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ABSTRACT
Resilient design techniques are used to (i) ensure correct operation
under dynamic variations; and (ii) improve design performance
(e.g., through timing speculation). However, significant overheads
(e.g., 17% and 15% energy penalties due to throughput degradation
and additional circuits) are incurred by existing resilient design
techniques. For instance, resilient designs require additional
circuits to detect and correct timing errors. Further, when there is an
error, the additional cycles needed to restore a previous correct state
degrade throughput, which diminishes the performance benefit of
using resilient designs. In this work, we propose a methodology
for resilient design implementation to minimize the costs of
resilience in terms of power, area and throughput degradation. Our
methodology uses two levers: selective-endpoint optimization (i.e.,
sensitivity-based margin insertion) and clock skew optimization.
We integrate the two optimization techniques in an iterative
optimization flow which comprehends toggle rate information and
the tradeoff between cost of resilience and margin on combinational
paths. Our proposed flow achieves energy reductions of up to
19% and 21% compared to a conventional design (with only
margin used to attain robustness) and a brute-force implementation,
respectively. These benefits increase in the context of an adaptive
voltage scaling strategy.
Categories and Subject Descriptors: B.7.2 [Design Aids]:
Placement and routing
Keywords: Low power, resilient design, design optimization, cost
reduction

1. INTRODUCTION
IC products in advanced technology nodes are susceptible

to dynamic variations that manifest via supply voltage droop,
temperature fluctuation, cross-coupling, aging, and other
mechanisms. To ensure correct functionality and robustness,
traditional IC implementation methodologies build guardband
into clock frequencies and design signoffs – notably, timing
signoff at worst-case corners and for hold-time correctness.
However, it is well-recognized that designing for worst-case
conditions incurs considerable power and performance overheads.
Better Than Worst-Case design [3], where an error checker
and corresponding recovery mechanism enable typical-case
optimization, can significantly reduce overdesign compared to
traditional methodologies. A similar idea for guardband reduction
has been proposed by Bowman et al. in [5], where several
techniques for dynamic variation tolerance (i.e., resilient designs)
are presented.

Resilient designs trade off design robustness against design
quality (performance, power and area), and are used to ensure
correctness against variation and improve performance [7] [9] [10]
[12] [13] [18]. Razor [10] is a well-known technique to detect
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Figure 1: Structure of (a) Razor, (b) Razor-Lite and (c) TIMBER flip-flops.
and correct timing errors due to frequency, temperature and voltage
variations. Razor detects timing violations by supplementing error-
tolerant flip-flops with shadow latches. A shadow latch strobes the
output of a logic stage at a fixed delay after the main flip-flop; if
a timing violation occurs, the main flip-flop and shadow latch will
have different values, signaling the need for correction. Correction
involves recovery using the correct value(s) stored in the shadow
latch(es). In the following discussion, we define the maximum
timing violation (worst negative slack) that a resilient design can
tolerate as the safety margin of the corresponding design.

By allowing timing errors, resilient designs are also used to
improve performance. An example is timing speculation [19],
which increases the clock frequency and exploits error detection
and recovery mechanisms to correct the resulting errors. Timing
improvement from resilient designs can further lead to power and
area benefits over conventional designs. In other words, we can
reduce the power and area of logic cells in a fanin cone by using
the error-tolerant register at the endpoint.

However, resilient designs require additional circuits or cycles
to detect and correct timing errors. Figure 1 shows the structure
of Razor, Razor-Lite [17] and TIMBER [7] flip-flops. All have
additional circuits, and hence power and area overheads, compared
to a conventional flip-flop. For instance, Razor has its shadow
latch and other error-tolerant circuits (comparator, multiplexer and
OR-gate). When compared to a conventional flip-flop, the total
power overhead of Razor flip-flop is 30% [9]. Although the power
overhead has been significantly reduced in a recent work [17],
the additional cycles needed to recover from errors can still lead
to performance degradation. Moreover, error-tolerant circuits are
vulnerable to hold violations. Designers must ensure that benefits
(in terms of performance, and/or area and power reduction from
the error resilience) outweigh the additional costs of error-tolerant
circuits.

