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Abstract—Built-in self-test (BIST) is a well-known design technique in
which part of a circuit is used to test the circuit itself. BIST plays an
important role for embedded memories, which do not have pins or pads
exposed toward the periphery of the chip for testing with automatic test
equipment. With the rapidly increasing number of embedded memories
in modern SOCs (up to hundreds of memories in each hard macro
of the SOC), product designers incur substantial costs of test time
(subject to possible power constraints) and BIST logic physical resources
(area, routing, power). However, only limited previous work addresses
the physical design optimization of BIST logic; notably, Chien et al. [7]
optimize BIST design with respect to test time, routing length, and area.
In our work, we propose a new three-step heuristic approach to minimize
test time as well as test physical layout resources, subject to given upper
bounds on power consumption. A key contribution is an integer linear
programming ILP framework that determines optimal test time for a given
cluster of memories using either one or two BIST controllers, subject to
test power limits and with full comprehension of available serialization
and parallelization. Our heuristic approach integrates (i) generation of
a hypergraph over the memories, with test time-aware weighting of
hyperedges, along with top-down, FM-style min-cut partitioning; (ii)
solution of an ILP that comprehends parallel and serial testing to optimize
test scheduling per BIST controller; and (iii) placement of BIST logic to
minimize routing and buffering costs. When evaluated on hard macros
from a recent industrial 28nm networking SOC, our heuristic solutions
reduce test time estimates by up to 11.57% with strictly fewer BIST
controllers per hard macro, compared to the industrial solutions.

I. INTRODUCTION

In modern SOCs, embedded memories (normally, SRAM blocks)
can account for more than 50% of die area [25]. Since a defect
in embedded memory can make the entire chip fail, design for test
(DFT) techniques for embedded memory are essential. Built-in self-
test (BIST) is an increasingly effective and necessary DFT technique in
which part of a circuit is used to test the circuit itself [1]. In particular,
BIST is now ubiquitous for embedded memories, which do not have
pins or pads exposed for testing with automated test equipment (ATE).

Memory BIST affects design quality and chip cost in several basic
ways.
• BIST controller logic occupies silicon real estate, and contributes

to die area, leakage power, and routing congestion. All else being
equal, the fewer BIST controller blocks, the better.

• The widths and depths of embedded memories assigned to a given
BIST controller must be “packed” into a feasible test schedule that
minimizes test time subject to maximum power constraints. The
test time directly impacts product cost and is a first-class design
consideration, especially in a design with many memories.

• The physical placement of a BIST controller logic block relative
to its associated memory blocks affects not only routability, but
also the signal delay between the controller and the memories.
Larger distances force the use of more buffering and lower-VT
devices to meet timing and electrical constraints; this costs more
power.

From these considerations, it is apparent that the co-optimization of
physical design resources, test power, leakage power, and test time falls
between front-end DFT groups and back-end physical design groups.
On the one hand, a floorplan-oblivious partitioning of memories to
BIST controllers might force use of low-VT (LVT) cells to meet timing
requirements. On the other hand, the physical design (PD) engineer’s
suggested partitioning may lead to less congestion, routing cost, and
signal delay between memories and BIST logic, but with dramatically
increased test time.

In this paper, we describe a heuristic optimization that smooths
the interactions between front-end DFT and back-end PD, reducing
iterations and schedule costs. Our heuristic minimizes test time as
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well as test physical layout resources, subject to given upper bounds on
power consumption. A new integer linear program (ILP) formulation
finds the optimal test time for a given cluster of memories using
either one or two BIST controllers, taking full advantage of any
available serialization and parallelization of the memory self-test.
When evaluated on hard macros from a recent industrial 28nm
networking SOC, our heuristic solutions reduce test time estimates
by up to 11.57% with strictly fewer BIST controllers per hard macro,
compared to the industrial solutions.

Our main contributions can be summarized as follows.
• We propose a weighted hypergraph construction that allows use

of top-down min-cut partitioning of memories into clusters that
have good physical design and test scheduling attributes.

• We propose an ILP that comprehends parallel and serial testing
of a given group of memories as it finds a minimum-test time
solution with one or two BIST controllers.

• We use the above two elements, along with bottleneck matching
to find BIST logic placement locations, in a heuristic that
simultaneously reduces both BIST logic and test time costs in
hard macros from a recent 28nm networking SOC.

