
TAP – Token-Based Adaptive Power Gating

Andrew B. Kahng†‡, Seokhyeong Kang‡, Tajana Rosing†‡ and Richard Strong†
∗

†CSE and ‡ECE Departments, University of California at San Diego
La Jolla, CA 92093-0404 USA

abk@ucsd.edu, shkang@vlsicad.ucsd.edu, tajana@ucsd.edu, rstrong@eng.ucsd.edu

ABSTRACT

We propose a low-overhead technique, Token-Based Adaptive
Power Gating (TAP), to power gate an actively executing out-
of-order core during memory accesses. TAP tracks every system
memory request, providing a lower-bound estimate for the response
time. TAP also tracks the state of every power-gateable core in the
system, to provide minimal latency wake-up modes to cores such
that voltage noise safety margins are not violated. A power-gating
switch that utilizes TAP can deterministically power gate its core
with energy savings up to 22.39% and no performance hit.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles—Micropro-
cessors and microcomputers; C.0 [Computer Systems Organiza-
tion]: General

Keywords

power gating, core, memory access, voltage noise

1. INTRODUCTION
During every cycle that a core is on, even when stalled, leakage

power is consumed via gate leakage, gate-induced drain leakage,
junction leakage, and subthreshold leakage. A core may stall quite
often if it is intensely accessing the memory subsystem, as every
time a thread makes a memory request that misses in the L1 cache,
the core is subjected to a variable access latency. This variable
latency often translates into a core stall during which no forward
thread progress occurs and energy is wasted. For a 32nm out-of-
order EV6 core, stall energy can be up to 39.1% of total energy
consumption for the Spec2006 benchmarks [12].

Power gating is a technique that drastically reduces leakage
power by cutting off the current path from supply to ground through
introduction of a transistor switch between them. At one end of the
spectrum, functional unit power gating reduces power consump-
tion of unused core functional units [22] with wake-up latencies

∗
Authors are listed alphabetically by last name. Principal contributors, to whom

correspondence should be addressed: Richard Strong (rstrong@eng.ucsd.edu) and
Seokhyeong Kang (shkang@vlsicad.ucsd.edu).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

of several nanoseconds. At the other end, entire cores may be
power gated and woken up with latencies of several hundreds of
milliseconds to account for saving and restoring all core state from
memory [11]. The authors of [9] propose to power gate in-order
cores stalled on memory misses. Their programmable power gating
switch (PPGS) enables core wake-up latencies as small as 8.06ns
in EV4 cores (with 6.25M transistors and 32nm technology). Core
state is restored by saving critical sequential cells in retention flip-
flops, and retaining SRAM cells with source biasing at a cost of
less than 3.5% area overhead. The PPGS is directed by a counter-
based controller that power gates the core after a stall is detected
for longer than a last-level cache hit. The switch resumes core exe-
cution at the predicted memory response time, which dynamically
adapts to memory latency. However, without detailed knowledge
of all core memory requests, out-of-order execution and hard-to-
predict stalls impede use of this power-gating mechanism.

This paper proposes a new system, Token-based Adaptive Power
Gating (TAP), that deterministically applies power gating during
core stalls which are caused by the variable latency of requests to
the memory subsystem. TAP achieves this by providing two capa-
bilities. First, TAP informs a core’s PPGS about the lower-bound
latency of memory requests that miss in a given cache level. The
expected latency is sent to each PPGS by enabling the cache con-
trollers to send tokens on a miss that include a lower-bound esti-
mate of the access latency of a next-level memory hit. Second, TAP
ensures that each core’s PPGS uses a wake-up mode that does not
violate supply voltage noise constraints of the system when waking
up a core. This is ensured by having each core register its state with
a centralized wake-up controller (WUC), detailing whether the core
is idle or active; the WUC responds with a safe wake-up mode to
all registered cores. We determine safe wake-up modes by analyz-
ing every possible combination of core states and locations during
core wake-up, and creating an equation that models our findings.
Any core’s PPGS controller, interfaced with the TAP system, has
information regarding a lower bound on the time needed to com-
plete all memory requests and a corresponding safe wake-up mode.
Combining these two pieces of information, such a controller may
determine when to power gate so as to avoid any performance hit,
while still ensuring energy savings.

Our work makes the following contributions:
• A token-based system (TAP) to deterministically and safely

manage power-gating constraints with energy savings as high
as 22.39% for a wake-up latency of 10.2ns.

• Compared to a previous state-of-the-art technique [9], TAP
has 2.58× the average energy savings for an out-of-order
core. TAP is also shown to have better energy savings than a
practical DVFS policy at 32nm.

• An analytical model that accurately estimates core wake-up
modes for an arbitrary multi-core wake-up scenario.

• A new technique that introduces wake-up stagger between
cores to reduce the minimum feasible core wake-up latency
by up to 40.3%.