In this work, we perform in-depth studies of the tradeoff between
the overhead of error-tolerant circuits and the cost of the traditional
timing optimizations, with the goal of assessing ‘true’ benefits
of resilient design techniques. We propose two effective design
optimization techniques – selective-endpoint optimization, and
clock skew (useful skew) optimization [1] [11] – to minimize the
costs of resilience, i.e., (i) power and area overhead of resilient
circuits, and (ii) throughput degradation due to additional cycles for
error recovery. Since our work currently focuses on optimization
at the post-placement stage, we do not yet consider the cost of hold
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Figure 2: Slack distribution of endpoints in (a) original design; (b) design with only selective-endpoint optimization; and (c) design with combined selective-
endpoint and useful skew optimization. Red dotted lines indicate required safety margin. Design: FPU (OpenSPARC T1). Technology: 28nm FDSOI.

violations due to resilient design implementation. However, our
optimization flow can easily be combined with existing short-path
padding optimizations (e.g., [20]). Our contributions include the
following.
• We propose an optimization methodology for resilient

designs to reduce the cost of resilience. Our method exploits
both error-tolerant registers and clock skew scheduling.
• We study the benefits and cost of resilient design

implementations, where we trade off among (i) power and
area overheads of error-tolerant registers, (ii) optimization of
logic cells in the fanin cone, and (iii) throughput degradation
due to timing errors.
• We assess the opportunities of resilient designs across

different error-tolerant registers designs as well as in the
adaptive voltage scaling (AVS) context.

The rest of this paper is organized as follows. Section 2 presents
related work. Section 3 formulates the problem to reduce the cost
of resilience and describes our methodology for implementing low-
cost resilience. Section 4 presents our experimental results and
analysis, and Section 5 summarizes and concludes the paper.

2. RELATED WORK
A number of resilient design techniques have been proposed that

allow timing errors with different error detection and correction
mechanisms. These previous works can be roughly classified into
two categories. In the first category, designs use replica circuits
for error masking. These designs typically incur large power
and area overheads due to its additional circuits. In the second
category, designs use error-tolerant registers to detect timing errors.
Although circuit power and area overheads can be smaller, rollback
or instruction reply is required to recover from timing errors. The
additional cycles for error recovery lead to throughput degradation.
Replica Circuits for Error Masking. A well-known technique
compares output values in each cycle using redundant hardware
circuits. Paceline [13] employs a leader-checker which checks
timing errors due to overclocking. CPipe [18] enables reliable
overclocking through core-replication. The outputs of the main
combinational logic are compared with those of the duplicated
logic in each cycle. Choudhury et al. [8] synthesize error-masking
circuits and use 2-to-1 multiplexers to mask errors at the output of
critical paths. Similarly, Yuan et al. [22] mask errors by adding
redundant approximation logic which has higher speed than the
original circuit. TIMBER flip-flops and latches [7] enable online
timing error masking via time-borrowing from the successive
pipeline stage, and hence do not require additional cycles to recover
from an error. This kind of approach provides error resilience with
high reliability, but also incurs significant power and area overheads
due to the redundant logic circuits.
Error-Tolerant Registers with Error Recovery. Razor and
related works [4] [9] [10] [17] replace registers with specialized
flip-flops which detect and correct timing errors on each endpoint
by capturing the correct value at shadow latches with a delayed
clock. Razor [10] can correct timing errors within a specific safety
margin of the error-tolerant register. Razor II [9] provides analysis
of the Razor flip-flop – with respect to timing constraints, safety
margin and clocking scheme – and reduces complexity and area of

the Razor flip-flop. A more recent work – Razor-Lite [17] – further
reduces the area and power penalties of error-tolerant registers.
STEM [4] improves the capability of error-detection with a second
shadow latch.
Resilient Design Optimization. With the above error-tolerant
registers, various design-level optimization techniques [8] [14] [15]
[16] [19] [22] have been proposed which identify and optimize
critical paths that are frequently exercised during operation.
However, these works typically fail to holistically consider the
costs of the error-tolerant circuits during the optimization. For
example, Choudhury et al. [8] reduce the area and power penalties
of resilient designs. However, their method simply applies
resilient techniques to timing-critical paths, and ignores the tradeoff
between the benefits of resilience and the costs of margin insertion
for data paths.

