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ABSTRACT

Gate sizing in VLSI design is a widely-used method for power or
area recovery subject to timing constraints. Several previous works
have proposed gate sizing heuristics for power and area optimiza-
tion. However, finding the optimal gate sizing solution is NP-hard
[1], and the suboptimality of sizing solutions has not been suffi-
ciently quantified for each heuristic. Thus, the need for further re-
search has been unclear.

In this work, we describe a new benchmark generation approach
for leakage power-driven gate sizing (the subject of the forthcom-
ing ISPD-2012 contest) which constructs realistic circuit netlists
with known optimal solutions. The generated netlists resemble
real designs in terms of gate count, maximum path depth, inter-
connect complexity (Rent parameter), and net degree distributions.
Using these benchmark circuits with known optimal gate size, we
have studied the suboptimality of several leakage-driven gate siz-
ing heuristics, including two commercial tools, with respect to key
circuit topology parameters. Our study shows that common sizing
methods are suboptimal for realistic benchmark circuits by up to
52.2% and 43.7% for Vt-assignment and gate sizing formulations,
respectively. The results also suggest that (1) commercial tools may
still suffer from significant suboptimality, and/or (2) existing meth-
ods have “similar” degrees of suboptimality.

Categories and Subject Descriptors

B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids

General Terms

Algorithms, Design.

Keywords

Benchmarks, Gate Sizing, Dynamic Programming, Leakage Power,
Static Power, Optimization.

1. INTRODUCTION
The sizing problem in VLSI design seeks to assign design param-

eters (width and/or threshold voltage) to each gate, so as to optimize
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timing, area and/or power of the design subject to constraints. Gate
sizing is widely applied during optimization and design closure
phases of the implementation flow, since it helps to meet design
constraints with minimal overall disruption. The problem has been
extensively studied, and a number of heuristics have been proposed.
Greedy heuristics for gate sizing to optimize power/area/delay sub-
ject to delay/area constraints are found in [2] and [3]. Sensitivity-
based gate downsizing and Vt-assignment techniques are given in
[4] and [5]. The sizing problem has been formulated as a linear
program (LP) in [6] and [7]. Lagrangian relaxation (LR) based op-
timization is proposed in [8].

However, finding an optimal gate sizing solution is NP-hard [1],
and the suboptimality of sizing solutions has not been quantified
and analyzed sufficiently for available heuristics. Real circuits have
unknown optimal solution quality, and thus do not shed much light
on heuristic suboptimality. On the other hand, artificial circuits
with known optimal solution quality – along with any implications
they might have for suboptimality of heuristics – are viewed as un-
realistic. Thus, the need for further research and development on
gate sizing methods has been unclear. In this work, we focus on
sizing for leakage reduction, and propose a new method for gener-
ating realistic sizing benchmark circuits with known optimal sizing

solutions, which enables systematic and quantitative comparisons
of available gate-sizing heuristics.

For evaluation of CAD heuristics, several methods of generat-
ing synthetic benchmarks that match real designs have been pro-
posed. Darnauer and Dai [9] generate random benchmark circuits
based on Rent’s rule. Their code generates random circuits with
a specified number of inputs, outputs, blocks, terminals per cell,
and Rent parameter. Hutton et al. [10] define properties such as
size, delay, physical shape, edge-length distribution and fanout dis-
tribution, and generate combinational circuits to match a given pa-
rameterization. Stroobandt et al. [11] provide parameterized (by
Rent exponent and net degree distribution) benchmarks with user-
selected library cells. With these synthetic benchmarks, various
CAD heuristics can be compared to each other, but the suboptimal-
ity of the heuristics cannot be measured.

Suboptimality of existing heuristics has been studied for VLSI
problems such as synthesis, placement, partitioning, and buffer in-
sertion. Hagen et al. [12] show how to quantify the suboptimal-
ity of heuristic algorithms for NP-hard placement and partitioning
problems arising in VLSI layout. They construct scaled instances
from the original problem and execute the heuristic. If the heuristic
solution cost increases at a faster rate than the scaling of the heuris-
tic instance itself, this establishes a lower bound on the heuristic’s
suboptimality. PEKO (placement examples with known optimal
solutions) [13] and its extension PEKU (placement examples with
known upper bounds) [14] enable estimation of suboptimality of
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Figure 1: Generation of benchmark circuits with known opti-

mal solutions.

several timing-driven placement algorithms; the core approach in-
volves perturbing an original design to obtain a new design with
similar topological properties and a known optimal solution.

