
Improved Path Clustering for Adaptive Path-Delay Testing

Tuck-Boon Chan†, Andrew B. Kahng‡

UC San Diego ECE†‡ and CSE‡ Departments, La Jolla, CA 92093

E-mails: tbchan@ucsd.edu†, abk@cs.ucsd.edu‡

Abstract— Adaptive path-delay testing is a testing
methodology that reduces redundant test patterns based on the
measured process condition of a die under test (DUT). To
improve testing efficiency, process conditions are clustered into
a limited number of clusters, each of which has a corresponding
set of test patterns. The test pattern set of a cluster must include
all potential timing-critical paths of all process conditions in the
cluster. Hence, high-quality clustering is needed to minimize
redundant test paths. In this paper, we propose a new clustering
heuristic to minimize the expected number of redundant test
paths in adaptive path-delay testing. Our experimental results on
randomly generated testcases show that the proposed clustering
heuristic can reduce the expected number of test paths by up to
40% compared to the previous Greedy clustering algorithm of
Uezono et al. [5]. To address unique attributes of an industrial
testcase obtained from the authors of [5], we integrate the
dynamic-programming restricted-partitioning technique of [1],
which improves the expected number of test paths by up to 5%
compared to the Greedy algorithm.

Keywords— adaptive testing, clustering, partitioning

I. INTRODUCTION

In conventional VLSI path-delay testing, a set of test patterns
is applied to every die under test (DUT). This is inefficient
because the test patterns are extracted from different process
corners, while a given DUT only requires the test patterns
corresponding to its specific (i.e., as-manufactured) process
condition. To improve path-delay testing efficiency, Shintani
et al. in [4] proposed an adaptive testing methodology as
illustrated in Figure 1.

In the adaptive testing approach, a set of test patterns is
prepared for each process condition. During testing, a testing
machine applies a set of test patterns (i.e., a test program)
according to the identified process condition of a given DUT.
Although adaptivity can reduce redundant test patterns, it
requires large memory space on a testing machine to store test
patterns for each process condition. In practice, the memory
space on a testing machine is limited, hence process conditions
– with their corresponding test patterns – must be clustered.
Clustering of process conditions saves memory on the testing
machine but typically results in redundant test patterns for any
given process condition in a cluster.

Figure 2 illustrates the clustering problem with three sets
of critical paths S1, S2 and S3 that respectively correspond to
process conditions V1,V2 and V3. In this example, the number of
critical paths in S1,S2 and S3 is 15, 30 and 25, respectively (some
of the paths belong to multiple process conditions). Given an
upper limit of 2 test-pattern sets, i.e., clusters, clustering solution
A merges S1 and S2 into a cluster C1. As a result, whenever
either process condition V1 or V2 occurs, the test patterns of

Critical path sets Measure process
Critical paths
for process
condition Vj

p
for various
process conditions

Measure process
condition of a die

ATPG Select a test pattern set
based on the measured

process condition

Test patterns
for process

diti V

Test pattern
sets for various
process conditions

process condition

condition Vj Path delay Testing

Test pattern generation Adaptive testingTest pattern generation Adaptive testing

Fig. 1. Adaptive path-delay testing flow proposed in [4]. The test program (set
of test patterns) applied to a given die under test (DUT) is selected based on the
process condition of the die.

Fig. 2. An adaptive testing clustering problem with three sets of critical paths.
Total paths in a cluster is determined by the clustering solution.

critical paths in S1 ∪ S2 will be applied. Since 20 critical paths
in S2 do not belong to process condition V1, test patterns of
these paths are redundant for a DUT with process condition
V1. In contrast to clustering solution A, solution B does not
merge S1 with any other critical path set. Therefore, there is
no redundant test pattern for a DUT with process condition
V1. Clearly, the efficiency of the adaptive testing – and hence
the cost of test – is affected by the quality of the process
condition clustering.1 In this paper, we propose a new clustering
algorithm that significantly improves efficiency of the adaptive
test methodology, compared with a recent greedy approach of
Uezono et al. [5].

II. PROBLEM FORMULATION

In adaptive path-delay testing, we extract a set of critical paths
for each process condition. Formally:

Vj = the jth process condition in a segmented
process parameter space, j = 1, ...,M

P = {P1, ...,PN}= set of all critical paths
S j ⊆ P = set of critical paths for process condition Vj

S = {S1,S2, ...,SM}= set of all S j

Q j = occurrence probability of process condition Vj.

