
High-Dimensional Metamodeling for Prediction of Clock Tree

Synthesis Outcomes

Andrew B. Kahng
+ †, Bill Lin† and Siddhartha Nath

+

+
CSE and †ECE Departments, University of California at San Diego

{abk, billlin, sinath}@ucsd.edu

Abstract—Clock tree synthesis (CTS) is a key aspect of on-chip intercon-
nect, and major consumer of IC power and physical design resources. In
modern sub-28nm tools and flows, it has become exceptionally difficult
to satisfy skew, insertion delay and transition time constraints within
power and area budgets, in part because commercial tools (with their
many knobs) have become highly complex. This complexity, along with
the complicated structure of real-world CTS instances (hierarchy, dividers,
etc.) and floorplan contexts (aspect ratios, obstacles, etc.) make it very
difficult to predict skew, power and other important metrics of CTS
outcomes. In this work, we study CTS estimation in the high-dimensional
parameter space of instance constraints and floorplan contexts. Using
two leading commercial CTS tools as our testbed, we develop predictors,
classifiers and “field of use” characterizations that can enable IC design
teams to achieve required CTS solution quality through understanding
of appropriate parameter subspaces. Our hierarchical hybrid surrogate
modeling approach mitigates challenges of parameter multicollinearity in
high dimensions. It achieves, e.g., worst-case estimation errors of 13% in
contrast to 30% errors in [17]. We demonstrate use of a 94%-accurate
“oracle” classifier and estimation models to predictably achieve CTS
outcomes that meet specified constraints and target metrics.

I. INTRODUCTION

On-chip clock distribution solutions are increasingly critical to

achieving IC power, area and design quality goals. For high-end

SOC designs in advanced nodes, physical implementation teams must

explore a wide range of different clock tree synthesis (CTS) styles

and methodologies in order to deliver required performance while

minimizing power and resource costs. Because SOCs contain multiple

heterogeneous blocks, different flows or tool settings may be preferable

for different blocks.1 However, selection of tools and tool options

remains fairly arbitrary, due to limited understanding of the field of use
(“sweet spot”) of individual tools, as well as the high complexity and

runtimes of the tools themselves. Thus, users face a growing inability

to predict CTS outcomes, and a higher incidence of failed runs. This

has unfortunate implications with respect to design turnaround time

and tool license cost.

In an ideal world, EDA tool users would be empowered by “or-

acle” estimators and classifiers that could answer such fundamental

questions as: “What will be the outcome (power, area, skew, etc.) of

this run?”; “Which tool is best suited for this design instance?”; or

“How should I set tool options and parameters to obtain best possible

results on this design instance?” Such capabilities would enable more

comprehensive design space exploration, faster design closure, and

better silicon QOR. Our present work seeks to develop such estimators

and classifiers for the CTS context. In doing so, we come to grips with

two fundamental challenges that previous works leave unaddressed: (1)

building predictive models in very high-dimensional parameter spaces;

and (2) identifying the parameters of layout context and clock structure

that make CTS outcomes so difficult to predict.

The difficulty of CTS prediction begins with the wide range of

metrics according to which clock trees must be evaluated: wirelength,

buffer area, insertion delay, skew, power, etc. Then, each of these

1Examples of commercial tools that perform CTS include Cadence SOC
Encounter vEDI10.1 [31], Synopsys IC Compiler vG-2012.06-SP3 [33], Mentor
Olympus-SoC [28] and ATopTech Aprisa [25].

metrics is the end result of the user’s setting of many constraints and

options in a highly-complex, black-box tool: maximum buffer and

sink transition times, non-default routing rules, maximum insertion

delay, clock buffer and inverter library cell sizes, maximum number

of levels in the clock tree, maximum skew, etc. This results in a very

high-dimensional estimation and modeling task.

Estimation of CTS metrics has been previously addressed in the

METRICS research of Kahng and Mantik [14]; more recently, Kahng

et al. [17] apply metamodeling techniques as the basis of accurate

CTS estimates. Both of these previous works make simplifications

that diverge from the reality of clock tree designs. For example,

both assume that CTS instances arise in rectangular blocks; [17]

further assumes that clock sinks are uniformly placed when fitting

predictive models. On the other hand, our present studies indicate that

floorplan context is essential to include in any practical CTS model.

Figures 1(a) and (b) illustrate that fall delay may vary up to 43%

for different locations of clock entry points with a given fixed block

aspect ratio, as highlighted by the red ovals. The red dotted lines

show that power as well as fall delay vary by up to 45% when the

block aspect ratio is varied. When block aspect ratio, location of clock

entry point, or other necessary parameters of the CTS instance (e.g.,

nonuniformity of sink placement) are identified and added into the

model development, the resulting high parameter dimensionality and

parameter multicollinearity (discussed below) prove challenging for

previous methods.

Fig. 1. CTS metrics for 3K sinks, with different clock entry points (cf. Figure
2) and core aspect ratios. (a) Power. (b) Fall delay.

CTS research also faces the challenge of using real-world testcases.

Instances used in recent academic research, from the “r1” ∼ “r5”

testcases introduced by Tsay [22], to the testcases at the 2010

International Symposium on Physical Design [27] CTS contest, omit

clock dividers, clock gating cells, clock MUXes, glitch-free clock

switchers and other structural elements that are expected in a complex,

low-power SOC design. The ability to comprehend such testcase

characteristics is essential to accurate estimation with realistic problem

instances. However, this again expands the parameter space and makes

the modeling problem much more difficult.

