
Learning-Based Approximation of Interconnect Delay and

Slew in Signoff Timing Tools

Andrew B. Kahng
+ †, Seokhyeong Kang†, Hyein Lee†, Siddhartha Nath

+
and Jyoti Wadhwani†

+
CSE and †ECE Departments, University of California at San Diego

{abk, shk046, hyeinlee, sinath, jwadhwan}@ucsd.edu

Abstract—Incremental static timing analysis (iSTA) is the backbone of
iterative sizing and Vt-swapping heuristics for post-layout timing recovery
and leakage power reduction. Performing such analysis through available
interfaces of a signoff STA tool brings efficiency and functionality
limitations. Thus, an internal iSTA tool must be built that matches
the signoff STA tool. A key challenge is the matching of “black-box”
modeling of interconnect effects in the signoff tool, so as to match wire
slew, wire delay, gate slew and gate delay on each arc of the timing
graph. Previous moment-based analytical models for gate and wire slew
and delay typically have large errors when compared to values from
signoff STA tools. To mitigate the accumulation of these errors and
preserve timing correlation, sizing tools must invoke the signoff STA tool
frequently, thus incurring large runtime costs. In this work, we pursue a
learning-based approach to fit analytical models of wire slew and delay to
estimates from a signoff STA tool. These models can improve the accuracy
of delay and slew estimations, such that the number of invocations of the
signoff STA tool during sizing optimizations is significantly reduced.

I. INTRODUCTION AND MOTIVATION

Post-layout timing recovery and leakage power reduction comprise

an integral step in low-power physical implementation flows [7] [12]

[21]. Performing timing analysis using full static timing analysis

(STA) during these optimization loops can pose efficiency limitations.

Incremental STA (iSTA) for post-route timing closure and power

optimization is a key use context in the physical implementation

flow today [11] [13], and is the focus of this paper. A signoff STA

tool (ST) will typically support incremental analysis, but invoking

the ST repeatedly during a leakage power reduction loop may incur

prohibitive runtime costs. Therefore, an internal iSTA tool must be

built to match a ST to avoid these limitations.

The internal iSTA tool requires accurate delay and slew so that

worst-case timing slacks at endpoints have small errors with respect

to corresponding values in the ST. However, our studies show that

well-known analytical models for wire delay [2] [3] [16] [23], and

wire slew [1] [3] [6] [17] [24] can have large errors with respect

to the ST, for two main reasons. First, the ST uses “black-box”

modeling of interconnect effects, which makes matching an internal

iSTA tool to a ST very challenging. For example, even with the gate

slew lookup tables using the actual effective capacitance and input

slew values from the ST, the calculated output slew does not match

what the ST actually returns in its internal calculations. This was a

surprise to R&D engineers at the large semiconductor company that

organized the ISPD 2013 gate sizing contest [25]. Second, incorrect

slew estimates can lead to large errors due to error propagation along

timing paths. Lookup table-based gate slew and delay models can be

relatively accurate for individual stages of a timing path. However,

as the number of stages increases, and paths contain heterogeneous

mixes of cell types and sizes, the errors at individual stages can

accumulate, resulting in large positive (overestimation) or negative

(underestimation) errors in endpoint slacks when compared with a

ST. Figure 1 illustrates the concept of error accumulation along a

timing path.

0

Error
σ

Fig. 1. Propagation of errors along a path.

To minimize divergence of timing results from a ST, internal iSTA

tools can invoke the ST periodically to correlate values of gate and

wire slew, delay, actual arrival time (AAT), effective capacitance

and/or slack, in the process determining correlation “offset” values

to minimize timing errors. Therefore, internal iSTA tools must

comprehend how to bear the cost of invoking the ST as infrequently

as possible.

In this paper, we propose two key techniques, (i) a machine

learning-based approach to model wire delay/slew, and (ii) an offset-

based timing correlation approach, to obtain an internal iSTA tool

which can produce timing values close to those from ST. We

explore several analytical models for wire delay/slew and evaluate

their accuracies in estimating timing when timing arcs have various

sizes and types of cells. We then derive accurate, learning-based

models for wire delay and slew for a given ST by using classifiers

along with weighted combinations of analytical models. For further

compensation of timing differences between an internal iSTA tool and

a ST, we explore various offset-based timing correlation approaches

[20], which correlate internal timing information (e.g., delay, slew,

AAT and slack) with a ST. We evaluate each correlation approach in

terms of its inherent tradeoff between runtime and accuracy according

to the correlation frequency. Our goal is to minimize the number

of ST invocations needed to correlate timing information within an

internal iSTA tool.

Our key contributions are as follows.

• We develop machine learning-based models of wire delay/slew

for internal iSTA to delay the deviation in endpoint slack from

a ST.

• We explore several analytical and learning-based models, and

analyze the impact of each model on the timing discrepancy

between a ST and an internal iSTA tool.

• We describe an offset-based correlation methodology that im-

proves accuracy in estimating endpoint slack by up to 10× as

compared to the prior endpoint slack correlation in [20].

The rest of our paper is organized as follows. In Section II, we

describe previous works on incremental timing tools and machine

learning techniques used in EDA. Section III describes analytical

models used in our work, our methodology to derive learning-

based wire delay and slew models, as well as our offset-based

correlation methodology. Section IV presents results of our learning-

based models and impacts of correlation methodology on timing

discrepancy. Section V concludes the paper.

II. RELATED WORKS

Academics have developed internal STA timing tools that perform

incremental timing analysis as alternatives to ST. The UCLA timer

[27] performs statistical as well as deterministic timing analysis

and reports up to 31% reduction in runtime, as well as, high

correlation, with respect to Monte Carlo simulations. Hu et al. [14]

have developed a timer to aid in gate sizing for leakage optimization.