(1)

1Note that we are using the number of critical paths tested as a proxy for the
complexity of testing. We understand that for each critical path, some number
of tests and test patterns will be synthesized, that test compression methods will
be applied, etc. The clustering methods that we study can be applied as easily to
test patterns as to critical paths, but we follow previous work and testcase data
in focusing on critical paths.

Given process conditions V = {V1,V2, ...,VM}, their respective
occurrence probabilities {Q1,Q2, ...,QM}, and an upper limit
k on the number of clusters, we seek to partition S into k
disjoint clusters2 of paths C1,C2, ...,Ck, with each Ci ⊆ P, to
minimize redundant test patterns. In other words, each cluster
Ci is a nonempty subset of S, and each process condition’s set of
critical paths S j belongs to exactly one cluster. In the adaptive
testing methodology [4], when the DUT has process condition
Vj, all test patterns in the cluster Ci that contains S j will be
applied. Thus, test patterns ∈Ci\S j are redundant. We assume
henceforth that test patterns are linearly proportional to critical
paths (i.e., as noted earlier, the number of critical paths is a
proxy for the number of test patterns and testing costs). The
total test cost f (C) of a clustering result C is defined as

f (C) =
k

∑
i=1

(∑
S j∈Ci

Q j)× (∑
Ph∈Ci

|Ph|) (2)

where |Ph| = 1 when we assume that the number of test patterns
is proportional to the number of paths, and every path has equal
test cost.

III. PREVIOUS WORK

Uezono et al. in [5] propose a Greedy algorithm for the
clustering problem in Section II. The Greedy algorithm first
generates M clusters of critical paths by defining C j = S j, then
iteratively merges two clusters at a time until the total number
of clusters is equal to k. In each iteration, the algorithm merges
two clusters Ci and C j with minimal distance (di, j) defined as

di, j = Qi× (∑
Pj∈C j

|Pj|− ∑
Pc∈Ci∩C j

|Pc|)

+Q j × (∑
Pi∈Ci

|Pi|− ∑
Pc∈Ci∩C j

|Pc|)
(3)

In other words, di, j is the incremental test cost of merging
Ci and C j. A motivating observation for our present work is
that although the Greedy algorithm merges the clusters with
minimal di, j in each merging operation, this can yield solutions
with considerable suboptimality. (And, since the cost measure
is essentially the expected cost of manufacturing test, there
is a strong motivation to devise an improved heuristic.) We
have devised a family of adversarial instances that forces the
performance ratio of Greedy for a k-cluster solution to approach
2 as k grows large. Our construction is described as follows.
• There are 2k process conditions. We refer to S1,S2, . . . ,Sk as

Type-A process conditions, and Sk+1,Sk+2, . . . ,S2k as Type-B
process conditions.

• The Greedy k-cluster solution, denoted CG, will be forced to
have structure CG

1 = {S1,Sk+1,Sk+2, ...,S2k},
and CG

i = {Si}, i = 2,3, ...,k.
• The optimal k-cluster solution, denoted Copt , will be forced to

have structure Copt
i = {Si,Sk+i}, i = 1,2, ...,k.

We then establish a number of constraints on how the Greedy
algorithm arrives at its solution CG; this enables us to set up and

2Each cluster contains all test patterns of all process conditions in the cluster.
Hence, assigning a process condition to two or more clusters – i.e., a non-disjoint
partition – will incur redundant test patterns and need not be considered.

1 1 1
Type‐A

Q1 k = 1/k ‐ ε

S1 S2 Sk
Properties

a

1

a

1

a

1

…
Type‐B

Q1, …, k = 1/k εof process
conditions

Qk+1, …, 2k = ε Sk+1 Sk+2 S2k

1 11 1
Merge type‐B process
conditions to Cb2

a
1

a
1

a
1

…

a

1

a

1
a

1
… a

1
a
1

1 11 1
1 11 1

a
1

1
a
1

1
a
1

1
… a

1

1

All type‐B process
conditions are merged into

Merge a type A process

1 11 1 1 11 1

CbkMerge a type‐A process
condition with Cbk

Greedy solution

a
1

a
1

a
1

… a
1

Optimal Solution

a
1

a
1

a
1

… a
1

Greedy solution Optimal Solution

Fig. 3. Parameterized adversarial instance for the Greedy algorithm, with
imbalance Q j .

solve a mathematical program that maximizes the performance
ratio of Greedy subject to these constraints.