203

2. RELATED WORK
Power gating has been widely studied at both architectural and

circuit levels. The following briefly reviews representative works
in these two areas. Hu et al. [8] propose power gating as a tech-
nique to reduce functional unit leakage power, when applications
underutilize their functional units. Specifically, they power gate
the floating-point and fixed-point units according to three different
predictors, which are respectively ideal, time-based, and branch-
misprediction-guided. The best technique, branch-misprediction-
guided, is able to put functional units to sleep for up to 40% of total
cycles with only 2% performance loss. The authors of [8] also de-
velop equations to estimate the break-even points for power gating
an out-of-order superscalar processor. Although they build a power
consumption model with precise analysis of virtual supply voltage
during power gating, they do not consider the wake-up energy to
restore circuit nodes, which will impact energy savings.

Lungu et al. [13] show that in many cases, the predictor of [8]
can lead to increased energy consumption. A monitor that controls
the use of power gating is introduced to bound the performance
and energy penalty for misbehaved applications. Madan et al. [14]
extend the idea of Lungu et al. to the core level, and propose a
“guard mechanism” that reduces harmful use of power gating.

Power gating technology is also readily visible in leading com-
mercial products. The recent Nehalem architecture employs power
gating at the core level to reduce leakage power on idle cores, but
100ms is required to wake-up a core [10, 11]. In today’s systems,
the OS only power gates cores in the idle loop which ignores po-
tential for core energy savings during long memory accesses.

At the circuit level, the pioneering work of Horiguchi et al. [7]
has been followed by many publications on fundamental circuit de-
sign issues related to power gating, including switch cell sizing,
data retention methods, physical implementation methodologies,
and mode-transition noise analysis and reduction. The recent sur-
vey of Shin et al. [17] gives an excellent summary of the history
and highlights of power gating technique.

Configurable power gating has been introduced in the past to mit-
igate process variation, reduce ground bounce noise, and minimize
wake-up time. Agarwal et al. [3] and Singh et al. [18] examine
multiple sleep modes that feature different wake-up overheads and
leakage power savings. Use of multiple sleep modes achieves an
extra 17% reduction in leakage power compared to a single power
gating mode. Also, one of the sleep modes can reduce leakage
power by 19% while preserving circuit state. However, these en-
ergy savings are based on static traces of bus activity and do not
address the runtime problem of predicting when to power gate. In
addition, the reported results are likely optimistic since wake-up
noise is neglected, and the overhead of implementing low-voltage
sleep control signal distribution is not considered.

The closest work to our own is MAPG [9], which proposes a
technique to power gate in-order cores during long memory ac-
cesses. However, the MAPG work considers neither out-of-order
execution nor the benefits of exploiting core location and state in-
formation for determining safe wake-up modes. Our present work
addresses these issues, shows the importance of stagger to reduce
core wake-up latency, and provides a comparison between TAP,
MAPG-Counter, and DVFS for out-of-order cores.

3. POWER GATING AND PDN ANALYSIS
This section provides an analysis of our power-gating methodol-

ogy, and its impact on the power distribution network. Power gating
cuts off leakage current paths between supply and ground by using
switch transistors (such as high-Vth or long-channel devices). To
power gate a circuit, header switches turn off, and leakage current
is reduced. While in the power-gated state, all logic gates con-
nected to the virtual supply lose their logical states. Resuming cir-

cuit operation incurs a delay that corresponds to charging circuit
capacitance, resetting memory elements, and restoring state.

To maximize power gating opportunities, we use a programmable
power gating switch (PPGS) [9]. The PPGS offers multiple wake-
up modes with different wake-up latencies; this enables greater
leakage savings when lower-latency wake-ups are feasible. The
PPGS works as a two-stage wake-up controller [6]. In the first
stage, the signal enable_few turns on a subset of header switches
to allow Ilimit charging current until the circuit nodes are nearly
charged. In the second stage, the signal enable_rest turns on the re-
maining header switches, resulting in a triangular charging current
profile. The PPGS’s wake-up time and inrush current are deter-
mined by the number of header switches that are turned on by the
first-stage enable_few wake-up signal. The two key constraints on
the choice of wake-up modes are that the voltage noise must be
less than 5% on neighboring active cores, and less than 40% on
neighboring idle cores [9].

To study wake-up latency and inrush current, we estimate the
total charge for core logic and interconnect capacitance using the
methodology of [9]. We determine the core area, power, and inrush
current limits with McPAT [12]. Core transistor count, capacitance,
and Vdd_core are determined from the 2009-2010 International
Technology Roadmap for Semiconductors (ITRS) [1]. We summa-
rize these values in Table 1.