They implement a fast “incremental” STA tool along with a full

timing STA tool. Using the STA tool, they propose a gate sizing

heuristic. When we implement their algorithm in C/C++, we observe

that their incremental timing tool can have large errors with respect

to a ST. Our work is relevant to works such as [14], in that we model

wire delay and slew in an internal iSTA tool (using learning-based

techniques) so as to achieve the slowest possible divergence from a

ST.

Offset-based timing calibration has been introduced by Moon et

al. [20]. The idea is to improve the accuracy of a given STA engine

by periodically invoking a signoff timer and storing slack differences

(offsets) at every timing endpoint. When the STA engine produces

new timing estimates (e.g., during optimization), they are adjusted

by slack offsets. Our analysis shows that if critical paths change due

to sizing operations, applying offset-based endpoint slack correlation

can lead to large errors. Our work is a significant improvement from

[20] since we correlate other timing information such as slew, delay

and AAT to the ST.

Machine learning approaches for delay estimation can be powerful

since they capture complex interactions between design parameters

(e.g., number of instances, number of primary inputs and outputs,

hierarchy, etc.) and physical design contexts (e.g., parasitics, wire-

length, buffer insertion, etc.). Gelosh and Setliff [10] propose a rule-

based learning approach, similar to classification and regression trees,

to capture parameter interactions to estimate area and delay. They

report that their estimations can be optimistic with percentage errors

up to 6.67%. Bao [5] presents a learning-based approach to estimate

path slack by fitting the slack delta before and after Vt-swap for

leakage power minimization. Worst-case error of 5.33ps is reported.

From the description of [5], specific modeling parameters and the

“amount of downstream logic” needed to represent the effect of slew

propagation are unclear. In addition, missing testcase details (#cells,

#nets, etc.) make it difficult to assess extensibility of the methodology

and models to non-graphics contexts. These previous works report

results on specific paths in a circuit and do not assess design-level

endpoint slack metrics or how propagated errors are minimized along

timing paths.

Machine learning has also been used in a variety of EDA ap-

plications. To model gate delay under process variation, Gao et al.

[9] propose statistical gate delay modeling using artificial neural

networks with dimension-order reduction of the parameter space.

However, they report results only with random paths and not with

real designs. Ganapathy et al. [8] capture effects of intra- and inter-

die spatial variations and temporal fluctuations of temperature while

fitting a regression model to estimate path delays. They validate

their methodology on a 32KB cache, use SPICE simulations to train

and test their models, and report a median error of less than 5%.

Samanta et al. [22] perform wire and buffer sizing using Support

Vector Machine regression to minimize variation on non-tree clock

networks. They demonstrate up to 45% reduction in skew with their

machine learning-based sizing algorithm.

III. METHODOLOGY

We now provide background on the analytical models that we study

and a description of our offset-based modeling methodology.

A. Analytical Models for Wire Delay and Slew

We use well-known analytical models for wire delay and slew as

a starting point to derive learning-based models.

Wire Delay. We use two models for wire delay – Elmore delay (EM)

[6] and D2M [2]. Given a routing tree T (N) rooted at source node

n0, Elmore delay is given by

EM = t(ni) = rd ·Cn0
+ ∑

ev∈ path(n0,ni)
rev ·

(cev

2
+Cv

)
(1)

where t(ni) is the Elmore delay at node ni, rd is the output resistance

of the driver at the net’s source, Cn0
is the output pin capacitance of

the driver at the net’s source, ev is the edge from node v to its parent

in T (N), rev is the resistance of ev, cev is the capacitance of ev, and

Cv is the tree capacitance of the subtree rooted at node v.

Elmore delay is the first moment of impulse response and can

be inaccurate when there is a high degree of resistive shielding [3].

Alpert et al. [2] propose the “delay with 2 moments” or D2M metric

which is a simple function of the first two circuit moments, m1 and

m2 respectively. The D2M delay metric is given by

D2M =
m2

1√
m2

· ln2 (2)

D2Mr = α ·D2M +(1−α)EM (3)

α =

(
2m2 −m2

1

2m2 −m2
1 +T 2/12

)5/2

(4)

where D2M is the delay with two moments metric for step input,

D2Mr is the delay with two moments metric for ramp input, EM is

the Elmore delay of the wire, α reflects the degree of significance of

ramp input, and T is input slew of the wire.

Wire Slew. We consider three models for wire slew – PERI [17],

scaled S2M [1], and Lognormal slew [3]. The PERI model for wire

slew [4] is given by

PERI =
√

T 2 + ln9 ·EM2 (5)

Agarwal et al. [1] propose scaled “slew with 2 moments” or S2M

which is accurate for both near-end and far-end nodes. For a step

input, S2Ms is given by

S2Ms =
√−m1

4
√

m2
· ln9 ·

(√
2m2 −m2

1

)
(6)

The scaled S2M metric is extended to ramp inputs using the PERI
technique [17] and is given by

S2M =
√

S2Ms
2 +T 2 (7)

Lognormal slew [3], derived from matching the first and second

moments, is given for step input by

LNSs =
m2

1√
2m2

·

⎛
⎜⎝e

k·
√

2ln

(
2m2

m2
1

)
− e

−k·
√

2ln

(
2m2

m2
1

)⎞
⎟⎠ (8)

with k ≈ 0.9062. It is extended to ramp inputs using the PERI
technique as

LNS =
√

LNSs
2 +T 2 (9)

IN1

IN2

clock cycle = 50psU1

U2

U3

ya

a y

a

b

y

OUT

timing after U1 cell sizing

U1 cell sizing

D: 18ps (20ps)
D: 9ps(11ps)

cell delay from
internal STA

D: 10ps (18ps)

D: 35ps (40ps) (a-to-y)

D: 35ps (40ps) (b-to-y)

D: 32ps (35ps) (a-to-y)

Slack = 50-(18+35) = -3 (-10)

Slack = 50-(10+35) = 5 (-8)

cell delay from
signoff tool

Fig. 2. Example of the offset-based timing correlation after cell sizing.