In this work, we make progress from several directions toward

the goal of realistic, practical CTS estimation. (1) We identify

parameters that succinctly capture complex characteristics of realistic

CTS testcases, such as sink placement nonuniformity or irregularity

of hierarchical insertion delays. (2) We also propose a divide-and-

conquer approach that achieves decomposition of high-dimensional

modeling problems into lower-dimensional models. Specifically,

our new hierarchical hybrid surrogate modeling (HHSM) approach

addresses the long-standing issue of large estimation errors in higher

dimensions due to multicollinearity. (3) We show the practicality of

developing an “oracle” classifier that predicts which commercial CTS

tool will perform better, according to specified metrics of interest, on

a given problem instance. (4) We also identify the proper parameter

settings for commercial tools, by estimating the subspace of the

tool parameter space in which the tool will successfully optimize a

specified metric while satisfying all given solution constraints. (5) Of

independent interest is our means of generating CTS testcases with

realistic structure, going beyond the 2010 ISPD contest testcases.

Having realistic CTS instances not only addresses a long-standing

gap in the CTS research literature, but provides a basis for model

development that allows us to identify more relevant (for prediction

of CTS outcomes) instance parameters.

We summarize our key contributions as follows.

• We are the first to identify and study difficult, layout context-

derived dimensions of CTS prediction: block aspect ratio, nonuni-

form sink placement, and non-rectangular block shape. We for-

mulate an appropriate set of modeling parameters to capture these

complex characteristics, and use high-dimensional metamodeling

to solve practically useful CTS prediction problems.

• To conquer the problem of multicollinearity, we propose hierar-
chical hybrid surrogate modeling (HHSM) for decomposition of

high-dimensional problems into lower-dimensional models. We

demonstrate with complex and realistic testcases that HHSM can

reduce the worst-case estimation error to 13%, which is a 57%

reduction of error in comparison with previous metamodeling

techniques [17].

• Starting from an understanding of practical use models for CTS

prediction and estimation, we show the feasibility of answering

with high accuracy three questions that design teams are always

asking:

– Which tool should be used?

– How should the tool be driven?

– How wrong can the model guidance be?

• We develop a means of generating realistic CTS testcases that

improve upon 2010 ISPD contest testcases by adding clock

structures present in real-world CTS instances.

• We empirically demonstrate that our prediction methodologies

can be applied to new CTS problem instances to obtain a target

value of a given metric (skew ≤ 30ps).

The remainder of this paper is organized as follows. Section II

summarizes prior related work. Section III describes our problem

formulation, testcase generation and metamodeling flows. Section IV

describes our HHSM methodology to break the curse of multi-

collinearity, and metrics estimation results with HHSM. Section V

provides our answers to questions about practical use models for

prediction/estimation, and Section V-B demonstrates the application

of our methodologies to a design flow using a new testcase and

commercial tools to achieve a specified metric. We outline future work

and conclude in Section VI.

II. RELATED WORKS

Prediction of clock network metrics is a sparsely explored area

in CAD. Kahng et al. [14] use their METRICS infrastructure to

collect design flow information during clock network synthesis, and

perform data mining using CUBIST to estimate clock skew and

insertion delays. They use CTGen, a commercial CTS tool in 2001,

to conduct their studies on industrial testcases and report correlation

coefficients of around 0.82 in predicting maximum and minimum

insertion delay, maximum skew, and routing violations. However, they

do not report errors in estimating individual metrics. Samanta et al.

[21] use Support Vector Machine (SVM) [23] regression to estimate

clock skew with an accurate delay model to size buffers and wires in a

non-tree clock network. They do not show parameter subspaces within

which maximum skew constraints are satisfied, nor the efficiency of

tools. Kahng et al. [17] demonstrate several metamodeling techniques

for estimation of wirelength and buffer area in a high-dimensional

parameter space. However, all of their results are obtained with 10

parameters and uniformly placed sinks in a rectangular block with

aspect ratio set to one. As we show below, realistic CTS instances

have attributes that present much more difficult modeling challenges.

Various arenas of IC design use surrogate models for early design

space exploration and characterization of the parameter space. These

models are used for either (1) classification or (2) estimation. Callegari

et al. [3] use classification to develop a feature-based rule learning

algorithm and apply it to analyze silicon test measurement data.

They uncover mismatches between design and silicon even in the

presence of random noise. Chakrabartty et al. [6] implement an analog

system-on-chip 24-class SVM classifier [34] for biometric signature

verification by analysis of voice samples. Estimation models are

either Gaussian process-based (e.g., Radial Basis Functions (RBF)

[36] and Kriging (KG) [19]) or tree-based (e.g., Multivariate Adaptive

Regression Splines (MARS) [35]). RBF uses kernel functions that

are symmetric and centered at each parameter, whereas KG is an

interpolation technique that models random noise by using a weighted

correlation function. MARS is an additive tree-based regression model

that uses piecewise splines to fit training data. A more detailed review

of these methods is given in [10]. Ilumoka [12] estimates crosstalk

in interconnects by training a RBF model with SPICE simulations.

Liu [18] models on-chip temperature and IR drop by using KG.