In the remainder of this paper, Section II briefly reviews related
works in the areas of test scheduling and memory BIST. Section III
describes our ILP formulation to minimize test time taking advantage
of available serialization and parallelization. Section IV presents our
heuristic approach, and Section V gives experimental results with
industrial testcases. Section VI describes directions of ongoing work
and concludes the paper.

II. RELATED WORKS

In this section, we broadly classify related literature as dealing with
(1) test scheduling and (2) BIST controller optimizations.

A. Test Scheduling

Test time reduction has long been a basic goal of DFT research,
since test time is directly related to test cost. Parallel (simultaneous)
testing reduces test time but is constrained by power and bandwidth
(pin count) limits. Works such as that of Yao et al. [20], formulate
and solve the test scheduling problem to minimize total test time
while satisfying such constraints. Iyengar et al. [12] [13] adapt a
rectangle packing problem formulation to test scheduling; they co-
optimize test access mechanism (TAM) architecture and test wrapper,
while designating a group of tests. Zou et al. [21] formulate SOC
test scheduling as two-dimensional bin packing under given pin
constraints, and simulated annealing is used to search for a heuristic
optimum test schedule by perturbations to an initial solution.

Other researchers have applied integer linear programming (ILP)
to find optimal test schedules under constraints [5] [6] [8] [15].
Chakrabarty [5] proposes test access architectures that incorporate
place-and-route constraints arising from interconnections. [6] uses
mixed integer-linear programming (MILP) to optimize test schedules
for core-based systems; a heuristic algorithm efficiently solves larger
problem instances for which the MILP approach has excessive runtime.
Liu et al. [15] apply ILP formulation for NOC instances. Chin and
Nourani [8] propose a flexible ILP-based test scheduling environment
with many user options.

Wang et al. [19] develop a test scheduling algorithm based on
elements of the March algorithm for memory BIST; the objective is
to minimize overall testing time under a power constraint.

Unlike previous works, we study the minimization of total test
time in the context of a mixture of serial and parallel testing, with
multiple memory BIST controllers, by considering physical information



of memories.1 We note that most of the previous literature on test
scheduling addresses scheduling for logic cores, where the testing is
mainly performed by scan chain techniques. By contrast, we address
embedded memory testing using multiple memory BIST controllers,
where the memories have different sizes, test times, and test power
values.

B. Design Optimizations for Memory BIST Controllers
Most works in the memory BIST literature focus on architectural

and testing aspects, even though design optimization of memory BIST
can provide substantial benefits to the entire chip design and to test
quality. To our knowledge, relatively few works exist in the realm of
(physically-aware) design optimization of memory BIST.2

A memory grouping method for sharing memory BIST logic
is proposed by Miyazaki et al. in [17]. Area overhead reductions
are achieved by the grouping of memories for parallel and serial
testing. Devanathan et al. [9] propose a physically-aware memory
BIST datapath synthesis framework, wherein a hierarchical synthesis
approach achieves correct-by-construction, area-efficient memory
BIST solutions. Devanathan et al. demonstrate the benefits from
strategic approaches to physically-aware BIST in [11] and built-in self-
repair (BISR) design optimization methods in [10]: such techniques
mitigate the difficulties of physical design closure such as congestion
and timing closure, even as the numbers of memory instances and
BIST controllers in complex SOCs continue to increase. The authors
of [10] [11] also note that their methods enable designers to apply
more effective tests and reduce verification cycle times.

Chien et al. [7] propose a memory BIST design optimization method
to minimize test time, wire length and total area while considering
several practical design constraints. To our knowledge, [7] is the first
published work considering aspects of physical design for memory
BIST controllers. The authors adopt an integer linear programming
(ILP) formulation for the assignment of memories to controllers. They
then apply legalization and refinement steps to meet user-specified
constraints and to further improve the quality of their solution.
Although [7] is the previous work that is closest to ours, we observe
that it makes a number of simplifications that we avoid, e.g., (i) all
memory instances in a BIST cluster are tested in parallel (leading to
an unrealistic test time estimate); and (ii) only one cluster is tested at
a time (preventing exploitation of parallel testing with multiple BIST
controllers).3

III. ILP FORMULATION

We develop an integer linear program (ILP) to solve the memory
test scheduling problem when using multiple BIST controllers. Note
that our ILP formulation is very different from those of [5] [6] [8] [15]
since we use logical constraints to define parallel and serial testing.
Table I defines notations used in our discussion. The objective is to
minimize total test time, i.e.,

minimize max
∀mi

TEi (1)

where TEi = TSi +TDi , and TSi ≥ 0. We assume that a memory has test
time proportional to its depth [17] and test power proportional to the
square root of its size. Based on our studies, we see that allowing
both serial and parallel testing of memories can reduce test time as
illustrated in Figure 1.