We study weighted combinations of the analytical models for wire

delay and slew and determine the weights by using machine learning

techniques. We also use values of α (from Equation (4)), T wire

input slew, and D2Mr as “classifiers”, that is, their values determine

the need for different models such that the maximum absolute error

(MAE) as well as the average absolute error (AAE) are minimized.

For wire delay, we choose D2M, D2Mr, EM, α ·D2M (AD2M), and

α ·EM (AEM) as regressors and α, T and D2Mr as classifiers. For

wire slew, we choose PERI, S2Ms, S2M, LNSs and LNS as regressors

and α and T as classifiers. We exhaustively study combinations of

{one, two, three} regressors × {zero, one, two} classifiers for wire

delay and slew, and use this analysis to derive our best learning-based

models (ML).

B. Correlating Timing Results with a Signoff STA Tool

To correlate internal timing with a ST, iSTA tools invoke the ST

and obtain “golden” timing values from them. Moon et al. [20]

propose an offset-based endpoint-slack correlation approach. They

perform STA on both timers (signoff and internal), and compare the

slack at each timing endpoint to compute the slack difference (offset).
These offset values are used by the internal timer to compensate the

timing discrepancy. However, after several gate sizing operations, the

offset values are no longer accurate. The correlated slack can have

large errors if the critical path changes after gate sizing.

Figure 2 shows an example of timing correlation after gate sizing

(for simplicity, wire delay is ignored). In the example, red numbers

and blue numbers are timing values respectively from a ST and an

internal iSTA tool. Before gate sizing, the endpoint slack values

respectively from the ST and internal tools are -10ps and -3ps.

With slack correlation, the difference in slack is -7ps and is used

as the slack offset. After sizing cell U1 (in the figure), the slack

difference becomes -13ps, and the previous slack offset (-7ps) is not

enough to compensate this new difference of -13ps. This discrepancy

occurs since the critical path changes from IN1 −U1.y − OUT
to IN2 −U1.y − OUT . Due to scenarios such as this, the slack

correlation method from [20] is neither sufficient nor robust.

To reduce such timing discrepancies after cell sizing, we implement

different correlation approaches by correlating additional timing

information such as transition time, cell and wire delay, and actual

arrival time (AAT). STA (full or incremental) has four basic steps

in its timing calculations: (1) slew, (2) delay, (3) actual arrival time

(AAT) and required arrival time (RAT), and (4) slack calculation.

We correlate the corresponding timing information with a ST at each

step. In Figure 2, if we correlate cell delay values and save cell delay

offsets, the slack discrepancy will disappear since the endpoint slack

is recalculated based on the new critical path (IN2−U1.y−OUT).

Algorithm 1 presents pseudocode of our timing correlation

procedure. The procedure saves offset values for each type of

timing information from a ST. Correlate T R(), Correlate DL(),
Correlate AAT () and Correlate SLK() are the correlation proce-

dures respectively for transition time, delay, AAT/RAT and slack.

en T R, en DL, en AAT and en SLK refer to enable/disable flags

for each type of timing information. By using these flags, we control

the timing information that is correlated in the internal iSTA tool.

The Correlate T R() procedure obtains the transition time offsets

(T R OFS) for pins of each cell in a topological order. In the

Correlate T R() procedure, T R STp and T R ITp respectively refer

to transition times of pin p from ST and internal tool. The offset

value, T R OFSp, is calculated for each pin as the difference between

T R STp and T R ITp (Lines 3 and 7 in Correlate T R()). T R ITpj of

a cell input pin p j is computed using a wire slew model (e.g., PERI,

S2M, ML, etc.). T R ITpi of a cell output pin pi is computed from a

gate slew model (e.g., LUT). After saving the offset value, we replace

T R ITp with T R STp for slew calculations in the next stages; to avoid

error propagation in the offset, correlated input transition times are

used for calculating slew. In the Correlate DL() procedure, DL STa
and DL ITa respectively refer to delay values in arc a from a ST and

internal tool. The offset value, DL OFSa for each arc a is obtained

by calculating the difference between DL STa and DL ITa (Line 4

in Correlate DL()). DL ITa for cell delay is computed from the

internal tool’s gate delay model (e.g., LUT). DL ITa for wire delay

is computed using a wire delay model (e.g., EM, D2M, ML, etc.).

Correlate AAT () and Correlate SLK() procedures are implemented

in a similar way as the Correlate T R() procedure.

Algorithm 2 describes pseudocode of static timing analysis

with the offset values. The Calculate T R(), Calculate DL(),

Algorithm 1 Offset-based timing correlation.