• The greedy solution will be forced to merge all type-B process
conditions first (to achieve k+1 clusters), before merging one
type-A process condition to obtain k clusters.

• More specifically, at the first k/2 clustering steps, each type-B
process condition will be forced to merge with another type-
B process condition. This will lead to k/2 clusters, each of
which contains two type-B process conditions. We denote
each such merged cluster as Cb2, where the value “2” indicates
that there are two type-B process conditions in the cluster.

• After that, the Greedy heuristic will continue to be forced to
merge the resulting Cbn clusters until n = k.

• Finally, Cbk will be forced to merge with a type-A process
condition to form CG

1 = {S1,Sk+1,Sk+2, ...,S2k}.

Each of the merging steps mentioned above forces our
adversarial instance to satisfy the constraint that the two merging
clusters have the smallest distance (defined in Equation (3))
among all possible cluster pairs. For instance, in the first
merging step, each process condition is a cluster by itself. The
cost of merging any two type-B process condition must be less
than the cost of merging a type-A process condition with a type-
B process condition. This constraint is established by the first
inequality in Equation (4) with n = 1. Similarly, when merging
Cbn clusters, the distance between any two Cbn clusters must
be (i) smaller than the distance between a Cbn and a cluster
with a type-A process condition (CG

2), and (ii) smaller than the
distance between two type-A process conditions (CG

2). Thus, the
following inequality constraints must hold3 for n = 1,2, . . . ,k/2:

d(Cbn,Cbn)≤ d(CG
2 ,Cbn)

d(Cbn,Cbn)≤ d(CG
2 ,CG

2)

d(Cbn,Cbn) = 2n2
ε(a+1),n = 1,2, ...,k/2

d(CG
2 ,Cbn) = nε+(

1
z
− ε)(n(a+1)−a),n = 1,2, ...,k/2

(4)

3It is clear that d(Cbn,Cbn) < d(Cbn/2,Cbn) for all n, so we do not include this
inequality as a constraint when constructing the adversarial instance.

where d(Cbn,Cbn) is the distance (cost) of merging any two Cbn

clusters with n number of type-B process conditions, d(CG
2 ,Cbn)

is the distance of merging a type-A process condition with
any Cbn in the first k − 1 steps of the Greedy algorithm,
and d(CG

2 ,CG
2) is the distance of merging two type-A process

conditions. Equation (4) can be simplified to three dominant
constraints

F(n) = d(Cbn,Cbn)−d(CG
2 ,Cbn)

= 2n2
ε(a+1)− [nε+(

1
k
− ε)(n(a+1)−a)]

≤ 0

F(1) = 2ε(a+1)− 1
k

ε ≤ 4
k3

(5)

From this, we obtain 2ε(a+1)≤ 1/k; then, substituting 2ε(a+
1) as a lower bound for 1

k in the expression for F(n),

2n2
ε(a+1)− [nε+(2ε(a+1)− ε)(n(a+1)−a)]≤ 0

=⇒ 2n2(a+1)− [n+(2(a+1)−1)(n(a+1)−a)]≤ 0

=⇒ 2n2(a+1)−n(2a2 +a)+2a2−a < 0

=⇒ 2n2(a+1)−2(n−1)a2− (n+1)a < 0

(6)

Applying an optimization tool (CPLEX from ILOG) to
maximize the performance ratio subject to the inequalities (5)
and (6), we obtain

performance ratio =
CG

Copt

(k−1)(1/k− ε)(a+1)+(1/k +(k−1)ε)(k(a+1)+1)
a+2

≈ (k−1)(1/k− ε)+(1+ k(k−1)ε)

= 2−2kε−1/k + ε+ k2
ε

(7)

That is, the performance ratio ≈ 2.0 as ε → 0 and k grows
large. For example, when a = 100000,ε = 10−8,k = 300,
and n = 1,2, ...,150, inequalities (5) and (6) are satisfied with
performance ratio = 1.997.

IV. OUR PROPOSED METHOD

Inspired by the Fiduccia-Mattheyses (FM) algorithm [2], we
formulate the clustering problem as a hypergraph (network)
partitioning problem and solve it using an iterative hill-climbing
approach. Figure 4 depicts a hypergraph that represents an
instance of the clustering problem. The clustering problem
has four process conditions and three critical paths (S1 = {P1},
S2 = {P2,P3}, S3 = {P3} and S4 = {P1,P3}). In the figure,
each vertex represents a process condition and each hyperedge
represents a critical path. If a critical path belongs to only one
process condition, it is represented as a dangling edge for the
process condition. After representing the clustering problem as
a hypergraph, we may formulate a new partitioning problem that
is equivalent to the original problem. I.e., given a hypergraph
with N hyperedges and M vertices, we want to partition the
vertices into k clusters (subgraphs) with minimal cost as defined
in Equation (2).