Our present work builds on the recent work of Gupta et al. [15],
which to our knowledge is the only work in the literature to address
suboptimality of (leakage-driven) gate sizing heuristics. The au-
thors of [15] (1) propose eyechart benchmark circuits which can be
optimally sized using dynamic programming methods, and (2) use
eyecharts to evaluate the suboptimalities of several gate sizing algo-
rithms. However, [15] does not address the difference or similarity
between real designs and eyechart circuits. In [15], the eyechart

circuits are built from three basic topologies – chain, mesh and star
– and the resulting topologies differ substantially from those of real
designs in terms of Rent parameter, path length and other param-
eters.1 Thus, the eyecharts may be helpful in measuring subopti-
mality of heuristics, but do not have clear implications for heuristic
performance on real designs. Furthermore, [15] does not provide
any automated flow for eyechart circuit generation.

In this paper, we provide more realistic benchmarks with known
optimal solutions for gate sizing problems. Figure 1 shows the
flow of our benchmark circuit generation. (1) To create a circuit
with known optimal gate sizing solution, we construct multiple
chains (for which optimal sizing solutions can be found by dynamic
programming), then connect the chains with inter-chain nets with-

out affecting the property of having a known leakage-optimal siz-

ing solution. (2) During the circuit construction, circuit topology
is constrained according to user-specified parameters (path depth,
and fanin / fanout distributions) so that the constructed benchmarks
show similar characteristics to real designs. (3) The inter-chain
connections can be added in many possible ways, which gives the
potential for greater topological diversity than the previous con-
struction of [15].

Our main contributions are summarized as follows.

• We propose benchmark circuits with known optimal solu-
tions for gate (width and/or Vt) sizing, specifically, for leak-
age minimization subject to a (setup) delay constraint.

• The proposed benchmarks resemble real designs in terms of
size, path depth (number of logic stages), interconnect com-
plexity (Rent parameter), and net degree distribution. These
parameters are extracted from real designs. The property of
known optimal solution quality is maintained.

• We assess the suboptimality of standard gate sizing ap-
proaches, including two commercial tools, with respect to

1Eyecharts used in [15] have large depth (650 stages) and small
Rent parameter (0.17). Table 4 below shows that real designs have
path depths of 20 ∼ 70, and Rent parameter values of 0.72 ∼ 0.86.
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Figure 2: Circuit characteristics (fanin distribution, fanout dis-

tribution, average net degree and Rent parameter) for two real

designs (EXU: OpenSPARC T1 execution unit; JPEG: JPEG

encoder).

the above circuit parameters. Our results suggest that (1)
commercial tools may suffer from significant suboptimality,
and/or (2) existing methods have “similar” degrees of subop-
timality for real designs.

The rest of this paper is organized as follows. Section 2 dis-
cusses how we address the two main considerations for gate sizing
benchmarks – realism in circuit topology and tractability to optimal
solution. Section 3 presents details of our benchmark generation
procedure. Section 4 provides experimental results and analysis,
including suboptimality studies of several heuristics and compar-
isons between real and artificial circuits. Section 5 summarizes and
concludes the paper.

2. BENCHMARK CONSIDERATIONS
For benchmark circuit generation, realism and tractability to

analysis are opposing goals since (1) determining the optimum so-
lution is usually intractable in real designs, and (2) constructions
for which optimum solution costs are known are often considered
“artificial” [12]. We begin by considering this tension between re-
alism and tractability in benchmark circuits.

