
Low-Power Gated Bus Synthesis for 3D IC via Rectilinear
Shortest-path Steiner Graph

Chung-Kuan Cheng1,2, Peng Du1, Andrew B. Kahng1,2 and Shih-Hung Weng1

1Dept. of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093
2Dept. of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093

ckcheng@ucsd.edu, pedu@ucsd.edu, abk@ucsd.edu, s2weng@ucsd.edu

ABSTRACT
In this paper, we propose a new approach for gated bus syn-
thesis [16] with minimum wire capacitance per transaction
in three-dimensional (3D) ICs. The 3D IC technology con-
nects different device layers with through-silicon vias (TSV),
which need to be considered differently from metal wire due
to reliability issues and a larger footprint. Practically, the
number of TSVs is bounded between layers; thus, we first
devise dynamic programming and local search techniques to
determine the optimal TSV locations. We then employ two
approximation algorithms to generate a rectilinear shortest-
path Steiner graph in each device layer. One algorithm ex-
tends the well-known greedy heuristic for the Rectilinear
Steiner Arborescence problem and handles large cases with
high efficiency. The other algorithm utilizes a linear pro-
gramming relaxation and rounding technique which costs
more time and generates a nearly-optimal Steiner graph.
Experimental results show that our algorithms can construct
shortest-path Steiner graphs with 22% less total wire length
than the previous method of Wang et al. [16].

Categories and Subject Descriptors
B.7.2[Integrated Circuits]:Design Aids–placement and rout-
ing
General Terms
Algorithm
Keywords
3D IC, TSV, shortest-path Steiner graph, Gated Bus

1. INTRODUCTION
Three-dimensional (3D) IC technology offers the poten-

tial for improving performance and power consumption for
bus architectures in SoC design [4]. 3D IC technology uses
through-silicon vias (TSVs) to connect device layers. In
SoC designs, TSVs can potentially reduce global intercon-
nect among IPs, improving communication power efficiency
and performance of bus-based architectures. For example,
Pathak et al. [12] show that the timing of a 3D LEON3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’12, March 25–28, 2012, Napa, California, USA.
Copyright 2012 ACM 978-1-4503-1167-0/12/03 ...$10.00.

t2
t3

s2
t1

s1

t4

D

D

D

(a) Bus implementation.

t2

t3

s2t1

s1

t4

(b) Shortest-path Steiner
graph.

Figure 1: Gated bus architecture.

multi-core design with AMBA bus architecture connected
by TSVs is better than that of a 2D design by about 79%.

A 3D IC design needs many TSVs for data bus, address
bus and control wires to connect IPs that are on different
layers. However, the number of TSVs must be limited since
TSV is costly to fabricate, and a large number of TSVs may
degrade manufacturing yield, test cost efficiencies and avail-
able layout area on-chip. Given this consideration, designers
cannot generously use TSVs for communication between de-
vice layers. Therefore, selection of TSV positions becomes
important when designers seek to increase performance and
reduce power consumption of bus architectures while using
a restricted number of TSVs.

Many researchers [5][11][16] have worked on low-power bus
architectures, reducing unnecessary wire loading or signal
switching when the bus transfers data. Bus segmentation [5]
and bus splitting [11] methods reduce wire load by masking
off certain bus segments, but only consider where to mask
off within a given bus topology to achieve maximum power
savings. In the gated bus architecture [16], Wang et al. syn-
thesize a gated bus topology to reduce the wire capacitance
by using distributed multiplexers and demultiplexers.

Figure 1(a) shows an implementation of the gated bus ar-
chitecture with two masters s1, s2 and four slaves t1, . . . , t4.
The gray multiplexers and demultiplexers mask off the un-
used path when transferring data from s2 to t1 so that s2

only needs to drive the path consisting of the three solid ar-
rows. Therefore, driven wire capacitance is greatly reduced.
Figure 1(b) shows the Steiner graph representation of Fig-
ure 1(a). The Steiner points of Figure 1(b) indicate where
to place multiplexers/demultiplexers in the bus architec-

105

ture. To have the minimum wire capacitance for every data
transaction, the Steiner graph must contain a shortest path
with length equal to the Manhattan distance between each
master-slave pair. We call such a Steiner graph a shortest-
path Steiner graph; our objective is to find a shortest-path
Steiner graph with smallest total wire length. In [16], Wang
et al. proposed a heuristic method that first constructs
a minimum rectilinear Steiner arborescence [8][13] starting
from a master, and then adds other masters one by one in
each iteration to obtain a shortest-path Steiner graph.

In this paper, we investigate the problem of gated bus
synthesis in 3D ICs to minimize total power consumption of
the gated bus architecture. Since constraints of TSVs are
different from these of on-die vias, e.g., larger footprint and
keep-out zones, we must consider TSVs separately in this
problem. We first develop dynamic programming and local
search algorithms to determine TSV locations that minimize
the sum of weighted shortest distances over all master-slave
pairs in a 3D IC design. Then, given the TSV locations thus
determined, we propose two approximation algorithms to
synthesize a shortest-path Steiner graph with smallest total
wire length on each layer of the 3D IC stack; this graph
determines locations of multiplexers and demultiplexers for
the gated bus architecture. The two algorithms include a
greedy heuristic that can handle large instances and a linear
programming relaxation and rounding method [15] that is
more accurate and suitable for solving cases with relatively
small scale. Overall, our method can reduce wire length by
up to 22% when compared to [16].