To solve the partitioning problem, we recursively bipartition
a hypergraph into two smaller subgraphs4 recursively until there
are k subgraphs (C1,C2, ...,Ck). After obtaining k subgraphs, we
check whether there is any improvement by merging and re-
splitting any two subgraphs Ci and C j, where i 6= j. During the
merging and re-splitting operation, we update the partitioning
solution only if there is any improvement after the operation.
For a solution with k subgraphs, we define a refinement step
as an operation that performs all feasible k(k− 1)/2 merging
and re-splitting operations. Since the refinement step has long
runtime, we repeat the refinement step either until there is no
improvement or until a maximum refinement iterations limit has
been reached. We also apply the refinement step only when the
number of clusters does not exceed a user-defined refinement
upper bound. The refinement step is important for two reasons.

• The bipartitioning operation must search over a combinatorial
number of candidate solutions, with only unclear criteria
relative to a globally good outcome. In top-down recursive
partitioning, each bipartitioning optimization is susceptible to
missing solutions that lead to the best possible solution.

• Even if the bipartitioning operation chooses the best candidate
for splitting, it only minimizes the cost of splitting that
particular subgraph. The refinement step explores other
possible solutions which can improve the overall cost.

P
S1

S S
P3

S4
P1

S2 S3
P2

Fig. 4. Four process conditions (vertices) S1,S2,S3 and S4 are connected by
hyperedges defined by paths that are timing-critical in respective subsets of the
process conditions.

A. Overview of Our Algorithm

Given subgraphs (clusters) CA and CB, we move one vertex
(process condition) at a time from one subgraph to another in
an attempt to minimize total cost as defined by Equation (2).
At each move, we move the vertex that brings the largest cost
reduction. To prevent the moving process from going into an
infinite loop, each vertex is “locked” in its new subgraph after
the move. The moving process stops after all vertices have
been moved. Then, we update the vertices in both subgraphs
according to the best solution encountered during the moves,
and “unlock” all vertices. A complete cycle of these procedures
is defined as a pass. To improve the partitioning solution,
we perform multiple passes until there is no improvement.
Our proposed method resembles the FM algorithm [2] in its
neighborhood structure for iterative search, and in its pass-
based hill-climbing strategy. It differs from [2] in that the cost
calculation is not defined by net “cuts”, but rather by the number
of nets in each cluster.5

4Henceforth, use of ‘subgraph’ for ‘sub-hypergraph’ is understood when the
context is clear.

5Also, some efficiencies in, e.g., gain bucketing or gain calculation and update
that are available to FM for hypergraph min-cut partitioning are not available
in our context. We discuss the runtime complexity implications in the next
subsection.

B. Gain Calculation for Moving a Process Condition
Based on Equation (2), we define g j, the gain of moving a

process condition j, as follows. We use T (“to”) to denote the
subgraph that the vertex is moving towards, and F (“from”) to
denote the subgraph that contains the vertex before the move. It
is not hard to see that

g j = |CF |QF + |CT |QT − [(|CF |+∆|CF |[j])(QF −Q j)
+(|CT |+∆|CT |[j]) (QT +Q j)]

(8)

where |CT | and |CF | are the respective total number of paths in
the two subgraphs, and ∆|CT |[j] and ∆|CF |[j] are the respective
changes in the number of paths in CF and CT if we were to
move vertex j from CF to CT . QT (resp. QF) gives the sum of
probabilities of all process conditions in CT (resp. CF) before a
move. Note that the gain of moving a vertex (process condition)
is dependent on the sum of the probabilities QT and QF , as well
as on the number of paths in the subgraphs before and after
moving. Therefore, moving a vertex will affect the gains of all
other vertices in subsequent moves. As a result, all g j values
need to be recomputed in each move, which requires O(M) gain
calculations.