First, to construct a realistic benchmark, we must use character-
istic design parameters in the benchmark generation. Many works
in the literature classify or parameterize circuits according to an
empirical power-law scaling phenomenon that governs statistics of
interconnects among and within subcircuits (cf. the well-known
Rent parameter or Rent exponent [16]). Distributions of net de-
grees, or of the numbers of fanins and fanouts per cell instance,
are additional important circuit characteristics. Figure 2 shows cir-
cuit characteristics of two real design blocks; each shows different
characteristic parameters. In our work, to construct realistic bench-
marks we use four design characteristic parameters: (1) number of
primary (PIs and POs), (2) (maximum) path depth, (3) fanin dis-
tribution, and (4) fanout distribution. These four parameters can
be configured in advance, and our benchmark generator makes net
connections according to the given parameters subject to a given
(setup) timing constraint.

Second, for generated benchmarks to permit known optimal gate

sizing solutions, some simplifications are required. The eyechart
work of [15] achieved tractable optimal solutions by simplifying
the cell timing library to eliminate slew dependency. With such a
simplified library, it is possible to find an optimal sizing solution for
simple (chain) topologies using dynamic programming (DP). Star
and mesh topologies can be reduced to equivalent chain topologies
so that they, too, can be optimally sized using DP. In our present
work, we use the same library simplification approach as [15].
However, we would also like to consider all possible topologies
in order to satisfy our goal of realistic benchmark topologies; un-
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fortunately, this makes optimal sizing intractable to DP even with
the simplified timing library.

Our key insight is that instead of separating the netlist genera-
tion and optimization stages as in the eyechart approach, we can
find optimal cell sizes during the benchmark netlist generation. We
then augment the benchmark circuit without disturbing the exist-
ing, known optimal solution. More precisely: (1) we construct
gate-chains to realize a specified number of primary input/output
ports and a specified path depth; (2) we add fanins and fanouts to
cells on the chains to match given fanin and fanout distributions;
(3) we find optimal sizing solutions for cells in each chain using
DP; and (4) finally, we connect the chains using connection cells

while preserving the optimal gate sizing solution of each chain.2

3. BENCHMARK GENERATION DETAILS
Table 1 shows input parameters to our benchmark generation

process. To simplify the procedure, we assume that the numbers of
primary inputs and primary outputs are both equal to N . I and O
respectively indicate the maximum numbers of fanins and fanouts
to any given cell instance. Given the five input parameters, our flow
generates N chains, each of which consists of K cells. We connect
the chains using connection cells according to the prescribed fanin
and fanout distributions. The result is a netlist with K · N + C
cells, where C is the number of connection cells.

Table 1: Input parameters for benchmark generation.

parameter description

T timing path delay upper bound

N number of primary inputs/outputs

K (maximum) data path depth

fid(i) fanin distribution (#cells with i = 1, ..., I fanins)

fod(j) fanout distribution (#cells with j = 1, ..., O fanouts)

To generate the circuit properly, the input parameters must sat-
isfy three constraints.

1. The timing budget T should be larger than minimum delay
of a chain of K cells.

2. The total numbers of fanins and fanouts in the circuit should
satisfy the equality of Equation (1).

3. The prescribed proportion of single-fanout cells, fod(1),
should be larger than the proportion of connection cells since
connection cells have only one fanout.

We note that in real circuit designs (such as shown in Figure 2),
fanout distribution tends to follow a power law, with fod(1) typi-
cally greater than 0.6. Thus the third constraint above can be easily
satisfied in realistic benchmarks.

I
X

i=1

i · fid(i) =
O

X

o=1

o · fod(o) (1)

2As discussed in [15], a leakage-optimal gate sizing solution can
be known when the nonlinear delay model (NLDM) timing library
(e.g., Synopsys .lib format) for the standard cells in eyecharts is
modified to eliminate slew-dependence. Also, interconnect delays
are omitted for simplicity. This departure from real performance
libraries incurs the risk of misleading conclusions; thus, below
we show comparisons made using real performance libraries (for
which optimal solutions cannot be known).

Algorithm 1 describes the procedure of benchmark generation.
In the pseudocode, gate(i, j) represents a gate at the jth stage of
the ith chain. Gco is the set of connection cells. Gfi is the set of
gate cells with open fanin ports. DP (Gchain, T ) is a dynamic pro-
gramming procedure which finds an optimal cell sizing to minimize
leakage power subject to the timing constraint T . We consider ar-
rival times at the output side of any given gate, e.g., the arrival time
at the output of gate g is denoted by ag . Cell delay along the timing
arc of cell g from the input that is connected to cell c is denoted by
dc

g . Finally, net delay along the net connecting c and g is denoted
by wc,g .