The remainder of this paper is organized as follows. In
Section 2, we introduce the problem of gated bus synthe-
sis in 3D ICs and formally state two problem formulations
on TSV location determination and construction of shortest-
path Steiner graphs. In Section 3, we give two algorithms for
determination of TSV locations; these address the cases of
one TSV and multiple TSVs between adjacent layers, respec-
tively. Section 4 describes our approximation algorithms to
generate a shortest-path Steiner graph with minimum total
wire length. Experimental results are shown in Section 5,
and conclusions are given in Section 6.

2. PROBLEM FORMULATION
We assume that we are given locations of masters and

slaves on device layers, and the communication frequency
for each master-slave pair. Our goal is to minimize total
power consumption over all master-slave pairs while keep-
ing the total wire length as small as possible. Total power
is estimated as the summation of frequency multiplied by
capacitance, i.e., only dynamic power. Note that since in-
troduced auxiliary gates in our bus architecture only take
a small percentage of total gate count in a design, the in-
crease of leakage power is negligible (ignoring possible effects
of power-gating).

As noted above, we cannot place an arbitrary number of
TSVs between adjacent device layers. Hence, we assume
that there is a given constant B indicating the maximum
number of TSVs available for connecting masters and slaves
between two device layers. Our experimental results (below,
Section 5) show that when B > 2, this trade-off achieves
nearly the optimal power consumption when the number of
TSVs between layers is unbounded (B = ∞). Besides, with
so few TSVs, the power impact of large capacitance TSV
is insignificant. The overhead of the control wires in the

gated bus architecture is small compared to the data bus
and the address bus because the number of such wires is
much less than the bus width. Moreover, since the control
signals do not switch during data transaction, the dynamic
power associated with control signal is small. We therefore
ignore effects of control wiring in this study.

Figure 2: Overall flow.

Figure 2 shows the overall flow of our method. The loca-
tions of masters and slaves can be obtained after performing
3D floorplanning [2][6]. The communication frequency can
be calculated from gate-level simulation. We address the fol-
lowing two sub-problems in Sections 3 and 4, respectively.

Definition 1. A rectilinear shortest path between a master-
slave pair in the same layer is a shortest path with length
equal to the Manhattan distance between them.

• Problem One: Find locations of TSVs between adja-
cent layers so that the total length of weighted short-
est paths between master-slave pairs is minimized. We
take frequencies to be weights and only B TSV loca-
tions can be assigned between two adjacent layers.

• Problem Two: Given optimal (fixed, from Problem
One) locations of TSVs, construct a rectilinear shortest-
path Steiner Graph in each layer that minimizes the
total wire length subject to the existence of a layer-wise
rectilinear shortest path for each master-slave pair.
This is the minimal rectilinear shortest-path Steiner
graph (RSSG) problem, which was first considered in
[16].

3. PROBLEM ONE: DETERMINATION OF
TSV LOCATIONS

The input of our problem includes the locations of n mas-
ters {s1, s2, . . . , sn} and m slaves {t1, t2, . . . , tm} on L device

M1

M2

M3

s1

s2

t1

t2

s3

Figure 3: Two TSVs between three device layers.

106

s3

t2

M2

M1

M3

M4

2

t

m
w

1

v
w

2

v
w

3

s
w

Figure 4: Contribution of an s-t path s3 − t2 to
weights.

layers from M1 to ML, and the communication frequency ci,j

for each master-slave pair (si, tj). We assume that all device
layers have the same size W ×H. Given the upper bound B
of the number of TSVs between adjacent device layers, our
first objective is to determine the best locations of TSVs
so that the sum of weighted shortest-path lengths over all
si − tj pairs, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, is as small as
possible. The weight for the shortest path between si and
tj is chosen to be ci,j . For example, Figure 3 shows a pos-
sible assignment of two sets of TSVs in blue between three
device layers where the shortest path through TSVs from s1

to t1 is denoted by red arrows. The length of TSVs will be
neglected in the following discussion since it does not affect
the objective value. We denote the planar coordinates and
layers of si and tj for 1 ≤ i ≤ n and 1 ≤ j ≤ m by (xs

i , y
s
i , lsi)

and (xt
j , y

t
j , l

t
j) respectively. The candidate positions of the

TSVs are determined by the following theorem.

Theorem 1. Given X = {xs
1, . . . , x

s
n, xt

1, . . . , x
t
m} and Y =

{ys
1, . . . , y

s
n, yt

1, . . . , y
t
m}, the optimal TSV positions can be

chosen from the set {(x, y) : x ∈ X, y ∈ Y }, i.e., the Hanan
grid [10] formed by union of masters and slaves.

Proof. For simplicity, we only consider the case when
B = 1. The proof can be extended to the case of larger
B value. By the additivity of rectilinear distance for hori-
zontal and vertical directions, we can determine the x and y
coordinates of TSVs separately. Without loss of generality,
we only consider x coordinates of TSV locations. Suppose
xv

1 , xv
2 , . . . , xv

L−1 is an optimal assignment of TSVs where xv
k

denotes the x coordinate of a (set of) TSV(s) connecting
adjacent layers Mk and Mk+1, for 1 ≤ k ≤ L − 1. Let k0

be the smallest layer index such that xv
k0 /∈ X. We choose

x1 = max{x : x < xv
k0 and x ∈ X} and x2 = min{x : x >

xv
k0 and x ∈ X}. Using the property of linear length metric,

we can show that there exists x′ ∈ {x1, x2, xv
k0+1} so that

moving xv
k0 to x′ will not increase the objective value. If

x′ = x1 or x2, we achieve an optimal solution where the po-
sitions of the first k0 TSVs are chosen from the Hanan grid
instead of k0 − 1. Otherwise if x′ = xv

k0+1, we move xv
k0 to

x′ and repeat the previous process by moving xv
k0 and xv

k0+1

together. By induction, we have that there exists an optimal
solution in which all TSVs are located on the Hanan grid.

