the HSM technique enables us to combine the predictions using appropriate weights and improve overall prediction accuracy. Figure 6 shows our modeling flow. We implement our modeling in Matlab r2013a [26] using default toolboxes for ANN and LASSO, the open-source libsvm [6] toolbox for SVM, and our own implementation of Boosting. Figure 7 shows our high-level implementation of Boosting. We implement Boosting with weak SVM learners as follows.

- Initially, we set the weight W_0 of all training datapoints to be uniform, i.e., $W_0 = 1/N_{tr}$, where N_{tr} is the number of training data points.
- We use SVM as a weak learner by restricting the grid search to only three different values of each hyperparameter.
- We calculate the error e_i for the i^{th} stage using the validation set and W_i values of datapoints are set for the subsequent $(i+1)^{st}$ stage as $exp(0.5 \log \left(\frac{1 - e_i}{e_i} \right))$ when the error in slack prediction is greater than or equal to 50% of the clock period, and are set to 1 otherwise.
- To make our predictions pessimistic on datapoints for which the actual slack is negative, we increase W_i by a factor of five when the predicted slack value for such a datapoint is positive.
- We terminate when worst-case error in the validation set is less than 20% of the clock period or when the number of iterations reaches $k = 40$. We combine outcomes of each iteration using coefficients β_i (determined by using least-squares regression), where $i = 1, ..., k$, to determine the final outcome of Boosting.

6We have tried normalization using z-scores to within $[-1, 1]$ as well. The predicted values change by less than 0.5%. Therefore, we use normalization to within $[0, 1]$ in our experiments.

7With values of $k > 40$ we do not observe significant improvement in error.
From the above discussion, the reader will note that the proposed methodology will in practice use post-P&R databases of various projects taped-out in a given (technology node, library, tool flow) as the basis of netlist structural analyses, floorplan structural analyses, and multiphysics performance analyses. Designers of new projects in the same technology node would use our model to filter out floorplans and constraints that can cause timing failures. In a new technology or design environment, the one-time initial model fitting effort that we describe above must be performed.

IV. VALIDATION AND RESULTS

In this section, we describe our testcases, design of experiments and present our modeling results.

A. Testcases

We have developed a generator to create testcases to vary (i) the number of SRAMs in the netlist, (ii) the floorplan context such as aspect ratio, utilization, buffer screens, PDN structure, etc., and (iii) the placement of SRAMs in the floorplan. Figure 8 illustrates various parameterizations of floorplans in our testcase generator, using the floorplans shown in Figures 10(a) and 12(a). We can independently change the width and height of buffer screens around SRAMs or blockages, the dimensions of each blockage, and the area for standard cell placement.

Our netlists contain both logic and SRAMs. For logic, we use open-source designs such as THEIA and nova from OpenCores [27], our own artificial testcases with an embedded processor, and blocks from OpenCores such as aes_cipher_top and reed_solomon_codec. We perform synthesis using 28nm foundry FDSOI libraries and Synopsys Design Compiler v1-2013.12-SP3. Table II summarizes our netlists with post-synthesis metrics.

<table>
<thead>
<tr>
<th>Netlist</th>
<th>Clock Period (ns)</th>
<th>Std Cells</th>
<th>SRAMs</th>
<th>Logic Area (µm²)</th>
<th>SRAM Area (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEIA_v0</td>
<td>3.0</td>
<td>147474</td>
<td>40</td>
<td>157416</td>
<td>247252</td>
</tr>
<tr>
<td>THEIA_v2</td>
<td>2.7</td>
<td>146555</td>
<td>5</td>
<td>157069</td>
<td>49823</td>
</tr>
<tr>
<td>THEIA_v3</td>
<td>3.0</td>
<td>146914</td>
<td>6</td>
<td>157012</td>
<td>48032</td>
</tr>
<tr>
<td>THEIA_v4</td>
<td>3.0</td>
<td>146243</td>
<td>8</td>
<td>156212</td>
<td>64043</td>
</tr>
<tr>
<td>THEIA_v5</td>
<td>3.0</td>
<td>144006</td>
<td>10</td>
<td>123591</td>
<td>80804</td>
</tr>
<tr>
<td>Nova</td>
<td>2.0</td>
<td>201015</td>
<td>6</td>
<td>212075</td>
<td>14925</td>
</tr>
<tr>
<td>Artificial</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9 illustrates a PDN structure used in our testcases. We use metal layers M9 and M10 for the power ring around the core; we also use M9 and M10 for the top-level power mesh. We use M6 to generate secondary meshes to supply power to SRAMs, and M2 to connect standard cells to the VDD and ground rails. From the post-P&R databases we generate the routed Design Exchange Format (DEF) [29] file using Synopsys IC Compiler vH-2013.03-SP3 and provide it as an input to ANSYS/Apache RedHawk v10.1.7 along with technology LEF and Liberty timing libraries. We use Synopsys PrimeTime-SI vH-2013.06-SP2 to obtain timing windows of all signal pins.