Algorithm 1 Netlist generation flow.

Procedure NetlistGen(T, K, N)
1. Initialize gate(i, j), where i = 1, ..., N and j = 1, ..., K;
2. Gco ← ∅, Gfi ← ∅;
3. for j = 1 ; j ≤ K ; j ← j + 1 do
4. for i = 1 ; i ≤ N ; i← i + 1 do
5. Assign fanin number to gate(i, j).fanin;
6. Assign fanout number to gate(i, j).fanout;
7. for k = 2 ; k ≤ gate(i, j).fanout ; k ← k + 1 do
8. Attach connection gate c to gate(i, j);
9. Gco ← Gco ∪ {c};

10. end for
11. if gate(i, j).fanin > 1 then
12. Gfi ← Gfi ∪ {gate(i, j)};
13. end if
14. end for
15. end for
16. for i = 1 ; i ≤ N ; i← i + 1 do
17. Gchain ← gate(i, j), where j = 1, ..., K;
18. DP (Gchain, T ); // find optimal gate size under T
19. end for
20. Update timing for all gates (gate(∗) and Gco);
21. while Gco 6= ∅ do
22. Select gate c from Gco with maximum arrival time;
23. for each gate g ∈ Gfi do
24. Select gate g with minimum arrival time;
25. if ac + wc,g + dc

g ≤ ag then
26. Connect c and g;
27. Gfi ← Gfi − {g};
28. break
29. end if
30. end for
31. Gco ← Gco − {c};
32. end while
33. Assign logic high or low to open input ports of g ∈ Gfi.;

First, we generate N chains, each with depth K (Lines 1 ∼ 15),
as shown in Figure 3(a). For each of the K ·N cells, we assign (i.e.,
instantiate) a gate according to the fanin distribution fid (Line 5).
Cells in the first stage (stage1) should be assigned one-input gates.
Then, we assign the number of fanouts to the output of each cell
(Line 6). Cells in the last stage (stagek) have a single fanout. For
remaining cells, the number of fanouts is assigned according to the
fod. We have explored two alternative strategies for the fanin and
fanout assignments: (1) arranged assignment, which assigns larger
fanins to later stages and larger fanouts to earlier stages, and (2)
random assignment, which assigns fanins and fanouts in arbitrary
order. The arranged assignment improves connectability among
the chains, while the random assignment improves diversity of the
resulting topology.

Second, we attach connection cells to open fanouts (Lines 7 ∼
10), as illustrated by the red lines in Figure 3(a). The number of
connection cells, C, is the same as the number of open fanin ports,
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as expressed by Equation (2).

C = K ·N
I

X

i=1

(i− 1) · fid(i) (2)

The fanin number of connection cells follows the fanin distribu-
tion (fid). For connection cells which have more than one fanin,
open fanouts in the same stages are connected to the connection
cell (Lines 11 ∼ 13), as illustrated in Figure 3(b).

After attaching all connection cells, we perform the dynamic
programing (DP) with timing budget T for each chain (Line 18).
The DP finds the optimal gate sizing which minimizes the leakage
power for the chain. After the gate sizing, the sizes of attached con-
nection cells will be set to minimum possible values since they do
not have a timing constraint.

Finally, we connect all connection cells to any cells having open
fanin ports (Lines 21 ∼ 32). Before connecting them, the arrival
time for each cell is computed with static timing analysis (STA)
with the timing budget T (Line 20). Connections between con-
nection cells and open fanin cells are made only if the timing con-
straints are satisfied. In Figure 3(c), cell c and cell g can be con-
nected when the arrival time of g via c (ac + wc,g + dc

g) is less
than the arrival time of g through the chain path. If timing slack
of the connection cell is large, sizing heuristics can recognize them
easily and the problem complexity will be the same as with a chain
topology. To prevent this situation, we minimize timing slack of
connection cells when making connections. Connection cells and
open fanin ports are sorted according to their arrival time. Then, a
connection is tried first between a connection cell with large arrival
time and an open fanin port with small arrival time (Lines 22, 24).