Dubois et al. [8] use KG to estimate area of network-on-chip (NoC)

routers. Kahng et al. [16] use MARS to estimate NoC router area and

power. Goel et al. [9] demonstrate that weighted surrogate modeling is

significantly more accurate than individual surrogate models. A very

recent work of Kahng et al. [17] devises Hybrid Surrogate Modeling
(HSM), an extension to the model proposed by [9]. The authors

demonstrate the advantages of using Adaptive Sampling (AS) [7] over

Latin Hypercube Sampling [13] and report reduction of worst-case

errors by up to 3× with HSM and AS.

III. DESIGN OF EXPERIMENTS

We now describe our problem formulation, our testcase generation

methodology, and our metamodeling flows.

A. Problem Formulation

We formulate CTS metrics prediction as a high-dimensional meta-

modeling problem. To this end, we choose appropriate modeling

parameters that capture the complex characteristics of CTS problem

instances and tool knobs. Table I defines these parameters and the

ranges of values they typically take. Msink is an architectural parameter;

Mcore, MAR, MCEP, and Mblock are floorplanning parameters. Figure

2 shows five possible clock entry points, with MCEP calculated as

the Manhattan distance to a given clock entry point (CEP) from

BL = (0,0). Mskew, Mdelay, Mbu f tran, Msinktran, MFO, Mbu f size, and

Mwire are physical design constraints used as tool knobs. MDCT
expresses the nonuniformity of sink placement and enables us to

distinguish between different nonuniform placements; details of the

MDCT calculation are given in Section III-B. We denote the number of

modeling parameters as D. Overall, we have 13 modeling parameters.

B. Testcase Generation

We generate four templates of artificial testcases (A1, A2, A3, A4)

and two templates of realistic testcases (R1, R2). Artificial testcases

TABLE I
MODELING PARAMETERS AND THEIR RANGES

Parameter Description Range
Msink # sinks {1, 3, 10, 30}K
Mskew max skew [1, 500]ps
Mdelay max insertion delay [0.1, 5.0]ns

Mcore block area [2, 40]mm2

MAR core aspect ratio (AR) [0.125, 8.0]
MCEP clock entry point {BL, BLM, B, RBM, R}
Mblock blockage as % of block area [0, 60]%
MDCT nonuniformity measure -

Mbu f tran max buffer transition [200, 1000]ps
Msinktran max sink transition [200, 600]ps

MFO max fanout [8, 128]
Mbu f size max buffer size x[8, 24]
Mwire max wire width (in NDR) x[1, 3]

contain only clock sinks (i.e., no combinational logic), whereas realis-

tic testcases contain combinational logic and common clock structures

such as dividers, MUXes, clock-gating cells (CGCs), delay shifters,

and glitch-free clock switchers, to create hierarchical structure in the

clock tree. Each of these templates can be placed in rectangular (core

aspect ratio = 1) or non-rectangular (core aspect ratio �= 1) blocks,

and CEP can be placed at different locations of the block as shown

in Figure 2. Our testcases and contexts improve upon the well-known

2010 ISPD CTS benchmarks [27] that use only buffers and inverters

to specify a clock tree hierarchy, specify cores only with aspect ratio

= 1, and use only placement blockages.

Our four artificial testcase templates are

A1 – sinks placed uniformly in a rectangular block;

A2 – sinks placed uniformly in a non-rectangular block;

A3 – sinks placed nonuniformly in a rectangular block; and

A4 – sinks placed nonuniformly in a non-rectangular block.

Template A1 is generated with custom Tcl scripts. Sinks are placed

in rows with equal whitespace between each pair of adjacent sinks.

Template A2 is generated by creating placement and routing block-

ages with configurable dimensions and locations within the layout

region. After creating the blockages, sinks are placed uniformly in the

non-rectangular block. Template A3 is generated by initially placing

1.6× the required number of sinks uniformly within a rectangular

block. The excess sinks are removed by repeating the following four

steps.

1) Apply Box-Muller transformation [2] to obtain a bi-variate

Gaussian distribution, with zero mean and unit variance.

2) Choose a sink sc at random and designate it as the center, and

choose M closest sinks to sc.2

3) Obtain probabilities of these M sinks using Box-Muller trans-

formation. Values of x1 and x2 in the transform are respectively

computed as horizontal and vertical distances of a sink from sc.

4) Remove a sink if its probability is ≥ 34%.

To quantify nonuniformity, we (1) divide the block area into m×n
2-D grids, where m and n are integers,3 (2) compute the χ2 value

of each grid as χ2
j = ∑

i

(ni − n̂)2

n̂
, where j = 1, ...,#grids, ni is the

Manhattan distance between the ith pair of sinks in a grid, and n̂ is the

average distance between sinks in a uniform placement, and (3) apply

discrete cosine transform (DCT) on the χ2 values across all the grids.

Having obtained the DCT coefficients corresponding to each grid, we

use the sum of the magnitudes of these coefficients as our measure of

nonuniformity (when the placement is uniform, the sum of the DCT

coefficients is zero). Template A4 is generated by creating a non-

2M = 500 in our experiments.
3We use grid sizes of eight rows and one-eighth block width in our

experiments. It is possible to use any other reasonable values, e.g., square
grids of dimensions 20μm×20μm.

rectangular block using the methodology to generate template A2 and

then performing nonuniform sink placement using the methodology to

generate template A3.