As noted in [9], restriction to Hanan grids may be sub-
optimal for minimizing the maximum delay between source-
terminal pairs. We assume that timing constraints can still
be met by adding buffers in buses. In the following two

subsections, we present an efficient dynamic programming
algorithm to determine the optimal TSV location assign-
ment when B = 1 and a local search heuristic to determine
the approximately optimal TSV location assignment when
B > 1.

3.1 One TSV between Adjacent Layers
In the case where B = 1, we can determine the x and

y coordinates of TSVs separately by coordinate-wise addi-
tivity of rectilinear distance. Here, we give the algorithm
for finding x coordinates of TSVs. We again represent an
assignment of TSV locations by xv

1 , xv
2 , . . . , xv

L−1 where xv
k

denotes the x coordinate of the single TSV between Mk and
Mk+1. Now our objective can be expressed as

min
xv
1 ,...,xv

L−1

n∑

i=1

m∑

j=1

ci,jd(si, tj)

= min
xv
1 ,...,xv

L−1

(

L−2∑

k=1

wv
k |xv

k+1 − xv
k|

+
n∑

i=1

ws
i |xs

i − xv
lsi−1|+

n∑

i=1

ws
n+i|xs

i − xv
lsi
|

+
m∑

j=1

wt
j |xt

j − xv
ltj−1

|+
m∑

j=1

wt
m+j |xt

j − xv
ltj
|

+
n∑

i=1

m∑

j=1

χ(lsi = ltj)ci,j |xs
i − xt

j |), (1)

where d(si, tj) is the length of a shortest path from si to tj ;
ws

i , wt
j and wv

k indicate constant weights corresponding to
each term; and χ is a 0-1 indicator function. We explain the
meaning of each term of (1) as follows.

• |xv
k+1 − xv

k|: The segment between two TSVs connect-
ing Mk+1 with Mk+2 and Mk with Mk+1, respectively.

• |xs
i − xv

lsi−1|: The segment between si and the TSV

connecting the layer of si with the layer above.

• |xs
i − xv

lsi
|: The segment between si and the TSV con-

necting the layer of si with the layer below.

• |xt
j − xv

ltj−1|: The segment between tj and the TSV

connecting the layer of tj with the layer above.

• |xt
j − xv

ltj
|: The segment between tj and the TSV con-

necting the layer of tj with the layer below.

• χ(lsi = ltj)|xs
i − xt

j |: The segment between si and tj if
they are on the same layer.

If the shortest path from si to tj passes through a seg-
ment listed above, it will contribute ci,j to the correspond-
ing weight constant. Figure 4 gives an example where the
shortest path between s3 and t2 passes through four seg-
ments whose corresponding weight constants are labeled be-
low. Therefore, the shortest path will contribute c3,2 to
ws

3, w
v
2 , wv

1 and wt
m+2, respectively.

Since the last term of (1) is constant, we remove it from
our objective for simplicity. Let ~x = (xs

1, . . . , x
s
n, xt

1, . . . , x
t
m)

and let ~x(r) be the rth coordinate of ~x for 1 ≤ r ≤ n+m. Let
S(k) and T (k) respectively denote the sets of masters and
slaves in layer Mk, for 1 ≤ k ≤ L. To derive our dynamic
programming algorithm, we use a function OPT to indicate

107

partial solutions, defined as

OPT (kc, rc) = min
xv
1 ,...,xv

kc
=~x(rc)

(

kc−1∑

k=1

wv
k |xv

k+1 − xv
k|

+

kc∑

k=1

∑

i∈S(k)

(ws
i |xs

i − xv
k−1|+ ws

n+i|xs
i − xv

k|)

+

kc∑

k=1

∑

j∈T (k)

(wt
j |xt

j − xv
k−1|+ wt

m+j |xt
j − xv

k|)),

1 ≤ kc ≤ L− 1; 1 ≤ rc ≤ n + m. (2)

The initial values of function OPT can be evaluated as

OPT (1, rc) =
∑

i∈S(1)

ws
n+i|xs

i − ~x(rc)|

+
∑

j∈T (1)

wt
m+j |xt

j − ~x(rc)|, 1 ≤ rc ≤ n + m.(3)

The value of OPT (kc, rc) indicates the minimal total length
of weighted shortest paths between masters and slaves in lay-
ers {M1, . . . , Mkc} plus weighted shortest paths from mas-
ters/slaves in {M1, . . . , Mkc} to the set of TSVs with posi-
tion ~x(rc) between Mkc and Mkc+1. The key step for com-
puting OPT is expressed by the following recursive formula:

OPT (kc, rc) = min
1≤r≤n+m

(OPT (kc − 1, r) + wv
kc−1|~x(rc)− ~x(r)|

+
∑

i∈S(kc)