The connection cells do not change the optimal chain solution since
they have minimum gate size. If we upsize them, there is no benefit
to the timing slack of the main chain, and the optimal gate sizing
of the chain does not change. Without timing constraints, our al-
gorithm guarantees complete connection between open fanins and
fanouts by virtue of Equation (1). With timing constraints, some
ports can remain unconnected, which we address in Section 4.2 be-
low. The open input ports are assigned with logic high (VDD) or
low (VSS) according to the logic type. This assignment does not
change the optimal solution.

After completing all the connections, we end up with a bench-
mark circuit of K ·N +C cells with known optimal gate sizing for
minimum leakage. (A small detail: when we use the generated cir-
cuit as a sizing benchmark, we initially assign maximum cell size
(with highest leakage and fastest timing) to each instance, so as to
avoid giving the leakage optimization tool any information about
the optimal solution.)

4. EXPERIMENTAL SETUP AND RE-

SULTS

4.1 Experimental Setup
Our netlist generator is implemented in C++ and produces a

benchmark netlist in Verilog HDL (.v) with the corresponding de-
lay models (.lib). Two types of delay and power models are used
from the previous eyechart work [15]3 – (1) LP : linear increase in
power with size for gate sizing context, and (2) EP : exponential
increase in power with size for Vt or gate-length bias. The LP and
EP power models have eight and three gate sizes (i.e., cell vari-
ants per master), respectively. To analyze the problem complexity
of generated netlists, and suboptimality of standard sizing tools,
we perform experiments on a 2.8 GHz Linux workstation with
24 GB RAM, using three different gate sizing methods – (1) two
commercial gate sizing and leakage optimization tools (BlazeMO

v2008 [21] and Cadence Encounter v9.1 [22]),4 (2) a web-available
UCLA sizing tool [25] (Greedy) which greedily swaps cells ac-
cording to a ∆power/∆delay sensitivity function, and (3) a web-
available UCSD sensitivity-based leakage optimizer [26] (SensOpt)
with ∆power × slack sensitivity function.5 To generate realistic
benchmark circuits, we use six open-source designs – SASC (asyn-
chronous serial controller), SPI (serial peripheral interface), AES

(data encryption), JPEG (image processing) and MPEG (video pro-
cessing) from the OpenCores site [19], and EXU (execution unit)
from OpenSPARC T1 [20]. In our experiments, we measure the
suboptimality of the various gate sizing heuristics, as is defined in
Equation (3).

Suboptimality =
powerheur − poweropt

poweropt

(3)

We use the same timing and power analysis tool (Synopsys

PrimeTime C2009.6 [24] to evaluate results.

3According to the authors of [15], EP corresponds to the multi-Vt

context, and LP corresponds to the gate-length biasing context.
4These are referred to as Comm1 and Comm2 below. We do not
give the mapping – i.e., which tool is Comm1 and which is Comm2
– in order to maintain anonymity as required by the tools’ licenses.
5At the website [26], details of the UCSD SensOpt tool are given.
The tool performs post-layout cell swapping using the Tcl socket
interface to a golden STA tool, Synopsys PrimeTime.
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Figure 4: Schematic of generated netlist (N = 10, K = 20).

4.2 Generated Benchmarks
In this subsection, we present the results of generated bench-

marks and their complexity in a power (leakage) optimization.
Then, we compare the benchmarks and real designs in terms of
characteristic parameters. Figure 4 shows the schematic of a gen-
erated netlist with 10 chains and path depth of 20. In the netlist,
chains are connected to each other in arbitrary order, and various
topologies can be found.

A connection between chains can be made when the newly gen-
erated path has positive (or zero) slack with respect to the timing
constraint. As a result, some cells in the chain will have open ports
and some connection cells will remain unconnected. If the num-
ber of unconnected cells is large, the generated netlist will deviate
from the specified fanin and fanout distributions. As noted above,
to improve the connectability we can assign the larger fanins to later
stages, and larger fanouts to earlier stages. However, such an ar-