1The mixture of serial and parallel testing induces what may be thought
of as a partial level-oriented strip packing problem. (In the two-dimensional
strip packing problem, (rectangular) items are packed into an “open-ended”
rectangle of given height and infinite width, and the objective is to minimize
width while packing all of the items into the rectangle [2].) To our knowledge,
the DFT literature has not yet considered this partial level-oriented strip packing
formulation.

2This being said, the test cost and the area/power overheads of memory BIST
are rapidly drawing more attention to this topic.

3In [7], the estimation of test time without consideration of test scheduling
leads to unnecessary expense of test time when there is power slack below
the power constraint. Further, the placement of BIST logic at median x- and
y-coordinates of all memory instances in [7] is oblivious to the underlying
min-weight maximum-matching problem when path timing is considered.

TABLE I: Notations.
Term Meaning

M Set of memory instances
mi ith memory instance, where 1≤ i≤ |M|
xi Size of word in mi
yi Number of words in mi
B Set of memory BIST controllers
bk kth memory BIST controller, where 1≤ k ≤ |B|
Pk Set of partitions, (k-way partitioning)
pi ith partition

D(pi) Diameter of the ith partition pi
TSi Test start time of mi
TEi Test end time of mi
TDi Test duration of mi
tq Instantaneous time

E(mi) Test power of mi
E(tq) Total test power at time tq
EMAX Upper bound on total test power
Ui(tq) Indicator whether mi is under testing at time tq
Vi(tq) Indicator whether tq ≥ TSi
Wi(tq) Indicator whether tq ≤ TEi

Bk,i Indicator whether mi is tested with BIST controller bk
Ik,i, j Indicator whether mi and m j

belong to the same BIST controller bk
Lk,i, j Indicator whether mi and m j are tested in parallel

with the same BIST controller bk
Fk,i, j Indicator whether mi is tested before starting test of

m j with the same BIST controller bk
Qk,i, j Indicator whether TSi ≤ TS j

NL Large integer
NLL Large integer NLL� NL

ε Positive and very small real number, 0 < ε� 1

The ILP constraints are as follows.
Maximum power constraint. We use EMAX to denote an upper bound
on maximum available test power. The instantaneous testing power
E(tq) cannot exceed EMAX , as indicated by constraint (2). E(tq) is the
sum of test power consumption for all memory instances mi being
tested at time tq, as shown in Equation (3), where Ui(tq) indicates
whether mi is being tested at time tq, and E(mi) is the test power
of mi. The constraint (4) ensures that all memories must be tested to
obtain a valid solution.

E(tq)≤ EMAX (2)
E(tq) = ∑

mi∈M
Ui(tq) ·E(mi)

where Ui(tq) =
{

1, TSi ≤ tq < TEi

0, otherwise (3)

∀mi, ∑
∀tq

Ui(tq)≥ 1 (4)

BIST assignment constraint. We use the constraint (5) to ensure that
each memory is uniquely assigned to a BIST controller for testing.
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Fig. 1: Example with nine memories and two BIST controllers showing
test time reduction when both serial and parallel testing are allowed.
The left figure shows test time when only parallel testing is allowed.
The right figure shows the reduced test time by allowing both serial
and parallel testing.



Bk,i indicates whether mi is assigned to BIST controller bk for testing.

∑
∀bk

Bk,i = 1, mi ∈M

where Bk,i =
{

1, if mi assigned to bk
0, otherwise

(5)

Scheduling constraint. We define three indicator variables Ik,i, j, Fk,i, j,
and Lk,i, j to constrain the order of testing between two memories mi
and m j that are assigned to the same controller bk. These ensure that
mi and m j are tested either in series or in parallel.

Ik,i, j indicates whether mi and m j share the same BIST controller
bk, and has a value of zero when this is true, as shown in Equation
(6). If Ik,i, j = 0 (i.e., mi and m j share the same BIST controller),
• Fk,i, j indicates whether mi is tested before m j when tested serially;

or
• Lk,i, j indicates whether mi and m j are tested in parallel,

as shown in Equations (6)–(8). When Ik,i, j = 1, there is no scheduling
relationship between mi and m j.