B. Design of Experiments

Using our generator described in Section IV-A and netlists in Table II, we create various testcases in which we vary floorplans, PDN structures and constraints. Table III lists the parameters we vary in our design of experiments. We vary the standard-cell placement

<table>
<thead>
<tr>
<th>Region</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_w</td>
<td>Width of core mesh (width = 2um)</td>
</tr>
<tr>
<td>Blockage_w</td>
<td>Width of blockage mesh (emulate blockage between SRAMs)</td>
</tr>
<tr>
<td>Blockage_h</td>
<td>Height of blockage mesh</td>
</tr>
<tr>
<td>Sram_pitch</td>
<td>Pitch of SRAMs</td>
</tr>
<tr>
<td>Screen_w</td>
<td>Width of power ring screen (emulate buffer screens)</td>
</tr>
<tr>
<td>Core_h</td>
<td>Height of core mesh</td>
</tr>
<tr>
<td>VDD</td>
<td>Power rail: M2</td>
</tr>
<tr>
<td>GND</td>
<td>Secondary mesh: M6</td>
</tr>
<tr>
<td>M9, M10</td>
<td>Power ring: V = M9, H = M10</td>
</tr>
<tr>
<td>M6</td>
<td>Top mesh: V = M9, H = M10</td>
</tr>
</tbody>
</table>

Fig. 10. Variations in floorplans in our testcases: (a) cross-shape, (b) L-shape, and (c) T-shape. The red lines are used to highlight these shapes.

We create multiple variations of floorplans for netlists with five, six, eight, 10 and 40 memories. Figures 12(a)–(f) show examples of six variations that we generate. All of these floorplans can be created with the tic-tac-toe framework. Specifically, we create the floorplans with eight, 10 and 40 memories using this implementation. For the tic-tac-toe implementation, we focus on testcases with more than eight memories. Note that our modeling parameters listed in Table I can handle variations of floorplans shown in Figures 10 and 12 because...
we include parameters that are floorplan-specific as well as memory instance-specific. We allow only buffer instances to be placed within the buffer screens around SRAMs.

A real industry flow will run Design Compiler in topographical mode with floorplan constraints and generate a DEF with placement of standard cells. However, this requires a license which is not available to us. We denoise each P&R run by varying the parameters by ±0.5% from its value. We generate a total of 2515 data points for modeling, out of which we use 1248 (50%) data points for training, 226 (9%) data points for validation, and the remaining 1041 (41%) data points for testing. We challenge our modeling by testing on all data points of testcases nova and values of aspect ratio, utilization, and PDN width and height, which are not used for training.

We use the multiphysics analysis flow described in Section III-A, and the modeling methodology described in Section III-C to derive our model. Each P&R and analysis run requires approximately 10 hours using a single core, and the training time is around three hours for 2515 data points on an Intel Xeon E5-2640 2.5GHz when using four cores. The testing time for 1041 data points is less than two minutes.

Fig. 11. Example of a floorplan enumerated with tic-tac-toe implementation.

SRAM timing slack values after annotating IR drop from the RedHawk reports to cell instances.

- **Experiment 3** tests fidelity of our model in providing floorplan guidance to reduce timing failures at signoff with multiphysics analysis. We report the confusion matrix of timing pass or fail predictions, again using the same design of experiments and modeling flow.

C. Results

For all of our experiments, we separately report modeling errors (i.e., predicted slack – actual slack) for both training and test datasets. Figures 13(a) and (b) show the ground truth that we predict. Figure 14 compares post-synthesis slack of SRAMs with post-P&R slack. Due to changes in constraints and implementations, post-P&R slack has no apparent correlation with post-synthesis slack.

Fig. 12. Examples of memory placements in our testcases: (a) 5×1 vertical stacking, (b) 3×1, 2×1 side-by-side arrays at upper-left, (c) 3×1, 2×1 arrays at upper-left and lower-right, (d) 3×1, 2×1 arrays at upper-left and upper-right, (e) 4×1, 4×1 side-by-side arrays at upper-left, and (f) 4×1, 2×1 side-by-side arrays at upper-left and 4×1 at lower-right.

We conduct three experiments to validate our model. In all of our experiments we use datapoints from testcases THEIA, v0 and nova exclusively for testing, i.e., no datapoints from these two testcases are used to train the model.

- **Experiment 1** tests accuracy of our model in predicting post-P&R slack values of SRAMs. With the training data generated by the design of experiments described above in Table III, we apply our modeling flow described in Figure 6 to predict the post-P&R memory timing slack values. We also compare the accuracy of various modeling techniques and present our results in Table IV.