ranged assignment can reduce the difficulty of the sizing optimiza-
tion for the benchmark: many connection cells will have loosely
constrained timing (i.e., large slack), and this makes it easy to find
the optimal solution. To consider both connectability and optimiza-
tion difficulty, we mix the two alternative strategies – arranged and
random assignments – in Algorithm 1, Lines 5 and 6. Table 2 shows
the failure rate of connections among chains and problem complex-
ity (suboptimality) according to the different mixtures of the ar-
ranged and random assignments. In the experiment, N and K val-
ues are fixed (40), and the EP power model is used. Suboptimality
and runtime are obtained for the commercial tool (Comm1). The
results show that 25% of arranged assignment in practice results in
over 99% of connectivity, while also affording a sufficient problem
complexity (11.2% suboptimality). The 100% random assignment
shows smaller suboptimality (7.7%) for gate sizing because it re-
sults in many unconnected gates (17%). In all experiments reported
below, we use the 75% random / 25% arranged assignment.

Since our benchmark generator makes chains first, then connects
the chains to each other, we have assessed the problem complex-
ity of benchmarks before and after the chain connection. Table 3
shows the suboptimality of leakage reduction for the commercial
tool and the greedy method. The results show that the complexity
(difficulty) of gate sizing increases with the number of chain con-
nections. The chain-only structures are easy to solve, and heuris-
tics show small suboptimalities (∼3%). However, with added chain
connections, the observed suboptimality (and inferred instance dif-
ficulty) increase significantly.

Table 4 shows the characteristic parameters of (a) real designs
and (b) generated benchmarks. In the table, the Rent parameter has
been evaluated using [18]. The real circuits do not follow the sec-
ond constraint of our netlist generator (Equation (1)) since the num-
bers of primary inputs and primary outputs differ. For this reason,

Table 2: Connectability and complexity (suboptimality) of gen-

erated netlists according to different proportions of arranged

and random assignments.

arranged random unconnected subopt. runtime

100% 0% 0.00% 2.6% 108 sec.

75% 25% 0.00% 6.8% 97 sec.

50% 50% 0.25% 10.3% 120 sec.

25% 75% 0.75% 11.2% 225 sec.

0% 100% 17.0% 7.7% 311 sec.

Table 3: Instance complexities (difficulties) of chain-only and

connected-chain topologies.

# of # of chain-only connected

chain stage Comm1 Greedy Comm1 Greedy

(a) EP library

40 20 2.4% 0.3% 10.4% 8.7%

40 40 2.1% 1.3% 10.3% 11.1%

80 20 2.0% 0.5% 10.3% 10.9%

80 40 2.1% 1.3% 9.9% 10.9%

(b) LP library

40 20 1.7 % 3.1% 7.7% 17.9%

40 40 2.4 % 3.5% 12.0% 18.5%

80 20 1.9 % 3.3% 12.3% 19.1%

80 40 2.5 % 3.5% 15.9% 19.6%

we select fanin and fanout distribution numbers that are only simi-
lar (not identical) to those of the real design when we perform the
benchmark generation. From the results, generated circuits show
similar design size, path depth, Rent parameter and average fanin
(fanout); this offers hope that our benchmark generation approach
can provide realistic benchmark circuits for gate sizing.

4.3 Suboptimality of Heuristics
In this section, we show suboptimality of standard heuristic solu-

tions with our benchmarks. Figure 5 (respectively, Figure 6) shows
suboptimality and runtime of heuristics (including Comm1) when
the number of chains (respectively, number of stages) increases in
the benchmark circuits.6 From Figure 5, we see that the subopti-
mality increases slightly according to the design size, but runtime
increases exponentially with the number of chains since total num-
ber of paths increases significantly with respect to the chain num-
ber. When the number of stages increases (Figure 6), the subop-
timality increases especially for the Comm1 and SensOpt solvers.
We recall that the LP library model has a larger number (eight) of
sizing candidates than the EP library model (three). We believe
that the likely cause of the LP model showing a larger suboptimal-
ity and runtime for the greedy and sensitivity-based optimizations.