Estimated Data
32nm 32nm 22nm 22nm

HP LOP HP LOP

Design Data

V dd_core (V) 1.00 0.77 0.93 0.72

core area (mm2) 15.894 16.185 8.616 8.608

logic area (mm2) 11.513 11.568 6.531 6.527
Ccore (F) 30.7E-9 30.8E-9 18.7E-9 18.7E-9
total charge (C) 30.7E-9 23.7E-9 17.4E-9 13.4E-9
core leakage (W) 0.916 0.143 0.572 0.076
Iactive (A) 2.665 1.690 1.721 1.152
Ilimit (A) 13.544 10.712 7.834 6.871

Power Gating and Wake-up

Tmin−charge (ns) 7.80 5.40 4.40 3.40
wake-up energy (pJ) 15.40E3 9.16E3 8.11E3 4.86E3
head switches 126,435 105,295 72,188 67,655
leakage in PG state (W) 21.51E-3 2.01E-3 14.62E-3 1.25E-3
leakage reduction in PG 97.65% 98.60% 97.49% 98.37%

Table 1: Estimated data for 32nm and 22nm EV6 cores.

We use the detailed PDN model from [9] that includes all pack-
age parasitics, to enable realistic noise analysis under various wake-
up scenarios. Power is delivered from an external voltage regulator
module (VRM) through a printed circuit board (PCB), a package
ball, package interconnect, microbumps, on-die redistribution lay-
ers, the on-chip PDN, and power gating switches. We model the
entire power delivery network, including power gating switches, as
a simplified RLC circuit as designed in [9]. Package inductance and
series resistance from VRM to bumps for a core are lumped as in-
series inductance, Lpkg−core, and resistance, Rpkg−core. The PDN
in the package, which is shared by multiple cores, is represented
as a resistance mesh with a branch resistance of Rshared . There are
three variant models depending on the state of the core — core in

active mode, core being woken up, and core in sleep mode. We use
the PDN parameter values from Table I of [9].

Exploiting Spatial Information. Previous PPGS work [9] se-
lected a wake-up mode based on the worst-case wake-up time for
each number of idle cores. The worst-case wake-up time assump-
tion limits the benefit of power gating. A core’s minimum wake-up
time is constrained by the voltage noise seen by neighboring active
cores – in particular, some critical active neighbor core, where the
voltage noise constraint is first violated. The voltage noise of an
active core is mainly affected by adjacent woken-up cores and the
latencies (i.e., associated inrush currents) with which they wake up.
In other words, we may exploit knowledge of a core’s location to

204

reduce pessimism. We have developed a model that determines the
minimum wake-up time based on the number and location of ac-
tive and woken-up cores. To simplify the model, we assume that
all woken-up cores have the same (uniform) wake-up latency.

Wa Wa Wa

A Wa A Wa A Wa Wa A Wa Wa A Wa

Wa Wa Wa Wa Wd

Wa A Wd

A Wa A A A

Wd Wn

(f)!8.3ns (g)!8.3ns (h)!4.3ns (i)!3.9ns (j)!3.4ns

(a)!7.8ns (b)!11.1ns (c)!13.8ns (d)!16.1ns (e)!16.5ns

Figure 1: SPICE-calculated minimum wake-up latency for an

EV6 16-core CMP with various wake-up scenarios.

Figure 1 shows the minimum wake-up time, according to the
location and status of cores, for an example case of an EV6 16-
core CMP where A denotes the critical active core, Wa are adja-
cent woken-up cores, Wd are diagonally adjacent woken-up cores,
Wn are non-adjacent woken-up cores, and blank squares are idle or
non-critical active cores. The PDN model of [9] is used The wake-
up latency increases according to the number of adjacent woken-up
cores (Figure 1 (a) - (e)), and is approximately proportional to the
square root of the number of adjacent woken-up cores. Woken-up
cores in the diagonal (Wd) or non-adjacent positions impact wake-
up latency less than adjacent woken-up cores (Figure 1 (f) and (g)).
If woken-up cores are located at an edge position (Figure 1 (h)), the
minimum wake-up time increases.

From such observations, we have modeled the minimum wake-
up latency based on the core status at each location as:

T = T0(w+β · x+ γ · y+δ · z)α (1)

where T0, α, β, γ and δ are fitting coefficients, w is the number of
adjacent woken-up cores, x is the number of diagonal woken-up
cores, y is the number of other (non-adjacent) woken-up cores, and
z is the number of cores (active core itself or adjacent woken-up
cores) which are at edge locations.

We have verified our model with SPICE, and modeled the wake-
up time for 4-, 6-, 8-, and 16-core CMPs for all location permuta-
tions. Our SPICE simulations measure the voltage drop on active
cores to find the minimum wake-up time.

The results in Table 2 show that our model has average error of
2.64%, 1.93%, 2.31% and 1.57% for 4-, 6-, 8-, and 16-core CMP
cases, respectively. The parameter values can be adjusted in real IC
designs to adapt to process, voltage and temperature variations.

core
coefficient error

T0 α β γ δ average (%) maximum (ns)

4-core 7.9 0.50 0.35 0.15 0.15 2.64 0.37

6-core 7.9 0.50 0.35 0.15 0.13 1.93 1.10

8-core 7.9 0.50 0.30 0.15 0.13 2.31 1.65

16-core 7.9 0.50 0.20 0.10 0.10 1.57 1.40

Table 2: Average and maximum error on the modeled wake-up

time for 4, 6, 8, and 16-core cases (EV6, 32nm HP).