Procedure Correlate(N,en T R,en DL,en AAT,en SLK)
Input : netlist N, enable flags for each correlation

1: Initialize offset values as zero;
2: if en T R then
3: Correlate T R(N);
4: end if
5: if en DL then
6: Correlate DL(N);
7: end if
8: if en AAT then
9: Correlate AAT (N);

10: end if
11: if en SLK then
12: Correlate SLK(N);
13: end if

Procedure Correlate T R(N)
Input : transition time, T R STp of each pin p from ST
Output : transition time offset, T R OFSp of each pin p

1: for all cell instance ci in the netlist N with a topological order do
2: for all input pin p j in the cell instance ci do
3: T R OFSp j ← T R STp j −T R ITp j ;
4: T R ITp j ← T R STp j ;
5: end for
6: pi ← output pin of ci;
7: T R OFSpi ← T R STpi −T R ITpi ;
8: T R ITpi ← T R STpi ;
9: end for

Procedure Correlate DL(N)
Input : delay, DL ST of each (pin-to-pin) arc from ST
Output : delay offset, OFS of each arc a

1: for all primary port or pin, pi in the netlist N do
2: for all sink pin p j of the source pin pi do
3: ai j ← arc from pi to p j;
4: DL OFSai j ← DL STai j −DL ITai j ;
5: DL ITai j ← DL STai j ;
6: end for
7: end for

Calculate AAT () and Calculate SLK() procedures respectively cal-

culate transition time, cell and wire delay, AAT/RAT, and slack using

the saved offset values. In Calculate T R(), T R ITp of a cell input

pin and output pin is computed using a wire slew model and gate

slew model, respectively. T Rp refers to compensated transition time

of pin p with an offset T R OFSp (Lines 3 and 6 in Calculate T R()).
In Calculate DL(), DL ITa for cell delay and wire delay are re-

spectively computed from the internal tool’s gate delay model and

wire delay model. DLa is the compensated delay of timing arc a.

Calculate AAT () and Calculate SLK() are implemented in a similar

way as the Calculate T R() procedure.

Algorithm 2 Static timing analysis with offset values.

Procedure iSTA(N)
Input : netlist N, correlated offset values

1: Calculate T R(N);
2: Calculate DL(N);
3: Calculate AAT (N);
4: Calculate SLK(N);

Procedure Calculate T R(N)
Input : transition time offset, T R OFSp of each pin p
Output : transition time T Rp of each pin p

1: for all cell instance ci in the netlist N with a topological order do
2: for all input pin p j in the cell instance ci do
3: T Rp j ← T R ITp j +T R OFSp j ;
4: end for
5: pi ← output pin of ci;
6: T Rpi ← T R ITpi +T R OFSpi ;
7: end for

Procedure Calculate DL(N)
Input : delay offset, DL OFS of each arc a
Output : delay DLa of each arc a

1: for all primary input or cell input/output pin, pi in the netlist N do
2: for all sink pin p j of the source pin pi do
3: ai j ← arc from pi to p j;
4: DLai j ← DL ITai j +DL OFSai j ;
5: end for
6: end for

We implement each timing correlation approach, and explore the

impact of different correlation approaches when cells are changed

through netlist perturbations such as would occur during gate sizing.

Figure 3 illustrates a gate sizing flow with timing correlation. The

timing correlation procedure invokes ST and saves offset values for

each type of timing information. During gate sizing, the internal

tool calculates timing information with the offset values. However,

timing discrepancy with ST will increase as cells are changed due to

gate sizing. To reduce (or control) the amount of timing discrepancy

(or error), we correlate timing information when every N cells are

changed.

Correlate()

Cell�Sizing

iSTA()

#�cell�change�
>�N?

Offset

yes
no

invoke�ST�tool�

Fig. 3. Gate sizing flow incorporating offset-based timing correlation of an
internal iSTA tool to the ST.

IV. EXPERIMENTAL SETUP AND RESULTS

We conduct three experiments that assess our modeling and offset-

based correlation methods (Experiments 1, 2) and evaluate them in

our motivating use context of an internal iSTA tool (Experiment 3).

• Experiment 1: accuracy of learning-based interconnect models.

• Experiment 2: impact of correlation methodology on timing

discrepancy.

• Experiment 3: impact of update accuracy.

We use four benchmarks, namely, pci bridge32, fft, matrix mult
and edit dist from the ISPD 2013 gate sizing contest [26] as our test

circuits. Table I shows statistics of the benchmarks. We use the ISPD

2013 contest timing library, and our ST is a commercial signoff STA

tool used in the ISPD 2013 contest. For gate delay and slew, we

apply interpolation and extrapolation of values in the Liberty LUTs

in the timing library.

TABLE I

BENCHMARK STATISTICS (PI = PRIMARY INPUT; PO = PRIMARY

OUTPUT).

Benchmark #cells #nets #PI #FFs #pins #PO
pci bridge32 30603 30763 160 3359 87813 201

fft 32766 33792 1026 1984 105355 1984
matrix mult 156440 159642 3202 2898 459946 1600

edit dist 126665 129227 2562 5661 374606 12

Fig. 4. Flow graph of modeling parameters to estimate circuit delay.

A. Experiment 1: Accuracy of Learning-Based Interconnect Models

We derive wire delay and slew models by using least-squares

regression (LSQR) [18] to fit values from the ST. We generate training

samples from benchmark netlists that have no slack violations and

contain heterogeneous mixes of cell sizes and types. From the ST, we

obtain delay and slew at every pin in the netlist, and fit our models to

the data from ST. We use 50% of these data points for training, derive

models using LSQR, test the models on all data points, and compute

the estimation errors. Figure 4 shows a flow graph of parameters

required to estimate circuit delay.

Exhaustive search for the best regressor(s) and classifier(s)

We follow the methodology described in Section III to determine

the best choice of regressors and classifiers in learning-based models

for wire delay and slew. We sweep values of α from zero to one,

D2Mr from 10ps to 200ps, and T from 20ps to 250ps. Figure 5 shows

results for modeling of wire delay using exhaustive search with up

to three regressors and two classifiers. We observe the following.

1 With one regressor and no classifier (1R0C), MAE of the best

model is 20ps. The best model uses D2Mr as the regressor.