3. IMPLEMENTATION METHODOLOGY
In this section, we define a resilience cost reduction problem

and describe our optimization flow for low-cost resilient design
implementation. Our flow uses two optimization techniques
– selective-endpoint optimization (SEOpt) and clock skew
optimization (SkewOpt) – to minimize resilience overheads of
energy, area and throughput degradation. Figure 2 illustrates the
basic idea of our optimization approach. In the initial resilient
design (a), a large number of endpoints have timing violations
at the target frequency (with respect to the safety margin), and
error-tolerant registers or error-masking circuits are used for those
endpoints. In our selective-endpoint optimization (b), we tightly
optimize a set of selected endpoints to reduce the resilience
overheads. During clock skew optimization (c), we increase timing
slacks of endpoints having timing violations by optimizing the
clock-arrival time at individual endpoints, further reducing the
resilience overheads. In our optimization flow, we iteratively
perform SEOpt and SkewOpt to minimize the cost of resilient
design.
3.1 Resilience Cost Reduction Problem

We solve the following resilience cost reduction problem.
Given an RTL design along with (i) throughput requirements, (ii)
power and area overheads as well as safety margin for each type of
error-tolerant register, and (iii) number of cycles needed to recover
from an error: implement the design to attain minimum energy,
comprehending the energy penalties of additional circuits and the
throughput degradation due to rollback or instruction replay.

We calculate design energy based on total power and throughput
information, i.e.,

Energy =
Power

T P
(1)

where T P is the throughput of the design. T P is estimated based
on error rate information [19] as

T P =
1−ER

T
+

ER
r ·T

(2)

where ER is the total error rate of the design, T is the clock period,
and r is the number of cycles needed to recover from an error. Thus,
for an accurate design, the throughput is 1/T .

We further estimate the error rate based on toggle information
of flip-flops (including toggles of both negative-slack and positive-



slack fanin paths) [16] as

ER = α ·
∑(T G f f · ∑T Gp_neg

∑T Gp_all
)

∑T G f f
(3)

where T G f f is the toggle rate of a flip-flop, T Gp_neg and T Gp_all
are respectively the toggle rates of negative-slack fanin paths and
all fanin paths to the flip-flop, and α is a parameter to compensate
pessimism due to (i) the fact that errors can occur in one cycle and
(ii) the existence of false paths. We empirically use α = 0.35 in our
experiments.
3.2 Selective-Endpoint Optimization

We propose selective-endpoint optimization (SEOpt) to
minimize the resilient design cost (primarily area, power and
throughput degradation). Our SEOpt trades off between the
costs of resilience and of data path optimization. In other words,
we selectively increase margins at the endpoints with timing
violations; this allows us to replace the error-tolerant registers with
conventional ones and/or to remove replica circuits. However,
these margins incur area and power cost in combinational logic
cones. Therefore, key questions are (i) ‘which endpoints should be
optimized?’, and (ii) ‘how many endpoints should be optimized?’.

For Question (i), area and power of combinational cells in
the fanin cone of an endpoint will increase when we add slack
margin for the endpoint. Further, each endpoint will exhibit a
different cost function due to the margin insertion. For instance,
the optimization cost increases significantly for an endpoint which
has a large number of timing-critical fanin cells (i.e., negative-
slack cells in the fanin cone of the endpoint). Therefore, to
reduce the optimization cost, we should preferentially optimize
endpoints which are less sensitive to slack margin insertion. In
SEOpt, we propose sensitivity functions for endpoints to estimate
the potential optimization cost, based on which we select endpoints
for optimization. Note that the sensitivity function of an endpoint
indicates the performance vs. power and/or area tradeoff of the
corresponding fanin cone. We study five sensitivity functions for a
given timing endpoint p:

SF1(p) = |slack(p)| (4)

SF2(p) = |slack(p)|×numcri(p) (5)

SF3(p) = |slack(p)|× numcri(p)
numtotal(p)

(6)

SF4(p) = |slack(p)|× ∑
c∈ f anin(p)

Pwr(c) (7)

SF5(p) = ∑
c∈ f anin(p)

(|slack(c)|×Pwr(c)) (8)

slack(p) indicates the worst negative slack of endpoint p;
numcri(p) and numtotal(p) respectively indicate the number of
critical cells (i.e., cells with negative timing slacks) and total
cell count in the fanin cone of the endpoint p; c indicates the
combinational cells in the fanin cone; and slack(c) and Pwr(c) are
respectively the worst negative slack of any path through cell c and
the power of cell c.