To generate realistic testcases, we construct two templates, R1 and

R2, in Verilog RTL that represent different clock hierarchies using

common clock tree structures [26], [30]. At each level of the clock

tree, the number of sinks is an integer divisor of Msink, such that the

sum of sinks across all levels in the tree is equal to Msink. Figures

3(a) and (b) respectively show templates R1 and R2. Template R1
is generated by cascading three dividers and a glitch-free MUX, and

inserting CGCs before each sink group, K1–K6. One CGC is inserted

after the clock root pin to facilitate clock-gating of the entire tree.

Each CGC has its own enable signal. Template R2 is generated by

inserting CGCs before each clock divider and using a combination

of MUXes and glitch-free clock switchers to deliver clock to sink

groups K1, K2 and K3. These templates demonstrate that sink groups

can be at different hierarchies in a clock tree, as well as the presence

of reconvergent paths from the clock source to the sinks.

Fig. 2. Five clock entry points for MAR: (a) = 1.0, (b) > 1.0 and (c) < 1.0.

Fig. 3. Realistic templates: (a) R1; (b) R2.

C. Modeling Flow

We generate a total of 4500 golden data points by running several

instances of CTS on the templates described in Section III-B and by

choosing values of the parameters shown in Table I. Each of these

4500 data points is the average of five CTS runs per released version

of each commercial tool in light of tool noise as studied in [15].

With larger numbers of sinks (e.g., 10K, 30K) each CTS run may

take up to 80 minutes for each commercial CTS tool. Because it is

expensive to generate data points, we use adaptive sampling (AS) to

optimally select the minimum number of samples based on exploration

and exploitation strategies [17]. We use AS to generate training set

sizes with {36, 48, 56, 84, 116, 148, 196, 224} data points for D =
{8,9,10,11,12,13}. The remaining data points are used to test the

accuracy of our models. We use academic MATLAB [34] toolboxes for

MARS, RBF, and KG, and the built-in MATLAB toolbox for SVM; we

develop our own code for HSM [17]. Table II shows the configuration

options for the MATLAB toolboxes. The runtime for sampling and

model derivation with 224 data points and 13 model parameters is

at most 28 minutes on a 2.5GHz Intel Xeon system, and at most 16

minutes with eight parameters.

Figure 4 shows our tool flow in detail. We implement the templates

in Verilog RTL, and then perform synthesis using Synopsys Design
Compiler vG-2012.06 [32] with TSMC45GS and TSMC65GPLUS

technology libraries to generate a gate-level netlist. We use the

modeling parameters to generate a placed Design Exchange Format

(DEF) file. Then, we use the placed DEF along with the remaining

parameters as CTS constraints to generate a CTS problem instance.

This instance is given as input to two market-leading commercial CTS

tools, ToolA (June 2012 release) and ToolB (December 2010 release),

to perform synthesis and routing of the clock tree. Lastly, all the

metrics of interest are extracted using custom Tcl and shell scripts

to generate the golden data points. We develop separate models for

artificial and realistic testcases at 45nm and 65nm respectively, and

report the average of prediction errors unless otherwise specified.

Fig. 4. Our CTS tool flow.

TABLE II
METAMODELING TOOL CONFIGURABLE PARAMETERS

Metamodel Tool Value

MARS
ARESLAB max basis functions = {100}

max interactions = {12}
spline type = {cubic}

RBF
RBF2 kernel type ={multiquadrics}

4.5 ≤ radius ≤ 0.5
method = {ridge regression}

KG
DACE reg. model = {order 1 and 2 poly}

corr. model = {EXP}
θ = {20, 40}

SVM
MATLAB kernel = {RBF}
v2012b method = {QP}

IV. OVERCOMING THE CURSE OF HIGH-DIMENSIONALITY IN

METRICS ESTIMATION

We reproduce the approaches of [17] and [14] as baselines for our

studies, and accordingly use CUBIST, MARS, RBF, KG, and HSM to

derive surrogate models by varying D. We use AS for MARS, RBF,

KG, and HSM techniques.

Large estimation errors in previous techniques as D increases

Figures 5(a) and (b) show the maximum absolute percentage errors

(MAPE) in skew and delay estimation respectively for MARS, RBF,

KG, and HSM with different values of D. We observe that errors

increase across all surrogate models; errors are >100% for MARS,

RBF, and KG as D increases [17]. HSM performs the best among these

with MAPE around 36% when D = 13. We observe similar values of

MAPE in power and wirelength estimation of the clock tree as shown

in Figures 6(a) and (b).

We also compare accuracy of MARS in skew and delay estimation

because both are piecewise additive models. We observe that when

D = {8,9}, the estimation errors of CUBIST and MARS are similar;

however, when 10 ≤ D ≤ 13, MARS is 32% more accurate than

CUBIST. MARS is more accurate because it uses cubic splines,

whereas CUBIST uses a linear additive approach that does not scale at

high dimensions. In general, previous techniques have large estimation

errors and cannot reduce MAPE below 36%.

Fig. 5. Maximum absolute % errors in (a) skew and (b) delay estimation.

Fig. 6. Maximum absolute % errors in (a) power and (b) wirelength estimation.