2 With two regressors and one classifier (2R1C), MAE of the best

model reduces to 16ps. The best model uses D2M and D2Mr as

regressors and α = 0.94 as the classifier.

3 With three regressors and one classifier (3R1C), MAE of the

best model is 14ps. The best model uses EM, AD2M and AEM
as regressors and α = 0.94 as the classifier.

4 With three regressors and two classifiers (3R2C), MAE and

AAE do not improve significantly. The best model uses EM,

AD2M and AEM as regressors and α = 0.1 and α = 0.94 as

classifiers. We stop our search for wire delay models at this

stage.

Figure 6 shows results for modeling of wire slew using exhaustive

search with up to three regressors and two classifiers. We observe

the following.

1 With one regressor and no classifier (1R0C), MAE is 73ps. The

best model uses PERI as the regressor.

2 With two regressors and two classifiers (2R2C), MAE reduces

to 32ps. The best model uses EM2 and LNS2
s as regressors and

α = 0.96 and α = 0.99 as classifiers.

3 With three regressors and one classifier (3R1C), MAE is 33ps.

The best model uses EM2, LNS2
s and T 2 as regressors and α =

0.96 as the classifier.

4 With three regressors and two classifiers (3R2C), MAE reduces

to 31.5ps. The best model uses EM2, LNS2
s and T 2 as regressors

and α = 0.7 and α = 0.96 as classifiers. We stop our search at

this stage since the complexity of models becomes high.

We use these models in our internal iSTA tool, and Table II shows

endpoint slack AAE compared to ST without timing correlation. We

observe that three regressors and two classifiers (3R2C) for wire

delay, and two regressors and two classifiers (2R2C) for wire slew,

together give the minimum endpoint slack AAE.

TABLE II
ENDPOINT SLACK AAE FOR EACH COMBINATION OF DELAY, SLEW

MODELS.

Model AAE in slack (ps)
Delay Slew pci bridge32 fft edit dist matrix mult
1R0C 1R0C 15.25 41.87 144.40 39.70
1R0C 2R2C 15.80 47.43 158.97 43.74
1R0C 3R1C 16.36 47.87 160.88 44.85
1R0C 3R2C 16.12 47.81 161.36 44.71
2R1C 1R0C 16.60 44.61 158.33 46.79
2R1C 2R2C 17.16 50.01 172.86 50.69
2R1C 3R1C 17.73 50.55 174.78 51.80
2R1C 3R2C 17.48 50.40 175.23 51.65
3R1C 1R0C 17.10 49.41 174.92 50.44
3R1C 2R2C 17.83 55.83 191.57 54.91
3R1C 3R1C 18.41 56.41 193.59 56.05
3R1C 3R2C 18.18 56.28 194.14 55.95
3R2C 1R0C 7.24 17.23 47.55 11.02
3R2C 2R2C 7.44 16.08 44.12 10.90
3R2C 3R1C 7.45 16.13 44.06 11.09
3R2C 3R2C 7.53 16.16 44.12 11.02

Best learning-based models for wire delay and slew.

Our best learning-based model for wire delay is a weighted

combination of AEM, AD2M and EM and is given by

WDML =

⎧⎪⎨
⎪⎩

a1 ·AEM +a2 ·AD2M +a3 ·EM, if α < 0.3

b1 ·AEM +b2 ·AD2M +b3 ·EM, if 0.3 ≤ α < 0.94

c1 ·AEM + c2 ·AD2M + c3 ·EM, if α ≥ 0.94
(10)

where EM is computed from Equation (1), D2M is computed from

Equation (2), α is computed from Equation (4), AEM is α ·EM and

AD2M is α · D2M. a1,a2,a3,b1,b2,b3,c1,c2,c3 are the regression

coefficients, their values are shown in Table III. The AAE is 0.23ps

and MAE is 14.25ps. This model applies to both rising and falling

transitions of signals.

Regressors

Cl
as

sif
ie

rs

0

1

2

1 2 3

20ps 23ps 21ps
15% 215% -8% -8%

-30%

16ps 14ps -12%

-33%

14ps

0% -6%

15ps
-6%

Fig. 5. Wire delay model MAE with different numbers of regressors and
classifiers.

Regressors
Cl

as
sif

ie
rs

0

1

2

1 2 3

73ps 46.8ps 46.5ps
-36% 4-36%%% -0.0%

4
-0.0%%%

-23%

36ps 33ps -8%

%%
-29%

31.5ps

-4.5% -11%

32ps -1.5%

Fig. 6. Wire slew model MAE with different numbers of regressors and
classifiers.

TABLE III

LEARNING-BASED WIRE DELAY MODEL COEFFICIENTS.

a1 a2 a3 b1 b2 b3 c1 c2 c3

-1.72 2.35 0.96 -1.05 1.27 1.02 -2.72 1.41 2.50

Our best learning-based model for wire slew is a weighted com-

bination of EM2 and LNS2
s and is given by

WSML =

⎧⎪⎨
⎪⎩

√
a1 ·EM2 +a2 ·LNS2

s +T 2, if α < 0.96√
b1 ·EM2 +b2 ·LNS2

s +T 2, if 0.96 ≤ α < 0.99√
c1 ·EM2 + c2 ·LNS2

s +T 2, if α ≥ 0.99

(11)

where LNSs is computed from Equation (8), T is input slew of the

wire, and a1,a2,b1,b2,c1,c2 are the regression coefficients. Values

of these regression coefficients are shown in Table IV. The AAE is

0.23ps and MAE is 32.77ps. This model applies to both rising and

falling transitions of signals.