Ik,i, j =
{

0, (Bk,i = 1)∧ (Bk, j = 1)
1, otherwise (6)

Fk,i, j =
{

1, (Bk,i = Bk, j = 1)∧ (TEi ≤ TS j )
0, otherwise (7)

(Lk,i, j +Fk,i, j +Fk, j,i) · (1− Ik,i, j) = 1 ,where i 6= j (8)

IV. CO-OPTIMIZATION OF TEST SCHEDULING AND MEMORY
BIST LOGIC PLACEMENT

We now describe our heuristic methodology for the co-optimization
of test scheduling and memory BIST logic placement. Modern
semiconductor chips contain hundreds of embedded memories
scattered across the entire die. These memories can have various
widths and depths, and can belong to different clock and logic
hierarchies. Both the number and complexity of memory instances
make the test scheduling problem extremely hard. We utilize a “divide-
and-conquer” approach to develop a three-step heuristic method that
(1) initially partitions all memories based on physical information
using MLPart [4] [24]; (2) solves the test scheduling problem using an
ILP formulation, followed by additional partitioning for better test time
optimization; and (3) places memory BIST logic for each partition to
minimize wirelength between memory BIST logic and memories. The
goals of our heuristic approach are (1) minimization of test time, (2)
reduction of number of partitions (i.e., number of BIST controllers),
and (3) minimization of wirelength between each BIST and memories.
We have developed a solver that uses command-line options as shown
in Table II. Algorithms 1–3 outline our heuristic modeling approach.

TABLE II: MBIST solver command-line options.
-numMaxP Maximum possible number of partitions for the design
-numMinP Minimum required number of partitions for the design
-maxMemP Upper bound of number of memories in a partition
-minMemP Lower bound of number of memories in a partition

-maxD Maximum allowed diameter for a partition (µm)
-conP Power constraint
-gridS Size of grid cell (µm) for BIST logic placement

-t Tolerance (%) for balanced partitioning
-longD Longer diameter criterion for edge weight K4
-shortD Shorter diameter criterion for edge weight K6

A. Memory Partitioning
Memory partitioning is the “divide” step in our heuristic approach.

We divide memory instances into k partitions using MLPart [4] [24],
a min-cut hypergraph partitioner based on the multilevel Fiduccia-
Mattheyses hypergraph partitioning [24] algorithm. The input to
MLPart is a hypergraph G, where each node in G corresponds to
a memory in the design (Algorithm 2). We define edge weights based
on parameters such as memory shape, depth, power, location, etc. We
expect that partitioning memories that have the same shape or depth

Algorithm 1 Memory Partitioning
Procedure Partitioning(M)
Input: M, numMaxP, numMinP, maxMemP, maxD, K{1−6}
Output: Pout

1: for n = numMaxP to numMinP do
2: P1 ← single partition of M;
3: for k = 1 to n−1 do
4: G ← null; p j ← /0;
5: if maxpi∈Pk{|pi|} > maxMemP then
6: p j ← argmaxpi∈Pk{|pi|};
7: else if maxpi∈Pk {D(pi)} > maxD then
8: p j ← argmaxpi∈Pk {D(pi)};
9: else

10: p j1 ← argmaxpi∈Pk{|pi|}; p j2 ← argmaxpi∈Pk {D(pi)};
11: p j ← argminp j1 ,p j2

(p j1 .cut, p j2 .cut);
12: end if // partition p j is the input for the next bipartitioning
13: Pk+1 ← Pk \{pi};
14: for criterion index r = 1 to 6 do
15: G ← GenerateHypergraph(p j, r, G);
16: end for
17: {p j, pk} ← MLPart(G);
18: Pk+1 ← Pk+1∪{p j}∪{pk};
19: end for
20: Dmax ← maxp j∈Pn {D(p j)}; // Pk+1 = Pn

21: if Dmax > maxD then
22: if n == numMaxP then
23: return PnumMaxP;
24: else
25: return Pn+1;
26: end if
27: end if
28: end for
29: return PnumMinP;

Algorithm 2 Construct Weighted Hypergraph (for rth criterion)

Procedure GenerateHypergraph(p, r, Gin)
Input: p, criterion index r, (hyper)edge weight Kr, hypergraph Gin
Output: G