Reasons for large estimation errors at high dimensions

Multicollinearity [20] is an important reason why previous tech-

niques incur large estimation errors at high dimensions. Multicollinear-

ity arises when parameters are linearly dependent. It causes the

matrix of parameters to be ill-conditioned and have less than full

column rank. The regression coefficients become highly sensitive to

small changes in parameter values and make the surrogate models

inaccurate. In IC design problems we cannot drop parameters to

avoid multicollinearity because we need to understand interactions

between them. For example, MAR and Mbu f tran may be linearly related,

but each of these parameters affects skew differently. Furthermore,

deriving accurate models becomes difficult as D increases because the

parameter space grows exponentially with respect to D [24]. For these

reasons, we observe large estimation errors when D > 10 in Figures

5 and 6.

Our approach: Hierarchical hybrid surrogate modeling

To break the “curse of high dimensionality” we propose a new

method, hierarchical hybrid surrogate modeling (HHSM). HHSM uses

a divide-and-conquer approach, dividing the modeling parameters into

two groups: one group uses k parameters that exhibit low multi-

collinearity, and the other group uses the remaining D−k parameters

that may exhibit large linear dependence with the other parameters. In

the conquer step, models from these two groups are combined using

weights determined by least-squares regression (LSQR).

Due to practical limitations of generating training data points (i.e.,

each data point is very expensive to generate), the training and test

sets are typically smaller than the required exponential number of

data points in a high-dimensional parameter space with dimension D.

Therefore, a model with k ≤ D independent and identically distributed

(i.i.d) parameters is a good approximation of the limited number of

data points. Formally, HHSM is given by

ŷ(�x) = m0 +m1 ·HSM1..k +m2 ·HSMk+1..D (1)

where m1 and m2 are weights of estimated responses of HSM of

parameters 1 through k and k + 1 through D, respectively, and m0

is the bias. To determine these weights, we use LSQR to fit the model

to a randomly selected 60% of (training) data points. We compute the

generalized cross-validation (GCV) error [10] on the remaining 40%

of the data points.

Accuracy of the HHSM model is sensitive to the choice of parame-

ters used to derive each HSM model. We use variance inflation factor
(VIF) [1] as a measure of parameter compatibility. Our objective is

to minimize the error of the HSM model with the first k parameters.

We observe that HSM is highly accurate when k = 6, and when these

parameters are more or less i.i.d. We determine these six out of D > 6

parameters using the following steps.

1) Choose six parameters with minimum sum of VIF values.4

2) Derive one HSM model with these six parameters.

3) Derive another HSM model with the remaining parameters. This

model may have larger estimation errors than the model in Step

2 because the VIF values of these parameters may be large [17],

thereby demonstrating effects of multicollinearity.

4) Determine values of m0, m1, and m2 using LSQR when com-

bining the two HSM models.

HHSM is able to “cure” multicollinearity effects when 10≤D≤ 13.

Figures 7(a) and (b) respectively compare the maximum and average

percentage estimation errors between HSM and HHSM models. We

observe that across all CTS metrics, MAPE for HHSM is around

13%, which is a 57% reduction of error in comparison to the

previous metamodeling techniques [17]. The errors are almost flat

when 8≤D≤ 13. When parameters exhibit low multicollinearity, then

a small value of D may have larger estimation errors with HHSM as

compared to a large value of D, due to the presence of the bias term,

m0, in Equation (1).

Fig. 7. Comparison of (a) maximum and (b) average percentage errors in
skew, delay, power, and wirelength estimations between HSM and HHSM.

V. A PRACTICAL APPLICATION OF PREDICTION FOR CLOCK

TREES

IC designers [26], [29], [30] often want to know answers to

questions on practical use models of commercial tools. We now

describe use of an “oracle” classifier and estimators from Section IV

to answer three relevant questions. In Section V-B, we empirically

demonstrate the practical application of our prediction methodologies

to a new CTS problem instance, implemented with commercial tools,

to obtain a specified skew target.

4When the VIF values are more than 0.5 for more than two parameters, we
observe that the maximum error of the HHSM model can be up to 45%.

A. Addressing CTS Questions for IC Designers

We have explored new methodologies using classifiers and

estimators to answer three questions often posed by IC designers.

Question 1: Which Tool Should Be Used? To answer the question

of which tool will perform better for a given CTS problem instance

and a specified metric, we conduct two experiments: (1) develop a

two-class “oracle” classifier with the SVM toolbox in MATLAB, and

(2) use estimators to determine the better tool.

In the first experiment, we construct classifiers for four metrics,

namely, skew, clock power, delay and clock tree wirelength. If a

tool satisfies the maximum skew and insertion delay constraints, it

is assigned a score of “+1”, else its score is “−1”. For power and

wirelength, a tool’s score is “+1” when both maximum skew and

delay constraints are satisfied and it produces the minimum value

of power or wirelength for that problem instance. Figure 8 shows

the maximum percentage error in classifying a tool that will perform

better. The error is calculated as a percentage of mispredictions, that

is, the ratio of the number of incorrect results to the total number

of problem instances in the test set multiplied by 100. We observe

that when D < 10, our classifier predicts correctly 95% of the time.

At higher D, the accuracy degrades to around 94% because of

multicollinearity.

D Skew Power Delay Wirelength
8 5.26 4.55 4.87 4.92
9 5.26 4.6 4.93 5.01

10 5.82 4.62 4.94 5.03
11 5.88 4.9 4.94 5.11
12 6.12 5.23 4.95 5.25
13 6.13 5.23 4.98 5.27

Fig. 8. Classification error % for the question of which tool will perform
better.