TABLE IV

LEARNING-BASED WIRE SLEW MODEL COEFFICIENTS.

a1 a2 b1 b2 c1 c2

-3.44 2.07 -2.39 1.59 -1.88 1.30

(i) Accuracy of estimation in individual timing arcs. Our learning-

based models are more accurate than previous analytical models in

part because they can capture some of the “black-box” modeling

of the ST in timing paths. Our studies indicate that gate delay and

slew estimations based on the Liberty LUT are fairly accurate with

respect to the ST. We also estimate effective load capacitance using

the model from [19] and observe that the error with respect to ST

is very small. Therefore, we do not derive learning-based models

for gate delay, slew and effective load capacitance. Figures 7 and 8

respectively show probability density functions (PDFs) of error (i.e.,

the difference between model estimates and ST estimates) for wire

slew and delay across the four benchmarks listed in Table I. Our

learning-based models (ML) minimize the divergence of wire delay

and slew at each pin from the ST values. The models also bring the

mean of the error distribution close to zero. ML estimates are quite

accurate as they have a narrow distribution with small σ for both

wire delay and slew. Elmore delay has the largest spread in error for

wire delay, and S2M has the largest spread in error for wire slew.

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Wire delay error (ps)

N
or

m
al

 p
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n ML
D2M
D2Mr

EM

Fig. 7. PDF of wire delay estimation error for WDML (ML in figure), D2M,
D2Mr and EM.

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Wire slew error (ps)

N
or

m
al

 p
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n ML
PERI
S2M
LNS

Fig. 8. PDF of wire slew estimation error for WSML (ML in figure), PERI,
S2M, and LNS.

(ii) Accuracy of estimation in timing paths. We change 2.5% –

30% of the cells in each benchmark and study the accuracy impact

of ML models in estimating endpoint slack. Figure 9 shows endpoint

slack MAE and AAE for the fft and matrix mult benchmarks when

AAT and RAT on timing arcs are correlated with ST. Figure 10

shows endpoint slack MAE and AAE for the fft and matrix mult
benchmarks when no offset-based correlation is applied. In the

figures, combinations of delay and slew models are listed as (delay,
slew) tuples. Among the ML models, (D2M, ML) has the smallest

errors. If, e.g., endpoint slack MAE of ∼10ps is tolerated, (D2M,

ML) allows correlations with ST to compute offsets to be delayed

until ∼10% of cells are changed.

Table V shows the maximum and average absolute errors in slack

estimation of various combinations of analytical and ML models

across all benchmarks. From the results, (D2M, ML) shows accurate

estimates of the endpoint slack in pci bridge32 and fft.

TABLE V

ENDPOINT SLACK ERRORS WITH DIFFERENT (DELAY, SLEW) MODELS AND

WITH TIMING CORRELATION.

Model
MAE AAE

% cells changed % cells changed

(Delay, Slew) 5 15 30 5 15 30

pci bridge32
(EM, PERI) 3.529 5.482 8.981 0.291 0.601 1.114

(D2M, PERI) 3.680 5.173 9.205 0.230 0.513 1.024

(D2M, ML) 3.127 4.404 8.968 0.234 0.522 0.979

(ML, S2M) 9.515 6.820 9.327 0.259 0.605 1.095

(ML, PERI) 4.072 5.867 10.580 0.246 0.568 1.175

(ML, ML) 3.485 5.459 9.497 0.246 0.565 1.113

fft
(EM, PERI) 10.589 13.192 14.313 0.770 1.451 1.387

(D2M, PERI) 10.454 10.704 11.203 0.472 0.891 0.881

(D2M, ML) 8.348 9.518 10.245 0.514 0.946 0.670

(ML, S2M) 14.208 18.856 24.117 0.829 1.351 1.242

(ML, PERI) 10.803 14.393 13.765 0.689 1.202 1.194

(ML, ML) 8.956 11.718 13.190 0.745 1.262 1.119

edit dist
(EM, PERI) 14.685 21.625 68.538 2.697 3.816 7.408

(D2M, PERI) 12.452 18.997 50.984 0.735 2.519 3.788

(D2M, ML) 14.811 17.842 51.325 1.071 2.740 4.058

(ML, S2M) 27.161 34.429 54.182 2.456 3.599 6.234

(ML, PERI) 27.067 34.588 53.378 2.383 3.623 6.065

(ML, ML) 28.186 35.250 53.736 2.466 3.650 6.030

matrix mult
(EM, PERI) 7.515 16.769 19.277 0.684 1.822 2.359

(D2M, PERI) 5.518 10.038 12.602 0.318 0.885 1.231

(D2M, ML) 6.226 11.428 14.018 0.401 1.083 1.402

(ML, S2M) 19.171 15.683 16.918 0.674 1.239 1.695

(ML, PERI) 17.317 13.783 21.638 0.650 1.368 1.730

(ML, ML) 18.282 15.053 18.893 0.658 1.269 1.692

B. Experiment 2: Correlation Methodology Impact on Timing Dis-
crepancy.

In this experiment, we study the impact of different correlation

approaches on the divergence in endpoint slack values from the

ST. As described in Section III-B, we may apply offset-based

correlation for different types of timing information. Specifically, we

independently correlate (a) delay, (b) actual arrival time (AAT) and

(c) slack values. We also correlate transition time because doing so

can reduce the magnitude of offset values for delay and AAT.

Figure 11 compares endpoint slack MAE with different correla-

tion approaches. We observe that only slack correlation (SLK in

Figure 11) is not sufficient and can lead to large MAE in endpoint

slack estimation. However, correlating actual arrival times (AAT in

Figure 11) reduces the timing discrepancy since the AAT offset has

more information than the slack offset, which considers only the

timing of a critical path. Delay correlation (DLY in Figure 11) can

improve the results further, since it is based on delay information for

each arc; AAT correlation is based only on delay of the worst arc.