(ws
i |xs

i − ~x(r)|+ ws
n+i|xs

i − ~x(r)|)

+
∑

j∈T (kc)

(wt
j |xt

j − ~x(r)|+ wt
m+j |xt

j − ~x(r)|)),

2 ≤ kc ≤ L− 1; 1 ≤ rc ≤ n + m. (4)

Intuitively, since all communications from masters/slaves in
{M1, . . . , Mkc−1} to masters/slaves in Mkc and the TSV be-
tween Mkc and Mkc+1 must go through the TSV between
Mkc−1 and Mkc , we only need to enumerate all possible po-
sitions ~x(r) between Mkc−1 and Mkc and choose the best
one to achieve OPT (kc, rc). Finally, our objective (1) will
be computed as

min
1≤r≤n+m

(OPT (L− 1, r) +
∑

i∈S(L) ws
i |xs

i − ~x(r)|

+
∑

j∈T (L) wt
j |xt

j − ~x(r)|). (5)

Theorem 2. The time complexity of the dynamic pro-
gramming algorithm for determination of TSV locations is
O((n + m)2L).

Proof. As in recursive formula (4), each OPT (kc, rc) can
be evaluated in time O(n + m) where the summation term
can be gradually updated in constant time as r is increasing.
Since there are O((n + m)L) number of OPT values, we
can obtain all of them in time O((n + m)2L). Computing
the final solution by (5) takes additional O(n + m) time.
Therefore, the total running time of our algorithm is O((n+
m)2L) + O(n + m) = O((n + m)2L).

3.2 Multiple TSVs between Adjacent Layers
When multiple TSVs between adjacent layers are allowed

(i.e., B > 1), we cannot determine TSV locations for x and
y coordinates separately. Therefore, we represent the TSVs’
locations by {(xv

kb, y
v
kb) : 1 ≤ k ≤ L − 1, 1 ≤ b ≤ B} where

(xv
kb, y

v
kb) denotes the location of the bth TSV between lay-

ers Mk and Mk+1. We describe a local search heuristic to

determine locations of TSVs in Algorithm 1. It first finds a
best assignment of TSVs on a coarse grid Z by exhaustive
search and then updates it locally to find better solutions
until there is no improvement of the objective function. If Z
is a candidate set of positions for TSVs, each element V in
the set Z(L−1)B corresponds to an assignment of TSVs on
Z. We use V (g) to denote the gth element of V by taking V
as a sequence of elements in Z with length (L−1)B. If V is
the assignment of TSVs, the function TotShortestPaths(V)
returns the total length of shortest paths weighted by com-
munication frequencies between each pair of masters and
slaves, .

Algorithm 1: Finding multiple TSVs by local search

Input: n, m, L, B, {(xs
i , y

s
i , lsi) : 1 ≤ i ≤ n}, {(xt

j , y
t
j , l

t
j) :

1 ≤ j ≤ m}
Output: TSV positions (xv

kb, y
v
kb) where

1 ≤ k ≤ L− 1, 1 ≤ b ≤ B
1 prt = a small integer (e.g., 5);
2 dx = W/prt;
3 dy = H/prt;
4 Z = {0, dx, 2dx, . . . , W} × {0, dy, 2dy, . . . , H};
5 V0 = the best assignment V ∈ Z(L−1)B such that

TotShortestPaths(V) is smallest;

6 X = {xs
i : 1 ≤ i ≤ n} ∪ {xt

j : 1 ≤ j ≤ m};
7 Y = {ys

i : 1 ≤ i ≤ n} ∪ {yt
j : 1 ≤ j ≤ m};

8 while true do
9 update flag = false;

10 for 1 ≤ g ≤ (L− 1)B do
11 V1 =the best assignment V with

V (g′) = V0(g
′) for g′ 6= g and V (g) ∈ X × Y

such that TotShortestPaths(V) is smallest;
12 if V1 6= V0 then
13 update flag = true;
14 end
15 V0 = V1;

16 end
17 if update flag = false then
18 break;
19 end

20 end
21 return V0;

We describe the details of Algorithm 1 as follows:

• Lines 1-5: We partition the rectangle W×H into prt×
prt parts with the size of each part to be dx × dy. Let
Z be the set of lattice points in this partition. We
first assume TSVs can only take positions from Z and
obtain the best assignment V0 by exhaustive search
in Line 5. V0 will be updated to a better solution
afterward in Lines 8-20.

• Lines 6-7: We define the Hanan grid formed by posi-
tions of masters and slaves as X × Y .

• Lines 8-20: In each iteration of the while loop, if there
exists a better solution V1 than V0, we update V0 to
be V1 and continue the loop. Otherwise, we stop and
output V0 as the final solution.

• Lines 10-16: For each TSV g, let V1 be the best as-
signment by moving TSV g in V0 to a new position as
in Line 11. If V1 is better than V0, we update V0 in
Lines 12-15.

108

Based on our experimental results, the local search algo-
rithm achieves nearly optimal solution by comparing with
the lower bound obtained from the case where arbitrary
TSVs are allowed between adjacent layers (i.e., B = ∞).

Algorithm 2: Greedy RSSG heuristic

Input: A set of n masters s1, . . . , sn and m slaves
t1, . . . , tm in rectilinear plane.

Output: A subgraph G(V, E) of Hanan grid Hg

formed by masters and slaves so that G
contains a rectilinear shortest path for each
master-slave pair.