Sensitivity of Results to PDN Parameter Values. The re-
sults of the SPICE simulation have varying degrees of sensitivity
to power distribution network (PDN) parameters - the number of
bumps, package inductance (L_pkg), package resistance (R_pkg),
PDN mesh resistance (R_shared), supply voltage and core capaci-
tance. We have assessed the minimum wake-up time sensitivity to
variations in the PDN model. Figure 2 shows the change in the T0

coefficient when each PDN parameter is scaled from 0.1× to 2× (a
20× range!) with respect to our default values, which are obtained
from personal communication with industry experts. Since the ac-
tual wake-up latency depends on PDN variations, the T0 coefficient

will be determined by testing the actual packaged chip. Our conclu-
sions regarding energy savings and overheads remain qualitatively
the same across the range of PDN parameter values.

number of power bumps 259

package inductance (L_pkg) 0.05nH

package resistance (R_pkg) 0.001!

PDN mesh resistance (R_shared) 0.01!

supply voltage (Vdd) 1.0V

core capacitance (C_core) 30.7nF

default value

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

T
0
(n
s)

Scale factor on PDN parameters

#Bumps

L_pkg

R_pkg

R_shared

Vdd

C_core

Figure 2: T0 as a function of PDN parameters.

Benefits of Staggered Wake-up. The above wake-up analysis
assumes that all cores wake up simultaneously, which is the worst
case. However, wake-up latency is significantly reduced when we
stagger the wake-up sequence so that two cores wake up at slightly
different times (e.g., offset by 1ns). (Staggered wake-up is analo-
gous to multi-stage wake-up control within a core.) We design the
wake-up controller to insert stagger between waking cores to re-
duce wake-up latency. Figure 3 shows minimum wake-up latency
for an EV6 16-core CMP when we add stagger between woken-
up cores. The minimum wake-up time (y-axis) is reported for the
worst case for each number of woken-up cores (x-axis). When
stagger is zero, wake-up time increases according to the number
of woken-up cores. However, if we avoid simultaneous wake-up,
minimum wake-up time reduces greatly. When two, three, and four
cores are waking up within an interval of three cycles (0.9ns), we
obtain 18.8%, 31.9% and 40.3% wake-up latency reductions, re-
spectively, over simultaneous wake-up. From SPICE results in
Figure 3, we can see that the minimum wake-up time does not
increase with staggered wake-up when the number of woken-up
cores is larger than four. We have modeled the minimum wake-up
time with Equation (1) for up to three woken-up cores by changing
the parameter α from Table 2. The dotted lines in Figure 3 show
the modeled wake-up latency from Equation (1) and its error with
respect to SPICE simulation. Our measurements of model accu-
racy show an average (maximum) error of 2.66% (7.62%), 1.89%
(6.61%), 0.93% (3.59%) and 2.51% (3.08%) for the 4-, 6-, 8-, and
16-core CMP cases, respectively.

7

9

11

13

15

17

19

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
in
im

u
m
!w
a
k
e
"u
p
!t
im

e
!(
n
s)
!

number!of!woken"up!cores!

delta!=!0

delta!=!1T

delta!=!2T

delta!=!3T

delta!=!0

delta!=!1T

delta!=!2T

delta!=!3T

T:!clock!cycle!!

(0.3ns)!

SPICE!!

simulation!

modeling!!

with!!

Equation!(1)!

Figure 3: Minimum wake-up latency versus wake-up stagger.

4. SYSTEM DESIGN
We now present our architectural modifications used to control

power gating for each core. As noted above, TAP is a system with
two purposes, (1) to inform a core’s PPGS about the expected la-
tency of memory requests that miss in a given cache level, and (2)
to ensure that each core’s PPGS uses a wake-up mode that does
not violate reliability constraints of the system when waking up a
core. Together, these two pieces of information allow each PPGS to
power gate its core as soon as a stall on a memory operation is de-
tected, and the expected latency of the memory operation is greater
than the break-even point for power gating.

205

Determining Lower Bound on Stall Operation. We achieve the
first goal of informing each PPGS about expected memory latency
by modifying the cache controllers to send tokens on cache misses.
The tokens include an estimate of the lower-bound access latency
for a next-level memory hit, derived from Table 3, and a time stamp
of creation. The controllers send the tokens to the PPGS of the core
that requested the memory access. Once the PPGS receives the
token, it looks at the lower-bound latency to satisfy the request and
power gates the core if the core is both stalled and idle long enough
to save energy. Should the core receive more than one token for
simultaneous memory requests, it will track each expected response
separately and schedule the resumption of core execution to satisfy
the earliest response. If a token is delayed in the memory subsystem
by a controller or queue, the PPGS can compare its arrival time
with its generation time stamp and previous tokens, to determine
whether the token should be ignored.