Transition time correlation (TRAN in Figure 11) has smaller MAE

when it is applied with AAT correlation. Delay and AAT correlation

provide a significant improvement of endpoint slack error over the

slack correlation approach from [20], e.g., the error after 5% cell

changes is reduced from 105ps to 7ps for fft.
In addition, frequency of correlation affects the endpoint slack

error. There is a tradeoff between runtime and accuracy depending

on the frequency of correlation. Table VI shows the tradeoff between

runtime and accuracy in edit dist and matrix mult for different

correlation frequencies that correspond to the percentages of cells

changed. The runtime is normalized to the case of correlation after

every 5% changed cells.

(EM,PERI) (D2M,�PERI) (D2M,�ML) (ML,�S2M) (ML,�PERI) (ML,�ML)

max.�abs.�endpoint�slack�error�
(testcase:�fft)

avg.�abs.�endpoint�slack�error�
(testcase:�fft)

max.�abs.�endpoint�slack�error�
(testcase:�matrix_mult)

avg.�abs.�endpoint�slack�error�
(testcase:�matrix_mult)

0

5

10

15

20

25

30

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0

5

10

15

20

25

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0

0.5

1

1.5

2

2.5

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

Fig. 9. Endpoint slack error after correlating with a ST (MAE and AAE).

(EM,PERI) (D2M,�PERI) (D2M,�ML) (ML,�S2M) (ML,�PERI) (ML,�ML)

max.�abs.�endpoint�slack�error�
(testcase:�fft)

avg.�abs.�endpoint�slack�error�
(testcase:�fft)

max.�abs.�endpoint�slack�error�
(testcase:�matrix_mult)

avg.�abs.�endpoint�slack�error�
(testcase:�matrix_mult)

0

50

100

150

200

250

300

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0

10

20

30

40

50

60

70

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0

50

100

150

200

250

300

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

0
10
20
30
40
50
60
70

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
%�of�changed�cells

Fig. 10. Endpoint slack error without correlating with a ST (MAE and AAE).

30

35

40 SLK AAT DELAY AAT_TRAN DLY_TRAN

0
2
4
6
8

10
12
14
16

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

m
ax

.�a
bs

.�e
nd

po
in

t�s
la

ck
�e

rr
or

�(p
s)

%�of�changed�cells

(a)

100

120

140

160

180
SLK AAT DELAY AAT_TRAN DLY_TRAN

0
2
4
6
8

10
12
14

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

m
ax

.�a
bs

.�e
nd

po
in

t�s
la

ck
�e

rr
or

�(p
s)

%�of�changed�cells

(b)

Fig. 11. Results of correlation vs. quality study on (a) pci bridge32 and (b)
fft.

TABLE VI
TRADEOFFS BETWEEN RUNTIME AND ACCURACY AT DIFFERENT

CORRELATION FREQUENCIES.

Correlation edit dist matrix mult
frequency AAE normalized AAE normalized

(ps) runtime (ps) runtime
5% 2.37 1.00 0.63 1.00
10% 2.54 0.85 1.13 0.84
15% 4.43 0.78 1.26 0.79
30% 6.25 0.69 1.64 0.73

C. Experiment 3: Impact of Update Accuracy.

We assess accuracy of our internal iSTA tool by studying impact of

update accuracy on endpoint slack. We change sizes and/or Vt of 10%

of cells and then revert them to their original states. We repeat this

experiment for different values of iSTA margin.1 After reverting the

changed cells to their original states, we recalculate timing values on

each pin. The error is the difference between the recalculated timing

values and original timing values. Figure 12 shows the maximum

endpoint slack error when 10% of the cells are changed for all

benchmarks. From the results, when iSTA margin is small (less than

2ps), endpoint slack MAE is negligible. However, when the iSTA

margin is large, endpoint slack errors increase because we do not

propagate small timing changes into next stages.

This experiment, whose structure recalls the study of incremental

optimization in [15], raises an open issue of how tight the update

accuracy must be to prevent divergence even in cases where we know

(by our construction of the experiment) that the delta should be zero.

-20

0

20

40

60

80

100

120

140

0 1 2 3 4 5

m
ax

. a
bs

. e
nd

po
in

t
Sl

ac
k

Er
ro

r (
ps

)

iSTA margin (ps)

pci_bridge32
fft
edit_dist
matrix_mult

Fig. 12. Endpoint slack MAE with 10% cells changed in iSTA.

1iSTA margin is a threshold that determines whether delay and slew
calculations should be propagated to the next (or previous) stages in the timing
path. Timing values are propagated only if the change is greater than or equal
to the value of the iSTA margin.

V. CONCLUSIONS AND FUTURE WORK

Incremental STA tools are important for iterative sizing and Vt-

swapping heuristics. In this work, to model wire delay and slew in

an internal iSTA tool, we explore several analytical and machine

learning-based models in conjunction with offset-based timing cor-

relation. The ML-based models can slow the deviation in endpoint

slack from a ST, and thus reduce the number of calls to the ST tool

to perform the timing correlation. We show that our ML models are

accurate in estimating wire delay and slew for individual timing arcs.

When used with a combination of analytical models, the ML models

(especially (D2M, ML)) can be accurate in estimating endpoint slack

and path-based delay. Experiments on offset-based timing correlation

further show that our methodology has up to 10x less endpoint slack

estimation error than offset-based slack correlation [20].