1: G ← Gin;
2: for all mi ∈ p, i = 0 to |p|−1 do
3: vi ← mapping(mi); // node vi corresponds to mi in partition p
4: add node vi to G;
5: visited(vi) ← false;
6: end for
7: for i = 0 to |p|−1 do
8: Vconn ← /0; e ← null;
9: Vconn ← {vi}; // vi is reference node

10: visited(vi) ← true;
11: for j = 0 to |p|−1 do
12: if i 6= j then
13: if (visited(v j) == false) || (r ≥ 4) then
14: if vi and v j satisfy criterion critr then
15: Vconn ← Vconn∪{v j};

// Vconn is set of nodes that satisfy critr w.r.t. vi
16: visited(v j) ← true;
17: end if
18: end if
19: end if
20: end for
21: if |Vconn| ≥ 2 then
22: e ← connect all v ∈Vconn as (hyper)edge;
23: weight(e) ← Kr;
24: add (hyper)edge e to G;
25: end if
26: end for
27: return G;

into one group leads to higher opportunity to minimize test time. This
is because memories with the same depth can be tested in parallel
and memories with the same power can be tested in serial, which
minimizes idle space in test time and power. In addition, we assign
larger weights to edges when memories are closer.



Algorithm 3 Test Scheduling

Procedure Scheduling(M, Pk)
Input: M, Pk, numMaxP, GroupSizes
Output: Pout , test scheduling for each partition

1: numAddBIST ← numMaxP−|Pk|;
2: while numAddBIST > 0 do
3: for all pi ∈ Pk do
4: for all s j ∈ GroupSizes do
5: GroupMemories(s j); // grouping memories with size s j
6: Solpi ,s j ← SolveMBIST ILP(1);
7: {Solpi1 ,s j , Solpi2 ,s j}← SolveMBIST ILP(2);
8: end for
9: Solpi ← Solpi ,s1 ,best ;

10: Solpi1
← Solpi1 ,s2 ,best ; Solpi2

← Solpi2 ,s2 ,best ;
11: Gainpi ← Solpi .cost−max(Solpi1

.cost, Solpi2
.cost);

12: end for
13: choose pi ∈ Pk that has the largest Gainpi ;
14: if the largest Gainpi == 0 then
15: break;
16: end if
17: {pa, pb}← result of partition pi ∈ Pk that has the largest Gainpi ;
18: Pk← (Pk \ pi)∪ pa∪ pb;
19: numAddBIST ← numAddBIST −1;
20: end while
21: Pout ← Pk;

Table III summarizes the edge weights used in G, each
corresponding to one criterion. crit1, crit2, and crit3 are the criteria of
hyperedges between memories that have the same shape (crit1), depth
(crit2) and test power (crit3), respectively. In addition, crit4, crit5,
and crit6 specify the criteria of edges between pairs of memories
with distances ≤ longD (crit4), ≤ (longD + shortD)/2 (crit5), and
≤ shortD (crit6), respectively. In our implementations, we set longD
and shortD to 1000µm and 250µm4, respectively. The weights of
hyperedges (respectively, edges) are additive, e.g., memories that have
the same shape are connected by hyperedges with weight K1 +K2 +K3
since memories having the same shape also have the same depth and
power.5

In Algorithm 1, we loop through a number of partitions ranging
from numMaxP down to numMinP, in order to obtain a k-way
partitioning result that satisfies the given constraints of maxMemP
and maxD. Since MLPart only returns bipartitions, we execute MLPart
k−1 times to obtain a k-way partitioning (Line 3 in Algorithm 1). At
each iteration, we choose one next partition as the input to MLPart
(Lines 5-12 in Algorithm 1) based on the following criteria, in order
of priority.

1) The partition that violates the maxMemP constraint, which is
defined as twice the current average number of memories per
partition.

2) The partition that violates the maxD constraint, which is defined
as the half-perimeter of bounding box of the memory blocks in
the corresponding partition.

3) One each of the partitions with the maximum number of nodes
and with the largest diameter, respectively. Both are partitioned
using MLPart, and the one with the smaller cut is selected.

We define size of a partition as the number of memories in the partition.
The above criteria result in partitions that have similar sizes. We also
specify a tolerance in MLPart to further promote balanced partition
sizes.