Whenever a memory request misses all the way to the memory
controller, the response latency experiences a significant amount of
variability. This variability is caused by the complexity of DRAM
memory [19], which includes bank queues, availability of the data
in the row buffer, writing wrong address row buffers, accessing the
column in the row buffer, and channel contention between banks.
TAP adapts to memory variability by adding a special token. As
soon as the last-level cache experiences a miss, a token is sent to
the requesting core’s PPGS with an estimated completion time of
UNKNOWN. This is a directive to the PPGS to start power gating
its core immediately and to expect one additional token with the
ETA of the memory response. Once the memory controller submits
the memory access to one of the banks and determines whether the
access is a row buffer hit or miss, it sends the second ETA token to
the core’s PPGS with the ETA of the response assuming that there
is no memory channel contention. The PPGS schedules the core to
wake-up after it receives the second token.

IC

DCPPGS

CORE
L2 L2

IC

DC PPGS

CORE

L3

DC

IC

PPGS

CORE
L2 L2

DC

IC

PPGS

CORE

WUC

Figure 4: WUC and PPGS integration into a 4-core CMP.

Distributing Safe Wake-Up Modes. To achieve safe and min-
imal wake-up latencies for a power-gated core, TAP requires each
core to register with the wake-up controller (WUC) (see Figure 4),
and set whether it is active or idle. If the PPGS registers with the
WUC as active, the WUC returns the worst-case lowest latency
wake-up mode defined by Equation (1). If the PPGS registers with
the WUC as idle, the WUC will send the new wake-up mode to
the remaining active cores. As soon as the system boots, firmware
causes each core’s PPGS to send a command packet to the WUC.
A core is neither allowed to power gate during a memory stall, nor
allowed to wake-up from a power-gated state, until it has registered
with the WUC and been assigned a wake-up mode. This prevents
any violation of voltage noise constraints.

When a core stalls and power gates, the PPGS may use the worst
case wake-up latency it initially received from the WUC and save
energy. However, this results in unnecessarily long wake-up la-
tency and reduced energy savings. To enable stagger and more ag-
gressive wake-up modes as a function of whether neighboring cores
are active, waking-up, or idle, the PPGS may query the WUC for a
lower latency wake-up. If the WUC replies in time, the PPGS may
delay its wake-up procedure for the difference between the worst-
case and actual wake-up delay defined by Equation (1). Because

only adjacent cores have a significant effect on a core’s wake-up la-
tency, with appropriate wake-up latency guardband, only adjacent
cores must communicate with the WUC, which can be done be-
fore the PPGS must start the wake-up sequence. Often, the result is
lower core wake-up latency and greater energy savings.

Controller

(PPGS)

clock

retention

control

CORE
Vdd

D

Collapsible Domain

RET

Vss

SRAM

level

shifter

Vdd(sram)

Register

files

s
w
it
c
h

h
e
a
d

Retention

Domain

switch

control

retention

flip-flops

fl
ip

-f
lo

p
s

ID EX MEM

WB

fl
ip

-f
lo

p
s

fl
ip

-f
lo

p
s

fl
ip

-f
lo

p
s

IF

PC

architectural,

misc priv.

registers

Figure 5: Interface for power gating and data retention.

Retention of Essential Core State. To avoid losing core state
that is required for correct and efficient execution, essential sequen-
tial and SRAM cells must be retained. We use the technique from
[9] which replaces a subset of sequential cells with live-slave re-
tention flip-flops [5] which can be triggered to retain their logical
values before a power gating action at a cost of 20% increase in
area and power versus a normal flip-flop. Only those sequential
cells comprising the architectural registers necessary to refill the
pipeline are selected, which results in 3.4% area overhead for the
processor. SRAM cells are retained through source biasing [16]
in which the supply voltage is reduced to 50% of nominal supply
voltage so that SRAM leakage is reduced, but logical state is main-
tained. This technique allows for saving the contents of L1 caches,
TLBs, branch predictor state, physical registers, etc. To provide
supply power during power gating, a separate non-collapsible volt-
age domain provides power to the retention flip-flops and SRAM
cells. Thus, as the power is gated from combinational logic and
non-essential sequential cells, the separate voltage rail provides
power to maintain core state. The overheads from multiple power
domains and separate voltage rails already exist for power-gated
cores today. Figure 5 shows core design modifications to support
power gating and state restoration.

To retain internal data during power gating, additional cycles are
required for the power gating and wake-up sequence. These addi-
tional cycles account for time to disable/enable the clock, trigger
data retention, refill the pipeline, and de-assert/assert the clamps.
We model the entire power down and wake-up sequence as in [9].

Figure 6 shows a timing-accurate diagram of a PPGS power gat-
ing the core in response to messages from the TAP system. At time
0ns, a memory request occurs that will miss in the cache hierarchy
and cause a memory access. The PPGS then receives tokens for
the L1, L2 and L3 misses. Just after receiving the L2 Token, the

!" #!" $!" %!" &!" '!" (!")!" *!"