In the second experiment, we derive HHSM models for ToolA and

ToolB for skew, delay, power and wirelength. Then, for each CTS

instance in the test set, we use the HHSM model of each tool to

estimate the metric, compare the values, and choose a winner. We

compare our prediction against post-CTS data-based selection of the

winner for skew, delay, power and wirelength. Prediction error occurs

if post-CTS data-based prediction does not match the HHSM-based

prediction. Figure 9 shows that errors are slightly higher than in Figure

8: for some observations, ToolA is better than ToolB by ∼8%, but

HHSM incurs a prediction error of ∼10% and predicts ToolB to be

better than ToolA. However, we observe the results are comparable in

general.

D Skew Power Delay Wirelength
8 5.28 5.02 4.88 4.92
9 5.34 5.11 4.95 5.02

10 5.89 5.19 4.95 5.03
11 6.02 5.33 5.03 5.17
12 6.27 5.69 5.08 5.36
13 6.31 5.98 5.11 5.38

Fig. 9. HHSM-based % classification error for the question of which tool
will perform better.

Question 2: How Should The Tool Be Driven? To answer this

question, we estimate the parameter subspace in which a commercial

tool will return a solution which is feasible with respect to all

constraints. We demonstrate the application of our estimation method-

ology to determine the feasible spaces of maximum skew, maximum

 Max Skew (ps) Max Delay (ns) Max Buffer Transition (ps)
Delay (ns) ToolA ToolB ToolA ToolB ToolA ToolB

0.1 N N N N N N
0.5 N N N N N N
0.8 10 - 75 N 0.5 - 1.35 N 360 - 675 N
1.0 10 - 75 50 - 175 0.5 - 1.75 1.0 - 3 360 - 675 300 - 775
2.0 10 - 75 50 - 175 0.5 - 2.25 1.0 - 3 360 - X 300 - X
5.0 10 - 105 50 - 300 0.5 - 2.25 1.0 - 5.0 360 -X 300 - X

Fig. 10. Parameter subspaces that satisfy a given delay with realistic testcases.

 Max Skew (ps) Max Delay (ns) Max Buffer Transition (ps)
Skew (ps) ToolA ToolB ToolA ToolB ToolA ToolB

0.5 N N N N N N
5 N N N N N N

25 10 - 25 25 - 50 1.0 - 1.75 1.5 - 2.50 275 - 450 300 - 475
50 10 - 50 25 - 100 1.0 - 2.0 1.5 - 1.75 275 - 575 300 - X

100 10 -100 40 - 115 1.0 - X 1.5 - X 300 - X 300 - X
200 10 - 100 45 - 115 1.0 - X 1.5 - X 300 - X 300 - X
500 10 - 100 45 - 115 1.0 - X 1.5 - X 300 - X 300 - X

Fig. 11. Parameter subspaces that satisfy a given skew with realistic testcases.

insertion delay, and maximum buffer transition times for a tool to

deliver desired values of CTS metrics such as skew and delay. We

use exhaustive search based on the following steps to determine the

parameter subspaces.

1) Derive two HHSM models, one for ToolA and one for ToolB.

2) Determine the upper and lower bounds of parameters from the

training set.

3) For each parameter, perform binary search within its upper and

lower bound values and use the HHSM models for each tool to

estimate value of the metric.

4) If the desired value of the metric is within the average error of

the HHSM models derived in Step 1, record the smallest and

the largest values of the parameter that satisfies the metric. The

smallest value is the lower limit, and the largest value is the

upper limit of the subspace for the parameter.

5) If the value for the upper limit from Step 4 is equal to the upper

bound found from Step 2, then use two values that are 20% and

40% more than the upper bound. If these values also satisfy the

metric, then this suggests that the upper limit is unbounded. Use

X to denote that the upper limit is unbounded. We believe that

our training set uses wide ranges of parameter values, and hence

that values 20% and 40% above the upper bound are very large.

6) If the metric cannot be satisfied within the upper and lower

bounds obtained from Step 2, then use N to denote that the

metric cannot be satisfied by the tool.

We vary maximum skew from 0.5ps to 350ps, maximum insertion

delay from 0.1ns to 5.0ns, and maximum buffer transition time

from 150ps to 1000ps. Figures 11 and 10 respectively show the

parameter subspaces for which ToolA and ToolB meet skew and

delay requirements on realistic instances. We observe that both

ToolA and ToolB are in general unable to meet tight skew and delay

requirements, such as 0.5ps or 1ps for skew and 0.1ns or 0.5ns for

delay. Such extreme values help us identify the “field of use” of each

tool, that is, values at which the tool fails to meet constraints, or

provides the best solution for a specified metric. At skew requirements

of 100ps and above, we observe that the upper limits of maximum

skew, maximum insertion delay, and maximum buffer transition times

are unbounded for both tools. At delay requirements of 2ns and

above, we observe that the upper limit of maximum buffer transition

times is unbounded.

Question 3: How Wrong Can The Model Guidance Be? We say

that a model guidance is wrong when the model predicts that ToolA
will perform better than ToolB, but actual data shows that ToolB is

better than ToolA. When the model guidance is wrong, we quantify

suboptimality as a percentage, i.e.,

SUB =
CT S outcome di f f erence

Actual better tool outcome
×100 (2)

We experimentally study Question 3 using the following steps.

1) Use our “oracle classifier” to predict which of ToolA and ToolB
will perform better for a given CTS problem instance.