To study the performance of each sensitivity function, we sort
the endpoints in increasing order of a given sensitivity function.
Then, we optimize the top k% endpoints in the sorted list, where we
increase k from 0 to 100 with a step size of 5. Figure 3 shows power
and area resulting from selective-endpoint optimizations based on
five sensitivity functions. In this example, the safety margin is 10%
of the clock period.1 We observe that SEOpt based on SF2 and
SF5 incurs smaller penalties with respect to power and area. We
use SF5 in the experiments reported in Section 4.
1In [7], safety margins of 10%, 20% and 30% of clock period are
studied.
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Figure 3: Cell area and total power resulting from selective-endpoint
optimization with different sensitivity functions.

For Question (ii), optimizing more endpoints reduces the number
of error-tolerant registers required. However, the cost of this
optimization (i.e., area and power penalty on data paths) also
increases. We iteratively increase the number of endpoints to
be optimized and select the solution with minimum cost (e.g., a
function of area and/or power).

3.3 Clock Skew Optimization
To further reduce the number of error-tolerant registers and

minimize the timing errors, we use clock skew optimization
(SkewOpt) which maximizes the timing slacks on endpoints
with timing violations. In SkewOpt, we formulate the clock
skew optimization problem as a maximum mean weight cycle
problem [2]. This is due to the fact that the maximum achievable
timing slack of a path is determined by the maximum average slack
of a cycle (i.e., a loop formed by timing paths) which contains
the corresponding path. We use the parametric shortest path
algorithm [21] to determine the maximum mean weight cycle. The
algorithm as we have implemented it is described in Algorithm 1.
We first construct a graph G where each endpoint corresponds to a
vertex and each timing path corresponds to two edges (i.e., one for
the setup constraint and one for the hold constraint) (Line 1). The
weights of edges indicate setup/hold slacks of timing paths in the
corresponding flop-to-flop logic cones.

In SkewOpt, we optimize setup timing slacks of endpoints with
error-tolerant registers (with respect to hold constraints and setup
constraints on other paths). Based on the above, we classify
edges in the graph into two categories – (i) parameterized edges
and (ii) non-parameterized edges – where timing corresponding to
parameterized edges will be optimized, while non-parameterized
edges will serve as constraints during the optimization. We define
parameterized edges based on setup constraints on timing paths
having timing violations with respect to the safety margin, and we
define non-parameterized edges based on hold/setup constraints on
other paths. We formulate the constraints in SkewOpt as

xq +(T −dq−dmax
p,q − tsetup

q − tmargin
p,q )︸ ︷︷ ︸

sp,q

−λ≥ xp (q ∈ R) (9)

xq +(T −dq−dmax
p,q − tsetup

q − tmargin
p,q )︸ ︷︷ ︸

sp,q

≥ xp (q 6∈ R) (10)

xp +(dp−dmin
p,q − thold

q −dq)︸ ︷︷ ︸
sp,q

≥ xq (∀q) (11)

where T is the clock period; xp is the clock arrival time of endpoint
p; dp is the clock-to-Q delay of p; dmax

p,q and dmin
p,q are, respectively,

the maximum and minimum path delay from p to q; tsetup
q and thold

q

are the setup and hold times of q; and tmargin
p,q is the required safety

margin between p and q. R is the set of endpoints which use error-
tolerant registers, and λ is the parameter which will indicate the
slack change. Constraint (9) corresponds to a parameterized edge in
the constructed graph with an edge weight of (sp,q−λ). Constraints
(10) and (11) are respectively induced by setup and hold constraints
on a given non-parameterized edge in the constructed graph with an
edge weight of sp,q.



Algorithm 1 Clock Skew Optimization (SkewOpt)

Procedure SkewOpt(N)
1. G(V, E)← construct graph corresponding to N
2. Initialize solution graph G′(V, /0)
3. V ←{r}∪V ; E←{e(r, p)}∪E, ∀p 6= r; w(r, p)← 0, ∀p 6= r
4. ET ←{e(r, p)}, ∀p 6= r
5. Update p_w(p), ∀p ∈V

// p_w(p) = ∑w(pi, p j), ∀e(pi, p j) ∈ shortest path from r to p
6. while |E|> 1 do
7. λmin←+∞
8. for all p ∈ E but 6∈ ET do
9. λp,q← Solve p_w(p)+w(r,q) = p_w(q)