!"!#$%&#!'$(

+,-./"

012/3"456/7"

86599/7"

:;<3=>?"

@=33/;6"

0
1
2
/
3"
8
65
6/
>"

A/B"

C/D=/>6"

E#"F1G/;"

E$"F1G/;"

@13/"86599"

E%"F1G/;"
@13/"85./>"

8656/"

A@"8/;7>"

C/>H1;>/"IF+"

0048""

J5G/>"@13/"

C/>613/"8656/"

K"LM99"0MH/9M;/"

A/B"

C/>H1;>/"

0048"012/3"

456/>"@13/"

Figure 6: Timing diagram of TAP power gating a core.

206

core stalls due to a dependency. After the L3 Token is received, the
PPGS decides to power gate the core and saves all core state. The
core is then power gated and the memory controller (MC) sends
an updated ETA for the memory response. At 70ns, the PPGS be-
gins waking up the core. At 78ns, the core state is restored and the
pipeline is restarted. The memory response comes back at 81ns and
the core resumes execution as if nothing happened.

5. RESULTS
Table 3 summarizes all system values used in our experiments.

The system has 4 cores, each with its own private L1 and L2 caches,
and a large shared L3 cache. The L3 cache forwards requests to
the memory controller through a shared memory bus. The L1 and
L2 cache configurations are 32KB-8way and 256KB-8way. The
L3 cache is a relatively large, 8MB-16way, which we expect to
minimize pressure on the memory subsystem and hence minimize
gains we see from our power gating technique. For the core, we
model an out-of-order DEC-Alpha EV6 with an issue width of six
and clock frequency of 3.3GHz.

We simulate the system with the GEM5 simulator [4]. GEM5 is
a full system simulator that can boot an unmodified OS. It features
cycle-level models of an out-of-order core, the cache hierarchy,
and the interconnect. We integrate GEM5 with DRAMSim2 [2]
to provide cycle-level modeling of the memory subsystem includ-
ing the memory controller, DRAM modules, and shared channels
used for communication. We modify GEM5 to support our power
gating token methodology described in Section 4. We simulate
our system with 21 of the Spec2006 benchmarks using the sim-
point methodology [15] in which 100M-instruction representative
regions of execution are determined for each benchmark. To sim-
ulate each region, we fast-forward to 100M instructions before the
region, warm-up the memory and caches, and then perform the de-
tailed simulation.

Once simulation is complete, we feed the system configura-
tion and performance counters to McPAT [12] to model power
consumption. McPAT is comprised of a power, area, and timing
framework that provides off-line power and area estimates for full
systems designed in technology nodes between 90nm and 16nm.
McPAT generates values for dynamic power, leakage power, peak
power, thermal design power, and area. We update McPAT’s tech-
nology.cc file to accurately reflect the ITRS 2010 update report [1].

Comparison to DVFS. We compare TAP to dynamic voltage
and frequency scaling (DVFS). We calibrate our DVFS settings to

parameter value notes

Core Model DEC-Alpha EV6
Core clock 3.3GHz-1.9GHz
Execution 6-way out-of-order
Functional Units 6ALU,2IMULT

2FPALU
ICache/Dcache 32KB-8way 1cyc
L2 Cache 256KB-8way 4ns Private per core
L3 Cache 8MB-16way 13ns Shared
Memory DDR3 2GB 50ns
Core-to-L1 token latency 0.5ns controller delays
Core-to-L2 token latency 4.5ns controller delays
Core-to-L3 token latency 17.5ns controller delays
Core-to-WUC latency 5ns controller delays
PPGS wake-up modes 4.5ns-16.9ns SPICE
EV6 pipeline refill latency 2.12ns 7 pipeline stages
EV6 core wake-up energy (EWE) 15,358pJ Charge cells
EV6 leakage power (ELP) 0.916 Watts McPAT [12]
EV6 PG leakage reduction (EPLR) 97.65% [5]
EV6 PG break even point 17.17ns EW E/(EPLR∗ELP)
EV6 DFLT core wake-up latency 10.2ns SPICE
FUPG wake-up energy 9641pJ McPAT, ITRS [1]
FUPG wake-up latency 6.4ns SPICE

Table 3: System Configuration Values

Figure 7: Energy savings and performance overhead of power

gating Oracle, TAP, MAPG-Counter, FUPG, DVFS-Oracle and

DVFS-µmean. Benchmarks with less than 1% absolute change

were filtered out for readability

match those of [21] for the 32nm technology node, in which a 7.5%
reduction in voltage follows each 20% reduction in frequency. To
direct the DVFS policy, we apply the technique from [20], which
uses a cycle-per-instruction based metric, µmean, to detect mem-
ory bounded phases of execution. During execution, we sample the
application’s µmean to determine the most aggressive DVFS set-
ting that may be used to save energy while sustaining at most a
5% performance hit. In addition, we also consider an oracle DVFS
technique that chooses the DVFS point that results in the lowest
energy delay product (EDP). This technique takes an arbitrary per-
formance hit as long as more energy is saved. For both policies, we
model the availability of five DVFS modes which include 100%,
95%, 90%, 80%, and 60% frequency.