2) Compare post-CTS outcomes of both tools and determine the

actual better tool.

3) If the better tools from Steps 1 and 2 mismatch (i.e., the model

guidance is wrong), count as a prediction error and calculate

suboptimality using Equation (2).

Figure 12 shows the results for power and wirelength when model

guidance is wrong. The “SVM” column shows the percentage of

occurence of wrong guidance; the “SUB” column shows the subop-

timality when wrong guidance occurs. The maximum suboptimality

in power (resp. wirelength) is 9.22% (resp. 7.97%) when the tool

guidance from our classifier is wrong.

 Power Wirelength
 ToolA ToolB ToolA ToolB
D SVM SUB SVM SUB SVM SUB SVM SUB
8 5.38 5.89 5.22 9.08 5.28 4.01 5.32 5.98
9 5.38 9.07 5.24 9.07 5.55 4.87 5.42 7.55

10 5.78 9.2 5.67 9.22 5.61 3.31 5.59 7.87
11 5.8 8.25 6.04 8.96 5.76 7.97 5.88 6.33
12 5.8 6.45 6.22 8.93 6.01 7.23 5.89 5.12
13 5.81 3.12 6.22 8.93 6.03 7.09 5.92 5.35

Fig. 12. Percentage incidence of classification error (SVM), and percentage
suboptimality (SUB) of power and wirelength in cases of wrong guidance.

B. Application of Prediction Methodology to a Design Flow

We empirically demonstrate the application of our estimation and

classification methodologies to a new CTS problem instance to obtain

a specified skew target of ≤ 30ps. We use TSMC45GS technology

libraries and the new realistic template shown in Figure 13; this

template is different from those used to train our models. To obtain a

skew target of ≤ 30ps, we perform exhaustive search in the parameter

subspaces of each tool from Figure 11. We iteratively search for

parameter values that can deliver the target skew, as follows

1) From Figure 11, begin with the lower bounds of maximum skew,

maximum delay, and maximum buffer transition time in the

union of ranges of 25ps and 50ps. For all other parameters,

use the minimum values from Table I; the minimum value of

MCEP is zero.

2) Perform CTS with both ToolA and ToolB with the selected

parameter values.

3) Check if the post-CTS skew is ≤ 30ps for each tool. If yes, exit

with success. Otherwise, increase maximum skew, maximum

delay and maximum buffer transition by Δskew, Δdelay, and Δtran
respectively, one at a time, and go back to Step 2.5

4) If maximum skew, maximum delay and maximum transition

time values all reach their upper bounds, then exit with no

feasible solution.

Figure 14 shows that we can meet the target skew in four CTS

runs of ToolA and five CTS runs of ToolB. We observe that if we

choose parameter subspaces from results of prediction methodologies

(i.e., from Figure 11), the tools deliver post-CTS skew of ≤ 30ps and

satisfy all constraints.

5We set Δskew = 5ps, Δdelay = 0.1ns, and Δtran = 50ps.

Fig. 13. Realistic template used in CTS problem instance.

Max
Skew (ps)

Max Delay
(ns)

Max. Buffer
Transition (ps)

CTS
Tool

Post-CTS Skew
(ps)

Number of
CTS runs

15 1.1 325 ToolA 29.8 4
35 1.6 350 ToolB 27.7 5

Fig. 14. Both tools can deliver target skew ≤ 30ps when they use parameter
subspaces determined using our methodologies.

VI. CONCLUSIONS AND FUTURE WORK

Classical clock tree synthesis remains a critical problem in sub-

28nm SoC design because of its substantial power/resource implica-

tions. The clock tree can be implemented using a wide variety of

design styles and tools, with many parameter and constraint settings

that induce a wide range of tool outcomes. In this work, we attack

the difficult dimensions of CTS prediction and develop a new HHSM

technique to break the curse of multicollinearity at high dimensions.

We show that HHSM can reduce the worst-case estimation error by

57% compared to previous metamodeling techniques.

We demonstrate the feasibility of answering three important ques-

tions that design teams typically ask, using our classifiers and esti-

mators. We also describe templates of realistic CTS instances in the

context of a new testcase generation methodology. Using our realistic

testcases, we demonstrate that our prediction methodology can be

applied to new CTS problem instances to obtain a desired value of a

specific metric when the optimal tool is used.

Our ongoing work focuses on three main directions. First, we

continue to explore modern machine learning techniques and model

accuracy improvements for high-dimensional, multicollinear parameter

spaces. Second, we are pursuing general and scalable methodologies

for modeling and characterization of EDA tools, so as to bound

solution metrics and efficiently search for optimal parameter choices.

An example goal for prediction might be to lower-bound the number

of hold buffers inserted by a routing tool as a function of corners,

library, deratings, and maximum and minimum paths between flip-

flops. Last, we seek to apply our estimation and tool characterization

methodologies to reduce time and cost of design space exploration at

other stages of IC implementation.

ACKNOWLEDGMENTS

We gratefully acknowledge research support from NSF,

MARCO/DARPA, Qualcomm and the Semiconductor Research

Corporation.

REFERENCES

[1] D. A. Belsley, “Multicollinearity: Diagnosing Its Presence and Assessing
The Potential Damage It Causes Least-Squares Estimation”, National
Bureau of Economic Research Working Paper No. 154, 1976.