Fewer partitions result in a larger solution space for scheduling,
which in turn leads to less test time. Therefore we minimize the
number of partitions with respect to the maximum diameter and
maximum size constraints. In Algorithm 1, we keep reducing the
number of partitions as long as the diameter of all partitions is ≤maxD

4We empirically find that these values give the best test time results.
5Latin Hypercube Sampling [14] was used to create a small design of

experiments on the Kr values, but no combination was found that gave better
solutions than the values {K1,K2,K3,K4,K6} = {8,5,1,1,2}, which we use to
generate all reported results.

TABLE III: Summary of edge weights used in hypergraph generation.
Hyperedge selection parameter critr Hyperedge weight
Memories with the same shape crit1 K1 +K2 +K3
Memories with the same depth crit2 K2
Memories with the same power crit3 K3

Edge distance between two memories Edge weight
Distance > longD - 0
Distance ≤ longD crit4 K4
Distance ≤ (longD+ shortD)/2 crit5 K4 +K5
Distance ≤ shortD crit6 K4 +K5 +K6

(Lines 20-27 in Algorithm 1). If one of n partitions violates the
maxD constraint, we end Algorithm 1 and return an (n+1)- or n-way
partitioning result by comparing n to numMaxP.

In Algorithm 2, we construct weighted hypergraph. After mapping
each mi in p into vi (Lines 2-6 in Algorithm 2), we collect the set
{Vconn} of all nodes that satisfy critr with respect to the reference
node vi. If |Vconn| ≥ 2, we connect all nodes in Vconn as hyperedge e
and add e to hypergraph G (Lines 7-26 in Algorithm 2).

B. Test Scheduling

After partitioning, we solve the ILP described in Section III to obtain
a test schedule. The number of extra BIST controllers (numAddBIST )
is calculated as the difference between the current number of partitions
(k) and numMaxP. Utilizing extra memory BIST controller resources
can reduce the overall test time. Figure 2 illustrates an example
showing how the test time can be reduced by utilizing additional
memory BIST controllers.

For further test time reduction with extra BIST controllers, we
try splitting each partition. SolveMBIST ILP(n) returns the solution
(Sol) of SolveMBIST ILP(n) for a given number n of memory BIST
controllers. The solution (Sol) contains test cost (Sol.cost) for the
corresponding partition. Our heuristic allows for at most two memory
BIST controllers (i.e., n = 2) for each partition.6

When numAddBIST is larger than zero, we run SolveMBIST ILP(n)
with both one and two memory BIST controllers to calculate the
benefit (Gainpi ) of splitting the partition pi. Since the two partitions are
generated by SolveMBIST ILP(2) such that the given power constraint
is satisfied, both of the split partitions can be tested simultaneously,
enabling us to achieve a test time reduction.

We observe that most memories that have the same shape are
scheduled in parallel with the same memory BIST controller; we
can therefore pre-group those memories to reduce the runtime of
ILP solver without significantly affecting solution quality. We group
memories that have the same shape (width×depth) in each partition
and consider the group as a single large memory to improve runtime
by reducing the number of ILP constraints (GroupMemories(s j), Line
5 in Algorithm 3).7 The number of memories in a group (s j) can be
decided by the max power constraints. After solving ILP (Lines 6-7 in
Algorithm 3), these grouped memories are tested in parallel with the
same memory BIST controller. Since s j affects the solution of ILP, we
try different s j in GroupSizes to get the best solutions. In Algorithm
3, Solpi,s1,best gives the minimum test cost with one BIST logic by s1,
and Solpi1 ,s2,best and Solpi2 ,s2,best give the minimum test cost with two
BIST logics by s2 (Lines 9-10).

At the last stage in this procedure (Lines 13-19 in Algorithm 3),
we identify the partition that has the largest Gainpi in the overall test
scheduling from splitting with additional memory BIST controllers.
The selected partition is divided into two partitions (pa and pb) to
be mapped to the additional memory BIST controller. When all the
available memory BIST controllers are consumed, the procedure ends
and returns the partition and test scheduling result. We exit the while
loop when the largest Gainpi is zero (Lines 14-16 in Algorithm 3).

6We observe that SolveMBIST ILP(3) does not provide significant test time
reduction, but ILP runtime increases dramatically. We therefore use only
SolveMBIST ILP(2).

7The ILP for each partition typically has O(104) variables and O(105)
constraints.
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Fig. 2: Example test schedule (left) can be improved by adding an
extra BIST controller to reduce test time (right).