Comparison to MAPG. We also compare TAP to MAPG-
Counter [9]. This scheme works by observing core stall time and
predicting its duration. If the core stalls for longer than the average
hit latency of the last-level cache, then MAPG-Counter predicts
that the stall will last for the latency of a row buffer miss plus δ,
where δ is an exponential weighted moving average which adapts
to variations in the memory latency. MAPG-Counter uses this pre-
dictor to direct its power gating strategy.

For our reported results, we assume a four-core system that is
50% utilized (two cores idle) in a 32nm technology. When deter-
mining energy and performance values, we consider core wake-
up energy, core wake-up delay, core pipeline refill latency, reten-
tion overhead of live-slave retention cells, SRAM leakage during
source biasing mode of operation, core-to-WUC communication
overhead, staggered wake-ups, and PDN voltage noise safety.

Comparison to Oracle Prediction. Figure 7 compares the en-
ergy savings of TAP with the energy savings of an oracle mem-
ory predictor (Oracle), MAPG-Counter [9], Functional Unit Power

207

Gating (FUPG) [8, 13, 14], DVFS-Oracle, and DVFS-µmean. To
understand the limit of energy savings from power gating cores dur-
ing memory stalls, the oracle memory predictor assumes a priori
knowledge of all memory accesses and latencies and determines
the optimal power gating behavior. The EV6 oracle policy achieves
a maximum of 23.9% energy savings, and 3.6% savings on aver-
age. A few benchmarks show negative energy savings as high as
-0.2%. These negative energy savings are caused by the lack of
power gating opportunities and the retention cells’ power overhead
on cpu-bound benchmarks.

In comparison with the Oracle, TAP must determine memory la-
tencies in a running system to ensure that sufficient time is available
to power gate a core. TAP EV6 is able to achieve 22.4% (23.9%
is Oracle) maximum energy savings, and 3.10% on average. TAP
does not achieve the same energy savings as the Oracle because
TAP is not able to power gate memory accesses until they miss in
the L3 cache, and because lower-bound latencies are used. The
result is that TAP avoids any performance hit but misses out on
power gating at the beginning of the core stall. TAP also sees a few
benchmarks with -0.2% energy savings due to cpu-bound behavior.

MAPG-Counter [9] power gates cores after the core stalls for
longer time than the L3 hit latency, and power gates for the pre-
dicted stall duration according to its exponential learning algo-
rithm. MAPG-Counter EV6 is able to achieve up to 12.0% en-
ergy savings (1.2% savings on average). TAP is able to achieve
2.58× the average energy savings of MAPG-Counter for out-of-
order cores. (If method A saves 1% energy on average, and method
B saves 3% energy on average, we say that “method A achieves
3.00× the average energy savings of method B”.) The reason for
this finding is that out-of-order cores stall more randomly than in-
order cores, which makes the adaptive counter mechanism unstable
and more prone to misprediction.

FUPG EV6 has a maximum and average energy savings of
17.6% and 2.2% with a maximum performance hit of 2% (1.5%
average), at which point control logic prevents future power gat-
ing actions. The FUPG mechanism does better on average for the
out-of-order core than MAPG-Counter, but TAP achieves 1.4×
the average energy savings of the FUPG mechanism. FUPG does
achieve more energy savings than TAP on a few cpu-bound integer
codes in which not all the functional units are being used, but the
core does not go idle. Greater energy savings could result from the
cooperation of FUPG and TAP.

We also examine DVFS-Oracle using the scaling properties de-
scribed in Section 5. The maximum and average EV6 core energy
savings are 24.6% (lbm) and 3.3%, respectively. DVFS-Oracle on
an EV6 core sees less maximum and average energy savings com-
pared to the power gating oracle, but greater savings when com-
pared to TAP. However, these energy savings suffer from two short-
comings. First, DVFS-Oracle has a maximum and average perfor-
mance hit of 11.8% (GemsFDTD) and 2.4%. Second, these energy
savings rely on oracle knowledge.

To understand DVFS under a realistic state-of-the-art policy, we
consider DVFS-µmean [20], which predicts the performance hit of
DVFS at each interval based on performance counters. DVFS-
µmean achieves a maximum and average energy savings of 5.9%
and 0.6% respectively. Thus, DVFS-µmean achieves less energy
savings than TAP while experiencing a 1.0% performance hit on
average (3.9% maximum). This result highlights the challenge of
effectively applying DVFS at 32nm to match different application
behaviors, and why TAP’s determinism can result in higher energy
savings.