10. if λp,q < λmin then
11. λmin← λp,q
12. emin← e(p,q)
13. end if
14. end for
15. ET ← ET ∪{e(p,q)}
16. λ← λmin
17. Remove edges from ET with the same head as emin
18. if there is a cycle in ET then
19. slack(p,q)← λmin, ∀e(p,q) ∈ cycle
20. Add all edges on cycle to G′
21. E← E \{e(p,q) | e(p,q) ∈ cycle}
22. Contract all vertices on cycle into pnew
23. Update E and ET
24. end if
25. end while
26. Traverse G′ to calculate xq based on slack(p,q) and xp
27. Nsol ← apply xp, ∀p to N
28. return Nsol

In the graph G, we always maintain a tree to store edges
corresponding to timing-critical paths. We initialize the tree
by inserting a dummy vertex (i.e., root r) and dummy edges
connecting r and other vertices (Lines 3-4). Then, we continuously
add edges corresponding to the most timing-critical paths to the tree
(Lines 7-15) and remove dummy edges that share the same head
with the added edge (Line 17). When adding an edge to the tree
results in a cycle2, we coalesce the cycle (including vertices and
edges on the cycle) into one vertex (Lines 18-24). The edges on
the cycle are added to the solution graph and the optimized slacks
are stored. We assign to the parameterized edges weights equal
to the summation of weights (i.e., slacks) on the cycle divided
by the number of parameterized edges on the cycle, and assign
zero slack to the non-parameterized edges on the cycle. That is,
timing paths with conventional registers as endpoints will have zero
slack with respect to the safety margin if they are in a maximum
mean weight cycle with critical paths with error-tolerant registers
as endpoints. Note that assigning new weights indicates the change
of clock arrival times. Therefore, we update the weights of edges
incident to vertices on the cycle. Then, we optimize slacks on the
updated graph. We iteratively determine and optimize the most
critical maximum mean weight cycle until there is only one edge
in the graph (i.e., no more cycles can be determined). Last, we
traverse the solution graph and calculate the clock arrival times
based on the optimized path slacks (Line 26).

Although the above algorithm improves timing slacks on paths
with timing-violated endpoints, it is not aware of error rates. To
enable error-rate awareness and reduce the cost of throughput
degradation, we extract the toggle rate information of each timing
path and replace Constraint (9) by

2Since we always add the edge corresponding to the most timing-
critical path to the tree, the resulting cycle is the most critical
maximum mean weight (i.e., slack) cycle.

Algorithm 2 Combined Optimization (CombOpt)

Procedure CombOpt(N)
1. Run STA to initialize slack values for the netlist N
2. P← /0
3. for all timing endpoints p in the netlist N do
4. if slack(p) < 0 then
5. p.sensitivity← |slack(p)|× f anin(p)
6. P← P∪{p}
7. end if
8. end for
9. m← |P|/k

10. Cmin← ∞
11. for i = 0 ; i < m ; i← i+1 do
12. Pick the top k endpoints Pi with minimum sensitivity in P;
13. Ni← TimingOpt(Ni−1,Pi)
14. Ni← SkewOpt(Ni−1)
15. Run incremental STA(Ni,Pi)
16. for all endpoint p in P do
17. if slack(p)≥ 0 then
18. Replace error-tolerant register by conventional register

at p
19. end if
20. end for
21. Ci←COST (Ni)
22. if Ci < Cmin then
23. Cmin←Ci
24. Nmin← Ni
25. end if
26. P← P−Pi
27. Update sensitivity of all endpoints in P
28. end for
29. return Nmin

xq +
sp,q

1+β ·T G(p,q)
−λ≥ xp (q ∈ R) (12)

where T G(p,q) indicates the toggle rate of the maximum-delay
path between endpoints p and q, and β is a weighting factor (we set
β = 2 in our experiments).
3.4 Proposed Optimization Flow

As mentioned in Section III-B, SEOpt reduces cost of resilience
via optimization on data paths. However, such an optimization
incurs power and area overheads on combinational cells, and its
performance is limited on timing-critical paths (i.e., upsizing and
buffer insertion cannot remove timing violations on timing-critical
paths that have already been optimized with these levers). On the
other hand, SkewOpt does not lead to power and area penalty on
data paths, but its performance is limited by the total available
timing slacks in the design (i.e., it only migrates timing slacks
from timing non-critical paths to timing-critical paths, but cannot
generate additional slacks) and the topology of the sequential graph
(i.e., the benefits of SkewOpt are limited when there are many
cycles consisting of timing-critical paths).