1 V = {s1, . . . , sn, t1, . . . , tm};
2 E = ∅;
3 P = set of vertices in Hanan grid Hg;
4 Dp = {1, 2, . . . , n} for p ∈ {t1, . . . , tm};
5 Dp = ∅ for p ∈ P and p /∈ {t1, . . . , tm};
6 while ∃p, q ∈ P s.t. Dp ∩Dq 6= ∅ do
7 BestBenefit = 0;
8 for (p, q ∈ P s.t. Dp ∩Dq 6= ∅) and d ∈ {0, 1} do
9 Benefit =

∑
i∈Dp∩Dq

GetBenefit(si, p, q, d);

10 if Benefit > BestBenefit then
11 BestBenefit = Benefit;
12 p∗ = p, q∗ = q, d∗ = d;

13 end

14 end
15 for i ∈ Dp∗ ∩Dq∗ do
16 vi = GetSteinerPoint(si, p

∗, q∗, d∗);
17 V = V ∪ {vi};
18 Dp∗ = Dp∗\{i}, Dq∗ = Dq∗\{i};
19 Dvi = Dvi ∪ {i};
20 end
21 r = GetMergePoint(p∗, q∗, d∗);
22 E = E ∪ ShortestPath(p∗, r);
23 E = E ∪ ShortestPath(q∗, r);
24 end
25 for p ∈ P s.t. Dp 6= ∅ do
26 for i ∈ Dp do
27 E = E ∪ ShortestPath(si, p);
28 end

29 end
30 RemoveRedundantEdges(G);
31 return G(V, E);

4. PROBLEM TWO: APPROXIMATION AL-
GORITHMS FOR GENERATING RECTI-
LINEAR A SHORTEST-PATH STEINER
GRAPH

In this section, we build a network to connect masters,
slaves and TSVs in each device layer. Since signals are deliv-
ered on one path with distributed multiplexers/demultiplexers,
we formulate our problem as the RSSG synthesis first con-
sidered in [16]. We assume that locations of a set of masters
s1, . . . , sn and slaves t1, . . . , tm in a fixed layer are given.
Notice that TSVs connected with this layer are considered
as both master and slave. A solution of RSSG is a rectilin-
ear routing containing all master-to-slave rectilinear short-
est paths, with total wire length as small as possible. RSSG
is a generalization of the minimum rectilinear Steiner ar-

borescence (RSA) problem [8][13] and a relaxation of the
Minimum Manhattan network (MMN) problem [3], both
of which have been proven to be NP-Complete in [14] and
[7] respectively. The RSA problem corresponds to the case
where there is only one master s. We will introduce two
approximation algorithms for RSSG in the following sub-
sections. One is a greedy heuristic which extends the in-
sight of a 2-approximation algorithm given in [13] for solv-
ing the RSA problem. It requires only O(nm) extra mem-
ory beyond inputs and easily handles large-scale RSSG in-
stances. Our algorithm uses linear programming (LP) relax-
ation and rounding to solve small cases with higher accuracy.
In practice, we observe that the solution of LP relaxation
and rounding is within a factor 1.0005 of optimal. However,
the LP formulation of RSSG has O(nm(n + m)2) number
of variables and constraints which makes it suitable only for
solving instances with < 1000 master-slave pairs on a com-
puter with 4GB RAM.

4.1 Greedy Heuristic

p,v1:

{1,2,3,4,5}UD1

q,v5:

{1,2,3,4,5}UD5

s1

s2

s3

s4 s5

v3,r: D3

v2: D2

v4: D4

(a) Illustration for evaluat-
ing GetBenefit(si, p, q, 0).

p,v1:

{1}UD1

q,v5:

{5}UD5

s1

s2

s3
s4

s5

v3,r:

D3U{3}

v2:

D2U{2}

v4: D4U{4}

(b) Updated demand set for
(a).

p,v1:

{1,2,3,4,5}UD1

q,v5:

{1,2,3,4,5}UD5

s1
s2

s3

s4

s5

v3,r: D3

v2: D2

v4: D4

(c) Illustration for evaluat-
ing GetBenefit(si, p, q, 1).

p,v1:

{1}UD1

q,v5:

{5}UD5

s1
s2

s3

s4

s5

v3,r:

D3U{3}

v2: D2U{2}

v4: D4U{4}

(d) Updated demand set for
(c).

Figure 5: Contributions of two possible cases for
merging p andq.

The greedy heuristic starts with m slaves as m subtrees
and iteratively merges a pair of subtree roots p∗ and q∗ with
merging point r is farthest from masters. We can think of
this heuristic as obtaining the largest possible benefit, i.e.,
the sum of Manhattan distances from masters to p∗ and q∗,
in each iteration. Algorithm 2 provides the details of the
greedy heuristic, with explanations as follows.

• Lines 1-3: The subgraph G and the set of vertices P
of Hanan grid Hg are initialized.

• Lines 4-5: For each slave p ∈ {t1, . . . , tm}, we define a
demand set Dp initialized to be {1, . . . , n} which means
si−p rectilinear shortest path needs to be constructed

109

in graph G for every i ∈ Dp. We also set the demand
set to be empty for other non-slave points in P .