Figure 7 shows suboptimality and runtime results when the test-
cases have different topological complexities. To estimate the ef-
fect of netlist complexity, we change fanin and fanout distributions
in the benchmark generation, such that each benchmark has a dif-
ferent average net degree. From the results, we see that subop-

6The same fanin and fanout distributions have been used for the
experiments in Figure 5 and Figure 6 – fid: 0.3, 0.6, 0.1, fod: 0.6,
0.1, 0.2, 0.1 .
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Table 4: Characteristic parameters of real designs and generated benchmarks.

testcase
path

#instances
Rent average fanin distribution fanout distribution

depth parameter fanin 1 2 3 1 2 3 4 5 6

(a) characteristic parameters of real designs

SASC 20 624 0.858 2.06 0.169 0.606 0.225 0.663 0.177 0.045 0.029 0.015 0.071

SPI 33 1092 0.880 1.813 0.345 0.497 0.158 0.735 0.077 0.090 0.038 0.020 0.039

EXU 31 25560 0.858 1.91 0.237 0.587 0.165 0.711 0.142 0.059 0.032 0.014 0.007

AES 23 23622 0.810 1.89 0.237 0.637 0.126 0.694 0.120 0.062 0.039 0.026 0.015

JPEG 72 141165 0.721 1.84 0.280 0.597 0.123 0.582 0.299 0.077 0.011 0.005 0.004

MPEG 33 578034 0.848 1.59 0.334 0.567 0.04 0.681 0.244 0.021 0.007 0.003 0.002

(b) characteristic parameters of generated benchmarks

ng_SASC 20 631 0.865 2.06 0.17 0.60 0.23 0.66 0.18 0.05 0.05 0.02 0.04

ng_SPI 33 1079 0.877 1.80 0.35 0.50 0.15 0.73 0.10 0.08 0.03 0.02 0.04

ng_EXU 31 24733 0.814 1.90 0.25 0.60 0.15 0.7 0.05 0.05 0.1 0.05 0.05

ng_AES 23 23780 0.820 1.88 0.24 0.64 0.12 0.7 0.05 0.05 0.12 0.03 0.05

ng_JPEG 72 132479 0.831 1.84 0.28 0.6 0.12 0.58 0.25 0.05 0.04 0.03 0.05

ng_MPEG 33 527995 0.848 1.60 0.42 0.56 0.02 0.68 0.2 0.04 0.03 0.02 0.03
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Figure 5: Suboptimality and runtime for different number of

chains N (stage K = 40) with EP library (above) and LP library

(below).

timality and runtime increase significantly according to the design
complexity. With average net degree of 2.4 and the LP library, large
suboptimality (> 70%) is found for each heuristic.

In addition, we study the effect of delay constraints on subopti-
mality and complexity. Figure 8 shows suboptimality and runtime
results when the testcases are generated with different delay con-
straints. The testcases have the same topology (number of chains,
number of stages and net degree). However, the suboptimalities
achieved by each heuristic differ widely according to the timing
constraint. From the results, netlists with tight delay constraint lead
to greater heuristic suboptimality, especially with the LP library.

Table 5 shows suboptimality and runtime results for the gener-
ated netlists in Table 4 and one example eyechart7 circuit [15]. The
results8 show that common sizing methods, including two commer-

7Specifically, we use the EP _NLD and LP _NLD eyechart cir-
cuits with 5ns timing budget from [27].
8Results for the ng_MPEG testcase are missing for the UCLA
greedy sizing tool, which cannot handle the large (∼500K instance)
instance size.
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Figure 6: Suboptimality and runtime for different number of

stages K (#chain N = 100) with EP library (above) and LP li-

brary (below).

cial tools (Comm1, Comm2), are suboptimal for realistic bench-
mark circuits by up to 16.7%, 52.2%, 29.0% and 26.9% for the
commercial tools, greedy method and sensitivity-based method, re-
spectively. Among the testcases, ng_JPEG shows the largest sub-
optimality; we believe that this a consequence of having larger path
depth than the other testcases.