To minimize the cost of resilience, we combine the SEOpt and
SkewOpt methods and execute them iteratively. The basic idea is
that we use SEOpt to create timing slacks on data paths with low
power penalty; then, we use SkewOpt to migrate the timing slacks
on non-critical paths and the created timing slacks from SEOpt
to critical-timing paths which have high-sensitivity endpoints. In
this way, we reduce the number of error-tolerant registers without
incurring large power penalty on data paths.

Algorithm 2 describes our combined optimization, which we call
CombOpt, to reduce the error-resilience overhead. The procedure
takes as input a netlist N which has error-tolerant registers on
endpoints with timing violations. The procedure runs static timing
analysis (STA) and computes a sensitivity value for each endpoint
p (Lines 1-8). We use the sensitivity function SF5 as described
above. The procedure finds all fanin cells by tracing backward from
the endpoint register using depth-first search. During the fanin-



cone tracing, we count only the timing-critical fanin cells since
non-critical fanin cells have little effect on the cost of endpoint
optimization. The procedure optimizes the top k endpoints
according to the sensitivity in each iteration (i.e., SEOpt) (Lines 12-
13). TimingOpt(N,P) (Line 13) represents a timing optimization
on the set of endpoints P in netlist N. We perform SkewOpt
after optimization on the fanin cones of the top k endpoints (Line
14). ISTA(N,P) (Line 15) is an incremental static timing analysis
(STA) after the optimization. If the timing slack of endpoint p
becomes positive, the procedure replaces the register of p with
a conventional register. Then, the cost of the netlist (COST (N))
is updated. After the iterations of endpoint optimization, the
procedure finds a netlist (Nmin) which has a heuristically minimized
cost in terms of area and/or power consumption.

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup

We conduct experiments with four sub-modules (Table 1)
from the OpenSPARC T1 processor [26]. The modules are
implemented with commercial 28nm FDSOI libraries; synthesis is
performed with Synopsys Design Compiler H-2013.03-SP3 [27],
and placement and routing are performed with Cadence EDI
System 13.1 [24]. Runtime is reduced by adopting a restricted
library of 90 commonly used cells (40 combinational and five
sequential, with dual-VT flavors). We use three error-tolerant flip-
flops in our experiments, with overheads of power, area (estimated
based on extra transistor count), and throughput as given in Table 2.

In our experiments, (i) we model power penalty by multiplying
the total power of the error-tolerant flip-flops by the corresponding
power overhead; (ii) we model area overhead by scaling the size
of flip-flops in LEF; and (iii) we model safety margin using the
SDC file (using original clock period + safety margin as the
clock period for implementation, but specifying the original clock
period as the maximum delay on paths with conventional flip-
flops as endpoints). To obtain switching activity and accurate
error rate (i.e., to determine α in Equation (3)), we perform gate-
level simulation using Cadence NC-Verilog v8.2 [23]. Figure 4
compares the actual error rates and estimated error rates at different
supply voltages. Our estimated error rates roughly match the actual
values. To find timing slack and power values at specific voltages,
we prepare Synopsys Liberty (.lib) files for each voltage from
1.20V to 0.50V in 20mV increments, using Synopsys SiliconSmart
v2013.06-SP1 [29].
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Figure 4: Actual error rates vs. estimated error rates at different voltages.

Table 1: Testcases from OpenSPARC T1.

module description # of cells area (um2)
FPU floating point adder 12986 34633
EXU integer execution 17614 58721
MUL integer multiplier 13162 40693
SPU stream processing 8066 28150

Table 2: Penalties of error-tolerant flip-flops.
design Razor Razor-Lite TIMBER

power penalty 30% [9] ∼0% [17] 100% [7]
area penalty 182% [17] 33% [17] 255% [6]

# of recovery cycles 5 [19] 11 [17] 0 [7]
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Figure 5: Energy and area results from different implementation
methodologies – pure-margin (PM), brute-force (BF) and CombOpt (CO).

4.2 Methodology Comparison
In our first experiment, we compare area and energy results

of CombOpt with (i) pure-margin designs3 and (ii) a brute-
force methodology where we first implement designs without
considering the safety margin, then replace with error-tolerant
registers any points having timing violations with respect to the
required margin. We use Razor flip-flops for error resilience in this
experiment. We compare our methodology at three different safety
margins, where large margin, medium margin and small margins
are respectively 15%, 10% and 5% of the clock period (0.8ns).