• Lines 6-14: In Line 6, if there exist two slaves or Steiner
points p and q such that their demand sets have non-
empty intersection, we will choose one such pair, i.e.,
p∗ and q∗, with largest benefit for merging them us-
ing direction d∗ between Lines 7 and 13. The func-
tion GetBenefit(si, p, q, d) returns the benefit we can
obtain in terms of si by merging p and q using di-
rection d. Without loss of generality, we assume that
p is above and to the left of q as illustrated in Fig-
ure 5. Two possible directions of merging p and q are
shown in Figures 5(a) and 5(c). The benefit obtained
by GetBenefit(si, p, q, d) is the length of the blue line
connecting si with a slave or Steiner point vi. For
other positions of si other than those shown in Fig-
ure 5, the function GetBenefit(si, p, q, d) will return
zero. Notice that after p and q are merged, the rec-
tilinear shortest paths from si to p and from si to q
can share the path from si to vi; this is the benefit
we achieve compared with connecting si with p and q
separately.

• Lines 15-20: We update the demand sets after merg-
ing p∗ and q∗ using direction d∗. For each master si

such that i belongs to the intersection of Dp∗ and Dq∗ ,
the slave or Steiner point vi is found by the function
GetSteinerPoint and we henceforth only need to con-
nect si with vi by a rectilinear shortest path, instead
of connecting with p∗ and q∗. The corresponding up-
date of demand sets is described in Lines 18-19 and
illustrated in Figures 5(b) and 5(d).

• Lines 21-23: We get the merging point r and update
the graph G according to the merging operation. The
function ShortestPath gives a rectilinear shortest path
between two points using smallest extra edges not in G.
It is implemented by a simple dynamic programming
algorithm.

• Lines 25-29: When there are no intersecting demand
sets, we fulfill the remaining connection requirements.

• Lines 30: We delete all redundant edges in G, i.e., as
long as removing them does not change the length of
any s− t shortest path.

4.2 LP Relaxation and Rounding
In this section, we first give an integer linear program-

ming (ILP) formulation of the RSSG problem and relax it
into an instance of general linear programming (LP). Then,
we devise a rounding technique to obtain an approxima-
tion solution of RSSG from the optimal solution of the LP
relaxation. By comparing with the objective value of the
LP relaxation, our results show that this approach achieves
nearly optimal solutions.

The ILP formulation for the RSSG problem is given in (6)
and the details are described as follows. Suppose there are Q
pairs of masters and slaves where Q = n×m. We use (sl, tl)
to denote the lth master-slave pair. To transform the RSSG
problem into an ILP, we construct a directed graph Nl as
in Figure 6 for (sl, tl) on the Hanan grid formed by masters
and slaves. Without loss of generality, assume sl is to the
left of tl. Figures 6(a) and 6(b) show the directed graph Nl

for the cases where sl is below and above tl, respectively.
We notice that an sl − tl rectilinear shortest path exists

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

u

v

l

uvf

ls

lt

(a) sl is below tl.

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

u v

l

uvf

ls

lt

(b) sl is above tl.

Figure 6: Directed network Nl on the Hanan grid.

if and only if an integer sl − tl flow with value one exists
in Nl. Let El be the set of arcs of Nl and let f l

uv be a
variable denoting the flow from u to v where (u, v) ∈ El.
We use the first three constraints in (6) to guarantee the
existence of a valid flow for each (sl, tl) pair. Now let EH

be the set of undirected edges in the Hanan grid and let the
binary variable xuv denote whether the edge (u, v) ∈ EH is
selected in the RSSG solution. If a rectilinear shortest path
from sl to tl includes the edge (u, v) for any 1 ≤ l ≤ Q, then
xuv = 1. We use the fourth constraint in (6) to denote such
constraints. Finally, if duv denotes the length of edge (u, v),
our objective is to minimize the total wire length which can
be described by the objective function of (6). Since there are
O((n + m)2) edges in the Hanan grid and O(nm) master-
slave pairs, it is easy to see that the ILP formulation contains
O(nm(n + m)2) variables and O(nm(n + m)2) constraints.

min
∑

(u,v)∈EH

duvxuv

s.t.
∑

(u,v)∈El

f l
uv −

∑

(v,u)∈El

f l
vu ≥ 0,

1 ≤ l ≤ Q and v 6= sl, tl;

∑

(sl,u)∈El

f l
slu

≥ 1, 1 ≤ l ≤ Q;

∑

(u,tl)∈El

f l
utl ≥ 1, 1 ≤ l ≤ Q;

xuv − f l
uv ≥ 0,

(u, v) ∈ EH and l ∈ {l0 : (u, v) ∈ El0};

f l
uv ∈ {0, 1}, 1 ≤ l ≤ Q and (u, v) ∈ El;

xuv ∈ {0, 1}, (u, v) ∈ EH . (6)

Since solving ILP (6) is time-consuming and even intractable
when n and m are large, we propose a LP relaxation and
rounding technique described in Algorithm 3. We begin by
relaxing the binary constraints on variables f l

uv and xuv so
that they can take any nonnegative real values. We thus
obtain an LP instance that can be solved efficiently. The
variables xuv in the optimal solution of the LP relaxation
are in the range [0, 1] based on other constraints, but may
be fractional, which does not yield a feasible RSSG solution.
To construct an RSSG from the LP solution, we adopt usual
approach of viewing each xuv as the probability of selecting
edge (u, v). Hence, we start with a graph G containing all
edges in the Hanan grid and try to delete edges as long as
the remaining graph still contains a rectilinear shortest path
for each master-slave pair. The order of deletion depends on
the optimal xuv values. An edge with smaller xuv will be

110

deleted from graph G earlier if possible. Finally, the remain-
ing graph G will be a feasible RSSG solution. The optimal
objective function value of the LP relaxation lower-bounds
the optimal objective function value of the ILP (6), and
hence optimal RSSG solution. We can evaluate the qual-
ity of the rounding solution by comparing it with the lower
bound; experimental results below show that the largest ra-
tio between them in practice is 1.0005.