C. Memory BIST Logic Placement
In the memory BIST logic placement step, we first define grids

that cover the entire design. Any grid square that does not intersect
memories is a possible location for BIST logic placement. We calculate
the diameter from a grid square to all memories in a partition, and use
this as a cost parameter. By calculating this cost parameter for all grid
squares and all partitions, we generate a two-dimensional cost matrix
for each grid square and memory partition. We then use this cost matrix
to formulate and solve a min-weight maximum-matching problem in
a bipartite graph, which is efficiently solvable using the Hungarian
algorithm [23]. The resulting matching heuristically addresses timing
criticality in paths between BIST logic and memories.

V. VALIDATION AND EXPERIMENTAL RESULTS

Our heuristic implementation is developed in C++ and compiled
with g++ 4.8.0. All experiments are run on a 2.5GHz Intel Xeon E5-
2640 Linux workstation with 128GB memory and 12 hyperthreaded
CPU cores. In the partitioning step, we apply MLPart [24] on
hypergraphs generated using Algorithm 2 above. In the scheduling
step, we use CPLEX 12.5.1 [22] as our ILP solver to schedule
testing of memories in each partition. Last, we solve the min-
weight maximum matching problem in a bipartite graph [23]
to assign BIST logic placement locations to partitions. (To our
understanding, the turnaround time of our heuristic is not critical,
and resynthesis of memory BIST logic after memory grouping takes
only a few hours [26].) Table II presents command-line options in our
implementation. In all of our experiments, we set 200 as the power
constraint since the maximum E(mi) in testcases is 150 < E(mi)< 200.

To validate our heuristic methodology, we use six industrial
testcases, each derived from a separate hard macro in a recent 28nm
networking SOC product. Parameters of these testcases are given in
Table IV. The number of memories in each testcase ranges from 124
to 160 and the number of partitions ranges from 7 to 13. Maximum
and minimum number of memories, and maximum diameters without
BIST logic, are also presented in Table IV.

TABLE IV: Description of testcases. (TC = testcase, M = memory,
P = partition, D = maximum diameter without BIST logic, MAX =
max1≤i≤k |pi|, and MIN = min1≤i≤k |pi|.)

TCs |M| |Pk| MAX MIN D (µm)
TC1 143 13 26 1 3900
TC2 150 11 28 2 4500
TC3 124 8 22 8 2200
TC4 160 13 30 1 3400
TC5 137 7 26 11 3200
TC6 148 12 25 1 4100

Table V compares industrial results and our results. We achieve up
to 11.57% improvement in estimated test time, strictly smaller number
of partitions (i.e., number of memory BIST controllers), and reduced
maximum diameter with respect to BIST logic placement location,
compared to the industrial results. Considering that test time is directly
related to test cost and that fewer number of memory BIST logic
leads to smaller die area, we believe this is a significant improvement.
Furthermore, smaller maximum diameter of each memory partition
(as shown in Figure 3) indicates better timing, which allows at-speed
testing with smaller gate sizes and higher-VT cell instances.

VI. CONCLUSIONS

In this work, we propose a heuristic methodology to co-optimize
partitioning, test scheduling and memory BIST logic placement to
minimize test time. Our heuristic approach generates hypergraphs
over memories with test time-aware weighting of hyperedges, along
with top-down, FM-style min-cut partitioning. Our ILP formulation
comprehends parallel and serial testing for test time optimization
with respect to power constraints. Further, we place the BIST logic
to minimize the maximum diameter for each BIST group, which
minimizes routing and buffering costs and improves timing. On hard
macros from a recent industrial 28nm networking SOC, our results
achieve up to 11.57% reduction in test time compared to the industrial
solutions, using strictly fewer BIST controllers.

Our ongoing work pursues three main directions. (1) First, recall
that we construct the weighted hypergraph instance for top-down
partitioning independently of any map of placement density or routing
congestion. We currently do not evaluate our memory partitioning
and BIST logic placement solutions after placement and routing, and
signoff timing analysis. To bridge this gap, we seek to integrate
our partitioning and BIST logic placement optimizations into a
(production) physical implementation flow. (2) Second, our need to

BIST Controller

Large Maximum Diameter
(blue partition)

Memories

(a) Industrial solution (TC1). k = 13; |B| = 13; maximum
diameter = 3900; estimated test time = 1067. Blue and green
partitions have large diameters.

BIST Controller

Reduced Maximum Diameter
(red partition)

Memories

(b) Our best solution (TC1). k = 12; |B| = 12; maximum
diameter = 2100; estimated test time = 969.