Figure 5 shows that the benefits of CombOpt increase with the
required safety margin. We observe that CombOpt achieves up
to 19% (6% on average) energy and 14% (4% on average) area
reduction compared to the brute-force method, and up to 21%
(16% on average) energy and 17% (14% on average) area reduction
compared to the conventional pure-margin method.

4.3 Different Error-Tolerant Flip-Flops
In our second experiment, we study the cost of different

error-tolerant flip-flops. We compare designs implemented with
Razor, Razor-Lite and TIMBER types of error-tolerant flip-flops.
We implement the designs with the brute-force methodology
mentioned above, and CombOpt.

Table 3 shows results for the MUL testcase, where we assume
a safety margin of 10% of the clock period. Using the brute-
force method, we observe 17% and 15% energy penalties due to
throughput degradation and additional circuit overheads in designs
using Razor-Lite and TIMBER flip-flops, respectively. We also
observe that CombOpt significantly reduces the number of error-
tolerant flip-flops (by 60%, 56% and 62% for Razor-Lite, Razor
and TIMBER, respectively). Such reductions can be enabling to
the energy- and area-feasibility of resilient designs.
3We define a pure-margin design as one wherein only timing
margins are inserted to ensure correct operation under dynamic
variation.



Table 3: Comparison among different error-tolerant flip-flops.
design Razor-Lite Razor TIMBER
method brute-force

total energy (mJ) 43.58 44.95 44.18
energy w/o resilience (mJ) 36.21 36.06 37.49

energy w/ additional circuits (mJ) 0.00 2.08 6.69
energy w/ throughput penalty (mJ) 7.36 6.82 0.00

# of error-tolerant flip-flops 893 927 895
total cell area (µm2) 19063 18751 19361

method CombOpt
total energy (mJ) 31.68 33.25 35.35

energy w/o resilience (mJ) 31.10 31.40 32.26
energy w/ additional circuits (mJ) 0.00 1.15 3.09
energy w/ throughput penalty (mJ) 0.58 0.69 0.00

# of error-tolerant flip-flops 361 409 342
total cell area (µm2) 17070 17138 17239

4.4 Energy Reduction from AVS
In our last experiment, we study the energy reduction of resilient

design in an adaptive voltage scaling context. We compare energy
of designs implemented with the brute-force method and our
CombOpt at different supply voltages. In addition, we implement
pure-margin designs at each voltage as references. Figure 6
shows results for our four testcases. The designs implemented
with CombOpt achieve significant energy reduction with voltage
scaling. This is because our optimization comprehends the
toggle information and tradeoff between power consumption on
combinational cells and error-tolerant registers; this results in
less energy penalty from throughput degradation and additional
circuits. Note that although throughput degradation increases at
lower supply voltages, the total power also reduces. This leads
to the observed decrease in energy cost of throughput degradation
at lower supply voltages for most cases. However, further
downscaling of the supply voltage is limited by the safety margin.
We also observe that the benefits of resilience can be design-
dependent: a design with larger error rate (e.g., FPU) derives
less benefit from resilience because of large recovery overheads.
From our proposed optimization (CombOpt), we achieve 11% and
18% energy reduction on average compared to the brute-force and
conventional (pure-margin) methods, respectively.
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Figure 6: Energy consumption with voltage scaling, and minimum
achievable energy for each method.

5. CONCLUSION
By allowing timing errors, resilient design techniques can reduce

design effort and obtain power and area benefits over conventional
designs which always operate correctly. However, throughput and
circuit power and/or area overheads can diminish the benefits of
resilient design.

In this work, we provide a new design flow for mixing of
resilient and non-resilient circuits within a given implementation,
so as to minimize the overhead of error resilience. We propose
a selective-endpoint optimization, which reduces timing-critical
endpoints with small cost of timing optimization. We also propose
a clock skew optimization, specifically targeted to a resilient design

methodology, which improves robustness to process, voltage and
temperature variations. Our proposed optimization techniques
achieve significant energy reductions – up to 19% and 21% –

compared to conventional (pure-margin) design and a brute-
force resilience implementation, respectively. In an adaptive
voltage scaling context, our method shows further benefits of error
resilience.

A number of research directions remain open. In particular, our
ongoing work seeks to (1) implement an entire physical design
flow for error-resilient systems including error-detection network
and hold margin consideration, (2) build a unified framework for
simultaneous data- and clock-path optimization, and (3) study the
impact of process variation on resilient design methodologies.
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