Algorithm 3: LP relaxation and rounding for RSSG

Input: A set of n masters s1, . . . , sn and m slaves
t1, . . . , tm in the rectilinear plane.

Output: A subgraph G(V, E) of the Hanan grid Hg

with edge set EH , such that G contains a
rectilinear shortest path for each master-slave
pair.

1 V = {s1, . . . , sn, t1, . . . , tm};
2 E = EH ;
3 ne = |EH |;
4 Solve LP relaxation of (6) to obtain xuv for every

(u, v) ∈ EH ;
5 (e1, e2, . . . , ene) = edges in EH sorted from smallest to

largest according to the value of xuv;
6 for e = e1, e2, . . . , ene do
7 if E − e contains a rectilinear shortest path for each

master-slave pair then
8 E = E − e;
9 end

10 end
11 return G(V, E);

5. EXPERIMENTAL RESULTS

5.1 TSV Location
We first show the TSV location results with different com-

munication frequencies and different upper bounds B on the
number of available TSVs between adjacent layers. Let L
be the number of device layers. We randomly distribute
N masters and slaves in each layer. Figure 7 shows two
optimal assignments of TSVs with different communication
frequencies and the same distribution of masters and slaves.
TSV locations are plotted by red lines. Blue dots and green
dots denote masters and slaves respectively. For clarity,
we simplify each layer as a straight line. Here we assume
B = 1 and the dynamic programming approach is adopted
to obtain optimal solutions. We notice that in Figure 7(b),
TSV locations connecting the first three layers are to the
left of those in Figure 7(a). At the same time, masters in
bottom two layers are farther away from slaves in the top
layer in Figure 7(b). These observations reflect the fact that
master-slave pairs in the first two layers communicate more
frequently.

Table 1 compares the power consumption results for var-
ious bounds B. We assume that communication frequen-
cies for all master-slave pairs are the same in this experi-
ment. The power consumption is defined as the total length
of shortest paths normalized by the number of master-slave
pairs. Notice that when B = ∞, every master-slave pair can
be reached by a path with shortest rectilinear distance which
gives us a lower bound on power consumption. In each cell of

(a) ci,j = 1.0 for all master-
slave pairs (si, tj).

(b) ci,j = 5.0 for master-
slave pairs (si, tj) in first
two layers and ci,j = 1.0 for
other pairs.

Figure 7: Single TSV assignments for (L, N) = (4, 5).

the table, the first value represents the power consumption
and the second value is the increase of (as a percentage)
of power consumption relative to the case B = ∞ in the
same row. We can see that the lower bound can be almost
achieved by only using three TSVs between adjacent layers.
Figure 8 gives an example of the TSV assignment results
along with their power consumption for bound B = 1, 2, 3
on the same setup of masters and slaves.

Table 1: Power consumption with varying B.
(L, N) B = ∞ B = 1 B = 2 B = 3

(3,10) 346.36 456.46 375.93 360.86
(31.79%) (8.54%) (4.19%)

(3,20) 292.39 384.34 336.13 305.50
(31.45%) (14.96%) (4.49%)

(3,50) 337.27 453.09 393.07 355.22
(34.34%) (16.55%) (5.32%)

(4,20) 343.93 476.15 413.28 367.62
(38.45%) (20.16%) (6.89%)

(5,20) 346.68 492.00 431.04 367.39
(41.92%) (24.33%) (5.97%)

(5,50) 323.76 452.50 401.23 346.31
(39.77%) (23.93%) (6.96%)

(a) Single TSV -
439.

(b) Two TSVs -
395.

(c) Three TSVs -
348.

Figure 8: Wire length with varying TSV budgets.

5.2 RSSG Construction
Table 2 gives the total wire length improvement of our al-

gorithms when compared with the RSSG result in [16]. The
column“LP(obj)”denotes the optimal objective value of the
LP relaxation in (6). The column “LP(Round)” denotes the
total wire length of the LP relaxation and rounding result.
Notice that in most cases, the rounding result and the op-
timal LP objective are the same, which means that we al-
ready obtain the optimal RSSG (since LP relaxation gives a

111

Table 2: Total wire length results.
(n, m) RSSG Greedy LP(Obj) LP(Round) Ratio

(3, 16) 5388 5068 4882 4882 9.39%
(5, 15) 7024 6586 6342 6342 9.71%
(12, 6) 6698 6306 5915 5915 11.69%
(6, 12) 7127 6160 5575 5575 21.78%
(12, 12) 11559 10385 10319 10319 10.73%
(20, 20) 16236 15921 13847 13847 14.71%
(30, 30) 302619 287042 251841 251968 16.78%

(a) Greedy heuristic.

(b) LP relaxation and
rounding.