Fig. 3: Example showing superior outcome of our heuristic method.
Different colors indicate different partitions, and rectangles (checked
inside with ‘∗’) indicate BIST logic locations. Small squares indicate
center locations of memories (to obfuscate the industry design
floorplan).



TABLE V: Comparison between industrial solution and our solution. (P = partition, B = BIST controller, MAX = max1≤i≤k |pi|, MIN =
min1≤i≤k |pi|, D = maximum diameter with BIST logic, TT = test time, TTR = test time reduction, and Power = peak power.)

Industrial Solution Our Solution
|Pk| = |B| D (µm) est. TT Power |Pk| = |B| MAX MIN D (µm) est. TT TTR (%) Power runtime (m)

TC1 13 3900 1067 196.469 12 26 1 2100 969 9.18 188.277 37
TC2 11 4500 1138 195.504 8 37 9 2200 1095 3.78 195.389 22
TC3 8 2200 1633 194.922 7 42 9 2600 1444 11.57 192.236 114
TC4 13 3400 2103 197.839 12 22 2 2300 1956 6.99 199.588 189
TC5 7 3200 545 185.706 5 41 6 2300 556 –2.02 197.053 96
TC6 12 4100 6622 181.989 7 25 1 2800 6558 0.97 197.526 263

apply SolveMBIST ILP(2) to optimally schedule the testing of a
large cluster of memories using two BIST controllers means that
the hypergraph construction at some point leads min-cut partitioning
“away” from good memory clusters. Thus, we seek improved
hypergraph construction and weighting such that top-down mincut
partitioning more directly produces a multi-way clustering that
achieves minimum test time with k BIST controllers. (3) Third, recall
that an initial motivation for this work is the disconnect between front-
end DFT teams and back-end PD teams. We plan to enable the use
of our tool by a PD team in a production SOC design environment,
to validate the accuracy and schedule impact of (i) early feedback on
timing and need for LVT devices in the BIST logic, (ii) understanding
of feasible memory groupings in light of test schedule and power
constraints.
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APPENDIX
LOGICAL CONSTRAINT HANDLING IN ILP

We describe the handling of logical constraints using indicator
variables and very large numbers [3] [16] [18]. This method is
extended for all indicators used in our formulation. To describe Ui(tq)
in Equation (3), we define two more indicators, Vi(tq) and Wi(tq) as
shown in Equations (9)–(11). A pair of inequalities in Equation (9)
shows that Vi(tq) = 1 when TSi ≤ tq. Likewise, Equation (10) shows
that Wi(tq) = 1 when TSi > tq. Ui(tq) = 1 if tq ≥ TSi and tq < TEi . In
other words, when Vi(tq) = 1 and Wi(tq) = 1, we have Ui(tq) = 1.
Equation (11) shows the relation between Vi(tq), Wi(tq) and Ui(tq).
Note that Vi(tq) and Wi(tq) can never be zero at the same time.

tq−TSi + ε≤ NL ·Vi(tq)
TSi − tq ≤ NL · {1−Vi(tq)}

Vi(tq) =
{

1, TSi ≤ tq
0, otherwise

(9)

tq−TEi + ε≤ NL · {1−Wi(tq)}
TEi − tq ≤ NL ·Wi(tq)

Wi(tq) =
{

1, tq < TEi

0, otherwise

(10)

Vi(tq)+Wi(tq)−1 = Ui(tq) (11)

Equations (12)–(14) show how we define Fk,i, j and Lk,i, j with Ik,i, j,
Qk,i, j, and NLL. Whenever Ik,i, j = 1, inequalities are always true by
virtue of NLL, which means that mi and m j are irrelevant.

TEi −TS j −NLL · Ik,i, j ≤ NL · (1−Fk,i, j)
TS j −TEi + ε−NLL · Ik,i, j ≤ NL ·Fk,i, j

Fk,i, j =
{

1, (Bk,i = Bk, j = 1)∧ (TEi ≤ TS j )
0, otherwise

(12)

TS j −TSi + ε−NLL · Ik,i, j ≤ NL ·Qk,i, j
TSi −TS j −NLL · Ik,i, j ≤ NL · (1−Qk,i, j)

Qk,i, j =
{

1, (Bk,i = Bk, j = 1)∧ (TSi ≤ TS j )
0, (Bk,i = Bk, j = 1)∧ (TSi > TS j )

(13)

Qk,i, j +Qk, j,i−1 = Lk,i, j ,where i 6= j (14)