Our studies with iSTA margin for propagation of delay/slew

calculation in the timing graph raises an open issue of how tight

update accuracy must be to prevent divergence even in cases where

we know that the error should be zero. Our ongoing work studies

learning-based models to minimize maximum error for path-based

(as opposed to stage-based) delay modeling, as well as alternative

methods for offset correlation in the timing graph.

ACKNOWLEDGMENTS

We gratefully acknowledge research support from NSF,

MARCO/DARPA, IMPACT, Qualcomm and the Semiconductor

Research Corporation.

REFERENCES

[1] K. Agarwal, D. Sylvester and D. Blaauw, “A Simple Metric for Slew
Rate of RC Circuits Based on Two Circuit Moments”, IEEE Trans.
CAD 23(9) (2004), pp. 1346-1354.

[2] C. J. Alpert, A. Devgan and C. Kashyap, “A Two Moment RC Delay
Metric for Performance Optimization”, Proc. ISPD, 2000, pp. 73-78.

[3] C. J. Alpert, F. Liu, C. Kashyap and A. Devgan, “Delay and Slew
Metrics Using the Lognormal Distribution”, Proc. DAC, 2003, pp.
382-385.

[4] H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI.
Reading, MA: Addison-Wesley, 1990.

[5] S. Bao, “Optimizing Leakage Power using Machine Learning”,
CS229 Final Project, Stanford University, 2010.

[6] W. C. Elmore, “The Transient Response of Damped Linear Network
with Particular Regard To Wideband Amplifiers”, Journal of Applied
Physics 19 (1948), pp. 55-63.

[7] J. P. Fishburn and A. E. Dunlop, “Tilos: A Posynomial Programming
Approach to Transistor Sizing”, Proc. ICCAD, 1985, pp. 326-328.

[8] S. Ganapathy, R. Canal, A. Gonzalez and A. Rubio, “Circuit Prop-
agation Delay Estimation Through Multivariate Regression-Based
Modeling Under Spatio-Temporal Variability”, Proc. DATE, 2010,
pp. 417-422.

[9] M. Gao, Z. Ye, Y. Wang and Z. Yu, “On Modeling the Digital Gate
Delay Under Process Variation”, Journal of Semiconductors 32(7)
(2011), pp. 1-9.

[10] D. S. Gelosh and D. E. Setliff “Deriving Efficient Area and Delay
Estimates by Modeling Layout Tools”, Proc. DAC, 1995, pp. 402-
407.

[11] P. Gupta, A. B. Kahng and P. Sharma, “A Practical Transistor-Level
Dual Threshold Voltage Assignment Methodology”, Proc. ISQED,
2005, pp. 421-426.

[12] P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester, “Gate-Length
Biasing for Runtime-Leakage Control”, IEEE Trans. CAD 25(8)
(2006), pp. 1475-1485.

[13] S. Hu, C. J. Alpert, J. Hu, S. K. Karandikar, Z. Li, W. Shi and
C. N. Sze, “Fast Algorithms for Slew-Constrained Mininum-Cost
Buffering”, IEEE Trans. CAD 26(11) (2007), pp. 2009-2022.

[14] J. Hu, A. B. Kahng, S. Kang, M. Kim and I. Markov, “Sensitivity-
Guided Metaheuristics for Accurate Discrete Gate Sizing”, Proc.
ICCAD, 2012, pp. 233-239.

[15] A. B. Kahng and S. Mantik, “On Mismatches Between Incremental
Optimizers and Instance Perturbations in Physical Design Tools”,
Proc. ICCAD, 2000, pp. 17-21.

[16] A. B. Kahng, K. Masuko and S. Muddu, “Analytical Delay Models
for VLSI Interconnects Under Ramp Input”, Proc. ICCAD, 1996,
pp. 30-36.

[17] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “PERI: A
Technique for Extending Delay and Slew Metrics to Ramp Inputs”,
Proc. TAU, 2002, pp. 57-62.

[18] S. S. Kozat and A. C. Singer, “Universal Switching Linear Least
Squares Prediction” IEEE Trans. Signal Processing 56(1) (2008),
pp. 189-204.

[19] S. P. McCormick, “Modeling and Simulation of VLSI Interconnects
with Moments”, PhD Thesis, MIT, June 1989.

[20] C. Moon, P. Gupta, P. J. Donehue and A. B. Kahng, “Designing a
Digital Circuit by Correlating Different Static Timing Analyzers”,
U.S. Patent No. 7,823,098, 2010.

[21] M. M. Ozdal, S. Burns and J. Hu, “Gate Sizing and Device
Technology Selection Algorithms for High-Performance Industrial
Designs”, Proc. ICCAD, 2011, pp. 724-731.

[22] R. Samanta, J. Hu and P. Li, “Discrete Buffer and Wire Sizing for
Link-Based Non-Tree Clock Networks”, IEEE Trans. VLSI 18(7)
(2010), pp. 1025-1035.

[23] K. Shinkai, M. Hashimoto and T. Onoye, “A Gate-Delay Model Fo-
cusing on Current Fluctuation Over Wide Range of Process-Voltage-
Temperature Variations”, Integration, the VLSI Journal (2013), pp.
1-14.

[24] D. Sylvester and C. Hu, “Analytical Modeling and Characterization
of Deep-Submicrometer Interconnect”, Proc. IEEE 89(5) (2001), pp.
634-664.

[25] A. Chirayu, Intel Corp., Personal communication, January 2013.
[26] ISPD 2013 Discrete Gate Sizing Contest and Benchmark Suite.

http://ispd.cc/contests/13/ispd2013 contest.html
[27] UCLA Timer. http://nanocad.ee.ucla.edu/Main/Sizing