Finally, because new realistic benchmarks may not induce the
same relative performance across heuristics as real designs, we
have also compared the same leakage optimizers using real circuits
and real timing/leakage libraries. Table 6 shows the leakage opti-
mization results with the real circuits and libraries. The designs are
implemented with a TSMC 65GP library (65nm), and are synthe-
sized, placed and routed with Synopsys Design Compiler C-2009

[23] and Cadence Encounter v9.1 [22]. For the leakage optimiza-
tion, both multi-Vt (NVT, HVT, LVT) library (part (a) of the ta-
ble) and multi-Lgate NVT library (part (b) of the table) have been
used. Reported suboptimality is calculated from the best result in
the four result columns. In the table, each optimizer shows differ-
ent suboptimality according to each design. The tools suffer from
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Figure 7: Suboptimality and runtime for different average net

degrees (chain N = 40, stage K = 40) with EP library (above)

and LP library (below).

significant suboptimality, e.g., EXU circuits for Comm1 (40.8%)
and Greedy (28.7%), and AES circuits for Comm2 (18.2%). Since
suboptimalities are calculated relative to the best heuristic result,
there is further suboptimality from the actual optimal solution. It is
clear from Tables 5 and 6 that – somewhat unfortunately – the ar-
tificial and real netlists and performance libraries suggest different
relative and absolute suboptimalities for the sizing heuristics. We
believe that this is for several reasons, including (1) our enhanced
eyechart-like benchmarks consist of netlists without wire capaci-
tance, and (2) we use only one kind of library cell for each number
of fanin ports. We continue to explore ways to improve the match-
ing to results on real designs and real libraries, while maintaining
the important property of having a known optimal sizing solution.
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Figure 8: Suboptimality and runtime for different timing con-

straints (chain N = 40, stage K = 40, average net degree = 2.0)

with EP library (above) and LP library (below).

Table 5: Suboptimality with respect to known optimal solution

for generated netlists in Table 4.

testcase

optimal

Comm1 Comm2 Greedy SensOptleakage

(W)

(a) EP library

eyechart 3.46E-6 18.9% 25.4% 24.0% 20.1%

ng_SASC 9.35E-8 10.9% 24.9% 4.9% 2.8%

ng_SPI 2.62E-7 11.4% 21.0% 13.5% 10.9%

ng_AES 5.97E-6 14.2% 13.7% 11.7% 8.8%

ng_EXU 6.62E-6 15.2% 20.9% 10.8% 8.9%

ng_JPEG 3.29E-5 16.7% 33.1% 11.9% 12.0%

ng_MPEG 9.54E-5 10.9% 52.2% - 10.1%

(b) LP library

eyechart 3.38E-6 39.3% 44.3% 29.0% 29.1%

ng_SASC 1.55E-7 13.0% 31.4% 22.5% 16.0%

ng_SPI 3.91E-7 6.9% 27.2% 24.3% 24.0%

ng_AES 8.62E-6 11.3% 31.9% 22.4% 23.5%

ng_EXU 9.33E-6 13.9% 40.5% 24.6% 23.4%

ng_JPEG 4.74E-5 16.3% 38.3% 29.0% 26.9%

ng_MPEG 1.65E-4 15.5% 43.7% - 21.6%

5. CONCLUSIONS
In this work, we have proposed a new benchmark generation

technique for gate sizing, which constructs realistic circuits with
known optimal solutions. Our generated netlists closely resemble
real designs in terms of instance count, path depth, interconnect
complexity, and net degree / fanin / fanout distributions; all of these
attributes are parameters of the netlist generation. When we com-
pare our generated benchmarks with real designs, we also see sim-
ilarities with respect to other circuit characteristics such as average
net degree and Rent parameter.

Our benchmarks with known optimal solutions enable system-
atic and quantitative study of the suboptimality of common sizing
heuristics, with respect to key parameters of the circuit topology.
In particular, our experimental results with web-available academic
tools and commercial tools show that common leakage-driven siz-
ing methods are suboptimal for realistic benchmark circuits by up
to 52.2% and 43.7% for Vt-assignment and CD-biasing formula-
tions, respectively. At the same time, our results also show dis-
crepancies between inferences obtained using our generated cir-
cuits and those obtained from real circuits (and libraries). How-
ever, all of our results suggest that (1) commercial tools may still
suffer from significant suboptimality, and/or (2) existing methods
have “similar” degrees of suboptimality, especially as instance size
increases (cf. results for JPEG and MPEG in Table 6). Our on-
going work seeks to address the above-mentioned discrepancies.
In addition, we are working to handle more realistic delay mod-
els, possibly in the context of realistic benchmarks with tight upper
bounds on optimal gate leakage.
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