[2] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random
Normal Deviates”, Annals of Mathematical Statistics 29(2) (1958), pp.
610-611.

[3] N. Callegari, D. Dramanac, L.-C. Wang and M. S. Abadir, “Classification
Rule Learning Using Subgroup Discovery of Cross-Domain Attributes
Responsible for Design-Silicon Mismatch”, Proc. DAC, 2010, pp. 374-
379.

[4] S. Chakrabartty and G. Cauwenberghs, “Sub-Microwatt Analog VLSI
Trainable Pattern Classifier”, JSSC 42(5) (2007), pp. 1169-1179.

[5] K. Crombecq, L. De Tommasi, D. Gorissen and T. Dhaene, “A Novel
Sequential Design Strategy for Global Surrogate Modeling”, Proc. Winter
Simulation Conference, 2009, pp. 731-742.

[6] S. Chakrabartty and G. Cauwenberghs, “Sub-Microwatt Analog VLSI
Trainable Pattern Classifier”, JSSC 42(5) (2007), pp. 1169-1179.

[7] K. Crombecq, L. De Tommasi, D. Gorissen and T. Dhaene, “A Novel
Sequential Design Strategy for Global Surrogate Modeling”, Proc. Winter
Simulation Conference, 2009, pp. 731-742.

[8] F. Dubois, V. Catalano, M. Coppola and F. Petrot, “Accurate On-Chip
Router Area Modeling with Kriging Methodology”, Proc. ICCAD, 2012,
pp. 450-457.

[9] T. Goel, R. T. Haftka, W. Shyy and N. V. Queipo “Ensemble of
Surrogates”, Structural and Multidisciplinary Optimization 33(3) (2007),
pp. 199-216.

[10] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, 2009.

[11] F. J. Hickernell, “A Generalized Discrepancy and Quadrature Error
Bound”, Mathematics of Computation 67(221) (1998), pp. 299-322.

[12] A. A. Ilumoka, “Efficient Prediction of Crosstalk in VLSI Interconnects
using Neural Networks”, Proc. EPEPS, 2000, pp. 87-90.

[13] R. Jin, W. Chen and T. W. Simpson, “Comparative Studies of Metamod-
eling Techniques under Multiple Modeling Criteria”, Struct. Multidiscip.
Optim. 23 (2001), pp. 1-13.

[14] A. B. Kahng and S. Mantik, “A System for Automatic Recording and
Prediction of Design Quality metrics”, Proc. ISQED, 2001, pp. 81-86.

[15] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA
Tools”, Proc. ISQED, 2002, pp. 206-211.

[16] A. B. Kahng, B. Lin and K. Samadi, “Improved On-Chip Router Analyt-
ical Power and Area Modeling”, Proc. ASPDAC, 2010, pp. 241-246.

[17] A. B. Kahng, B. Lin and S. Nath, “Enhanced Metamodeling Techniques
for High-Dimensional IC Design Estimation Problems”, Proc. DATE,
2013, pp. 1861-1866.

[18] F. Liu, “A General Framework for Spatial Correlation Modeling in VLSI
Design”, Proc. DAC, 2007, pp. 817-822.

[19] S. N. Lophaven, H. B. Nielsen and J. Sondergaard, “Aspects of the MAT-
LAB Toolbox DACE”, Technical Report IMM-REP-2002-13, Technical
University of Denmark, 2002.

[20] D. F. Morrison, Multivariate Statistical Methods, 3rd edition, McGraw-
Hill Publishing Company, 1990.

[21] R. Samanta, J. Hu and P. Li, “Discrete Buffer and Wire Sizing for Link-
Based Non-Tree Clock Networks”, IEEE Trans. VLSI 18(7) (2010), pp.
1025-1035.

[22] R.-S. Tsay, “Exact Zero Skew”, Proc. ICCAD, 1991, pp. 336-339.
[23] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,

1995.
[24] M. B. Yelten, T. Zhu, S. Koziel, P. D. Franzon and M. B. Steer,

“Demystifying Surrogate Modeling for Circuits and Systems”, Circuits
and Systems Magazine 12(1) (2012), pp. 45-63.

[25] ATopTech Aprisa. www.atoptech.com/aprisa
[26] Broadcom Corporation (networking infrastructure physical design princi-

pal engineer), Personal communication, September 2012.
[27] ISPD 2010 High Performance Clock Network Synthesis Contest.

http://archive.sigda.org/ispd/contests/10/ispd10cns.html
[28] Mentor Graphics Olympus-SoC. www.mentor.com/products/

ic nanometer design/place-route/olympus-soc/
[29] Qualcomm Corporation (mobile SoC physical design principal engineer),

Personal communication, November, 2012.
[30] Samsung Electronics Corporation (System LSI application processor

principal engineer), Personal communication, February 2012.
[31] Cadence SOC Encounter User Guide. http://www.cadence.com
[32] Synopsys Design Compiler User Guide. www.synopsys.com/Tools/

Implementation/RTLSynthesis/DCUltra/Pages/default.aspx
[33] Synopsys IC Compiler User Guide. www.synopsys.com/Tools/

Implementation/PhysicalImplementation/Pages/ ICCompiler.aspx
[34] MATLAB. http://www.mathworks.com
[35] ARESLab. http://www.cs.rtu.lv/jekabsons/regression.html
[36] RBF2 manual. http://www.anc.ed.ac.uk/∼mjo/rbf.html