- **Experiment 2** tests accuracy of our model in predicting slack values with multiphysics analysis. We use the same design of experiments and modeling flow as in Experiment 1 to predict...
Results of Experiment 1. Table IV shows error metrics of our modeling techniques on the test dataset for the various machine learning techniques. Rows 4 and 5 in the table show that the worst-case error in slack prediction reduces by 30ps with our implementation of Boosting with SVM regressors, compared to the SVM-only technique. Figure 15(a) shows predicted versus actual slack values of memories at the post-P&R stage. Our model has worst-case error of 224ps (48%) and average error of 4.0ps (7.2%). Note that most of the predicted slack values (when the actual slack values are negative) are below the solid black line (i.e., line of perfect correlation) as a result of negative-slack weighting strategy. Figure 15(b) shows a histogram of error in slack prediction in the test dataset, and Figure 15(c) shows the outcome of our negative slack weighting strategy during our model construction, i.e., greater magnitudes of the negative slack values have pessimistic predictions.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Min Error (ps)</th>
<th>Max Error (ps)</th>
<th>Mean Error (ps)</th>
<th>Standard Deviation (ps)</th>
<th>Mean-Square Error (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASSO</td>
<td>-280.6</td>
<td>217.9</td>
<td>-36.2</td>
<td>64.1</td>
<td>11.9</td>
</tr>
<tr>
<td>ANN</td>
<td>-253.7</td>
<td>209.8</td>
<td>-5.7</td>
<td>55.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Boosting</td>
<td>-253.7</td>
<td>209.8</td>
<td>-5.7</td>
<td>55.7</td>
<td>3.1</td>
</tr>
<tr>
<td>HSM</td>
<td>-223.1</td>
<td>223.7</td>
<td>-4.0</td>
<td>58.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Results of Experiment 2. Figure 16(a) shows predicted versus actual slack values of memories with multiphysics analysis. Our model has worst-case error of 253ps (44%) and average error of 9.0ps (5.9%). Figure 16(b) shows a histogram of error in slack prediction in the test dataset. Even though our worst-case error is large, only a small number of predictions have error greater than 100ps. Some of these predictions are more pessimistic due to our negative-slack weighting strategy. Since prediction of slack with multiphysics analysis is more difficult than predicting post-P&R slack, the errors are larger than those in Experiment 1.

Results of Experiment 3. Figure 17 shows the confusion matrix of our predictions on the test set. Our predictive model of SRAM slack values with multiphysics analysis has few (~3%) false negatives (fn), that is, pessimistic predictions in which we provide guidance to change a floorplan that is actually not required. Our model also has few false positives (fp), that is, cases for which our model incorrectly deems a floorplan to be good. Such wrong predictions have a ~4% incidence. The number of true positives (tp), that is, both the predicted and actual slack values are positive, is 584. The number of true negatives (tn), that is, both the predicted and actual slack values are negative, is 384.

In our model, the precision [9] (i.e., the ratio of tp to the sum of tp and fp) is 93.3%, and the recall (i.e., the ratio of tp to the sum of tp and fn) is 95.0%. Similarly, the precision for negative slack datapoints (referred to as negative predictive value in the machine learning literature) is 92.5% and the recall for negative slack datapoints (referred to as specificity in the machine learning literature) is 90.1%. Based on these large values of precision and recall metrics, we believe that our model can provide guidance to designers on the risk of SRAM timing failures with high fidelity.

V. CONCLUSIONS AND FUTURE WORK

Early prediction of post-layout timing failures is important to reduce design cost and turnaround time. However, this prediction problem is very difficult as it must comprehend tool flows, noise, and the physics used during timing analysis. We propose a machine learning-based methodology to predict post-P&R slack of SRAMs at the floorplanning stage, given only a netlist, constraints and floorplan context. We demonstrate that our methodology can be extended to predict slack with multiphysics (STA and DVD IR) analysis. We develop a new implementation of Boosting with SVM in which we use a negativel slack bias strategy. This strategy guides model predictions to be less optimistic when the actual slack values are negative. We report worst-case modeling error of 253ps in predicting slack with multiphysics analysis, and average error of 9.0ps. The number of predictions with

\[Error = \frac{\text{actual slack} - \text{predicted slack}}{\text{actual slack}} \times 100\% \]
consider SRAM variability, and use its outcomes for modeling, and (iv) developing a flow to predict defectivity in silicon and providing floorplan guidance to product/test engineering data from an SoC design company, (ii) avoid floorplans and constraints that may cause timing failures at metrics. We believe that SoC designers can use our methodology to of our predictions is high as measured by the precision and recall.

ACKNOWLEDGMENTS

We thank P. Agrawal of ANSYS and J.-A. Desroses of STMicroelectronics for their generous help with setup and enablement of the iterative DVD analysis and signoff timing flow. This work is supported by Samsung Electronics.

REFERENCES