6. CONCLUSION
With each successive generation of microprocessors, leakage

power becomes an increasingly dominant issue. TAP effectively
reduces wasted leakage power for out-of-order cores waiting for

the memory subsystem. TAP achieves 22.39% maximum energy
savings with no performance hit for out-of-order cores. Our method
also achieves 2.58× the average energy savings of MAPG-Counter
and 5.17× the average energy savings of a practical DVFS policy.
Further, we are able to produce an accurate model of safe wake-up
modes for an arbitrary arrangement of core states (waking-up, idle,
active) in any arrangement of locations; this enables more aggres-
sive wake-up modes for out-of-order cores. Our model reveals the
importance of staggered wake-up as a technique to reduce voltage
noise fluctuations across the power distribution network, as sev-
eral cores try to wake up simultaneously. A staggered wake-up of
0.9ns between adjacent cores reduces core wake-up latency by up
to 40.3%.

7. ACKNOWLEDGMENTS
This research was supported by Oracle, NSF, the MARCO FCRP

(MuSyC and GSRC centers), and Qualcomm.

8. REFERENCES
[1] International Technology Roadmap for Semiconductors, 2010,

http://www.itrs.net/Links/2010ITRS/2010Update .

[2] DRAMSim2, 2011, http://www.ece.umd.edu/dramsim/ .

[3] K. Agarwal, H. Deogun, D. Sylvester and K. Nowka, “Power Gating with
Multiple Sleep Modes”, Proc. ISQED, 2006, pp. 633–637.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi and S. K.
Reinhardt, “The M5 Simulator: Modeling Networked Systems”, IEEE Micro
26(4) (2006) pp. 52–60.

[5] D. Flynn, R. Aitken, A. Gibbons and K. Shi, Low Power Methodology
Manual, Springer, 2007.

[6] K. He, R. Luo and Y. Wang, “A Power Gating Scheme for Ground Bounce
Reduction during Mode Transition”, Proc. ICCD, 2007, pp. 388–394.

[7] M. Horiguchi, T. Sakata and K. Itoh, “Switched-Source-Impedance CMOS
Circuit for Low Standby Subthreshold Current Giga-Scale LSI’s”, IEEE JSSC
28(11) (1993) pp. 1131–1135.

[8] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson and P. Bose,
“Microarchitectural Techniques for Power Gating of Execution Units”, Proc.
ISLPED, 2004, pp. 32–37.

[9] K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing and R. Strong, “Memory Miss
Power Gating”, Proc. DATE, 2012, pp. 1054–1059.

[10] R. Kumar and G. Hinton, “A Family of 45nm IA Processors”, IEEE ISSCC,
2009, pp. 58–59.

[11] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan and C. Kozyrakis,
“Power Management of Datacenter Workloads using Per-Core Power Gating”,
IEEE Computer Architecture Letters 8(2) (2009) pp. 48–51.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures”, Proc. MICRO, 2009, pp. 469–480.

[13] A. Lungu, P. Bose, A. Buyuktosunoglu and D. J. Sorin, “Dynamic Power
Gating with Quality Guarantees”, Proc. ISLPED, 2009, pp. 377–382.

[14] N. Madan, A. Buyuktosunoglu, P. Bose and M. Annavaram, “A Guarded
Power Gating for Multi-Core Processors”, Proc. HPCA, 2011, pp. 291–300.

[15] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood and B. Calder,
“Using SimPoint for Accurate and Efficient Simulation”, Proc. Intl.
Conference on Measurement and Modeling of Computer Systems, 2003, pp.
318–319.

[16] H. Qin, Y. Cao, D. Markovic, A. Vladimirescue and J. Rabaey, “SRAM
Leakage Suppression by Minimizing Standby Supply Voltage”, Proc. ISQED,
2004, pp. 55–60.

[17] Y. Shin, J. Seomun, K.-M. Choi and T. Sakurai, “Power Gating: Circuits,
Design Methodologies, and Best Practice for Standard-Cell VLSI Designs”,
ACM Trans. on Design Automation of Electronic Systems 15(4) (2010) pp.
1–37.

[18] H. Singh, K. Agarwal, D. Sylvester and K. Nowka, “Enhanced Leakage
Reduction Techniques Using Intermediate Strength Power Gating”, IEEE
Trans. on VLSI Systems 15(11) (2007) pp. 1215–1224.

[19] H. Zheng and Z. Zhu, “Power and Performance Trade-Offs in Contemporary
DRAM System Designs for Multicore Processors”, IEEE Trans. on Computers
59(8) (2010) pp. 1033–1046.

[20] G. Dhiman and T. Rosing, “Dynamic Voltage Frequency Scaling For
Multi-Tasking Systems Using Online Learning”, Proc. ISLPED, 2007, pp.
207–212.

[21] M. Cho, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchilli and S.
Mukhopadhyay, “Proactive Power Migration to Reduce Maximum Value and
Spatiotemporal Non-uniformity of On-Chip Temperature Distribution in
Homogeneous Many-Core Processors”, Proc. Semiconductor Thermal
Measurement and Management Symp., 2010, pp. 180–186.

[22] O. Wechsler, “Setting New Standards for Energy-Efficient Performance”,
Technology@Intel Magazine, 2006.

208