Figure 9: Comparison of RSSG results.

lower bound of smallest total wire length). In practice dur-
ing our experiments, the largest gap between “LP(round)”
and “LP(obj)”, i.e., LP(round)/LP(obj), is 1.0005 which in-
dicates that our rounding method can achieve nearly opti-
mal solutions. The column “Ratio” gives the improvement
of our RSSG generated by LP relaxation and rounding rel-
ative to RSSG generated by the algorithm in [16]. We can
see that our algorithm can reduce the total wire length by
up to 21.78%. Figure 5.2 plots examples of our RSSG solu-
tions generated by the greedy heuristic and by LP relaxation
and rounding. There are three masters and sixteen slaves,
which are represented by blue dots and green dots, respec-
tively. The LP relaxation and rounding method for this
example achieves an optimal RSSG with total wire length
of 5683, 5.38% better than the greedy solution whose total
wire length is 6006. Table 3 shows the time and memory
complexity of our LP relaxation and rounding algorithm.
We use the Gurobi Optimizer [1] running on a machine with
Intel Core i3 2.4GHz CPU and 4GB memory to solve LP
relaxation of (6). Based on the memory limit, we can solve
RSSG instances with up to 1000 master-slave pairs by LP
relaxation and rounding.

Table 3: Scaling of LP relaxation and rounding.
(n, m) # Variables # Constraints Time Memory

(3, 16) 4326 6209 <1s <50MB
(5, 15) 8019 11458 <1s <50MB
(20, 20) 155396 239037 3m43s 234MB
(30, 30) 778358 1175974 4h22m 1.2GB

6. CONCLUSION
In this paper, we construct a framework and algorithms

for synthesis of gated buses in 3D ICs. The power consump-
tion of on-chip communication is considered to be the first
objective and we achieve it by optimizing TSV locations
between device layers. In each device layer, we build a rec-
tilinear shortest-path Steiner graph to connect masters and
slaves whose objective is to minimize the total wire length.

Experimental results show that our dynamic programming
(resp. local search) algorithm efficiently determines the op-
timal (resp. nearly optimal) TSV locations, and that the
approximation algorithms for generating RSSG reduce the
total wire length by up to 22% compared with [16].

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of NSF

CCF-1017864 and CCF-1116667, the DARPA/MARCO Gi-
gascale Systems Research Center, as well as SRC and DOE
support. C.K. Cheng would like to acknowledge the sup-
port of National Science Council of Taiwan Grant No.: NSC
100-2811-E-002-034. We thank Prof. Ion Mandoiu of the
University of Connecticut for pointers to the MMN problem
and related references.

8. REFERENCES
[1] Gurobi optimizer 4.0. http://www.gurobi.com/.
[2] K. Bazargan, R. Kastner and M. Sarrafzadeh. 3-D

floorplanning: simulated annealing and greedy placement
methods for reconfigurable computing systems. IEEE Int.
Workshop on Rapid System Prototyping, pp. 38–43, 2002.

[3] M. Benkert, A. Wolff, F. Widmann and T. Shirabe. The
minimum Manhattan network problem: approximations
and exact solutions. Computational Geometry: Theory and
Applications, 35(3), pp. 188–208, 2006.

[4] B. Black, D. W. Nelson, C. Webb and N. Samra. 3D
processing technology and its impact on IA32
microprocessors. Int. Conference on Computer Design, pp.
316–318, 2004.

[5] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu and T. Chen.
Segmented bus design for low power system. IEEE Trans.
on VLSI Systems, 7(1), pp. 25–29, 1999.

[6] L. Cheng, L. Deng and M. Wong. Floorplanning for 3-D
VLSI design. Asia and South Pacific Design Automation
Conference, pp. 405–411, 2005.

[7] F. Y. Chin, Z. Guo and H. Sun. Minimum Manhattan
network is NP-complete. Proc. of the 25th Annual
Symposium on Computational Geometry, pp. 393–402,
2009.

[8] J. Cong, A. B. Kahng and K. S. Leung. Efficient algorithms
for the minimum shortest path Steiner arborescence
problem with applications to VLSI physical design. IEEE
Trans. on Computer-Aided Design, 17(1), pp. 24–39, 1998.

[9] K. D. Boese, A. B. Kahng, B. A. McCoy and G. Robins.
Near-optimal critical sink routing tree constructions IEEE
Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 14(12), pp. 1417–1436, 1995.

[10] M. Hanan. On Steiner’s problem with rectilinear distance.
SIAM Journal on Applied Mathematics, 14, pp. 255–265,
1966.

[11] C.-T. Hsieh and M. Pedram. Architectural power
optimization by bus splitting. Design, Automation and
Test in Europe, pp. 612–616, 2000.

[12] M. Pathak, Y. Lee, T. Moon and S. Lim.
Through-silicon-via management during 3D physical
design: when to add and how many? Int. Conference on
Computer-Aided Design, 2010.

[13] S. K. Rao, P. Sadayappan, F. K. Hwang and P. W. Shor.
The rectilinear Steiner arborescence problem. Algorithmica,
7, pp. 277–288, 1992.

[14] W. Shi and C. Su. The rectilinear Steiner arborescence
problem is NP-complete. Proc. of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
780–787, 2000.

[15] V. V. Vazirani. Approximation algorithms. Springer, 2010.
[16] R. Wang, N. C. Chou, B. Salefski and C. K. Cheng. Low

power gated bus synthesis using shortest-path Steiner
graph for system-on-chip communications. Design
Automation Conference, pp. 166–171, 2009.

112