C. Maintaining Gains
During the bipartitioning process, we maintain the data in

∆|CT |[j] and ∆|CF |[j] after each move so that we can efficiently
calculate the gains of subsequent moves. Pseudocode for
moving a given vertex S j from CF to CT is given in Figure 5,
and pseudocode for maintaining gains is given in Figure 6.6. In
Figure 5, Lines 1-5 update the cost when a vertex S j is moved
by subtracting gmax from current cost and the values of QF (QT).
Then in Lines 6-7, we update |CT | (|CF |) based on the values
maintained at ∆|CT |[j] (∆|CF |[j]). At Line 8, the algorithm
moves vertex S j max and locks it after the move. Finally, Lines
10-12 update the values of g and ∆|CT |[j] (∆|CF |[j]) using the
update gain procedure. Moving a vertex S j max from a subgraph
to another subgraph only affects the ∆|CT |[j] (∆|CF |[j]) values
of vertices that share the same edges connected to S j max.
Therefore, it is sufficient to check each S j that is connected to
Ph when we calculate ∆|CT |[j] (∆|CF |[j]).

In Figure 6, x(Ph,T) (resp. x(Ph,F)) is the number of S j
connected to Ph in subgraph T (resp. F). In Lines 2-7 of
Figure 6, the algorithm checks whether x(Ph,T) = 0 or 1, and
updates ∆|CT |[j] (∆|CF |[j]) accordingly. For example, when
x(Ph,T) = 0, the cost of moving another vertex with edge Ph
into the T subgraph will be reduced by one because Ph will be
in the T subgraph right after this move. When x(Ph,T) = 1,
∆|CT |[j] of the single vertex will be increased by one because
the T subgraph will still contain Ph after the move. Lines 8-
9 update the value of x(Ph,T) (x(Ph,F)) to “move” the vertex
S j. Lines 10-15 check the value of x(Ph,F) and perform similar
steps as in Lines 2-7 to update ∆|CT |[j] (∆|CF |[j]). Finally,
the algorithm calculates the gain for each possible move g j by
using Equation (8). In this gain calculation, updating ∆|CT |[j]
(∆|CF |[j]) takes at most O(N) time, where N is the total number
of paths.

6When more than one movable vertices have identical gain in a pass, our
implementation will break the tie in favor of the vertex with smallest process
condition index.

Procedure move()
1. gmax = the maximum gain among all movable S j
2. j max = the index of movable S with maximum gain
3. cost = cost - gmax
4. QF = QF −Q[j max]
5. QT = QT +Q[j max]
6. |CF |= |CF |+∆|CF |[j max]
7. |CT |= |CT |+∆|CT |[j max]
8. Move process condition S j max to the other cluster
9. lock S j max
10. for (Ph connected to S j max) do
11. update gain(cost,h, j max)
12. end for

Fig. 5. Moving a vertex.
Procedure update gain(cost,h, j max)

1. for (each S j connected to Ph) do
2. if (x(Ph,T) == 0) then
3. ∆|CF |[j]−−
4. end if
5. if (x(Ph,T) == 1) then
6. ∆|CT |[j]++
7. end if
8. x(Ph,T)++
9. x(Ph,F)−−
10. if (x(ph,F) == 0) then
11. ∆|CT |[j]++
12. end if
13. if (x(Ph,F) == 1) then
14. ∆|CF |[j]−−
15. end if
16. g j = cost− (|CF |+∆|CF |[j max])(QF −Q j)

+(|CT |+∆|CT |[j max])(QT +Q j)
17. end for

Fig. 6. Incremental gain calculation.

V. TESTCASE GENERATION

As described above, we use a hypergraph to represent the
problem of clustering process conditions for adaptive test. In the
hypergraph, process conditions and critical paths are represented
as vertices S j and Ph, respectively. If a critical path h belongs
to a process condition j, we may think of h’s hyperedge as
“containing” or inducing an edge eh, j between vertices S j and
Ph. Figure 7 shows a process condition S1 which has two critical
paths P1 and P2. There is an edge e1,1 between P1 and S1, and an
edge e2,1 between P2 and S1. In general, if a path h belongs to
different k process conditions, its hyperedge will induce k edges
in this way.

Given a hypergraph, we want to find the connection (b j,l)
between S j and Ck that minimizes testing cost as defined in
Equation (2). Note that each process condition has exactly one
edge to a cluster. Any additional edge on a process condition
will increase overall testing cost.

We represent an instance of the clustering problem with
vertices for N critical paths and M process conditions, edges
eh, j, probability Rh of a path belonging to process conditions,
and occurrence probabilities Q j for the process conditions. To
explore different input instances, we generate the edges eh, j
using the procedure shown in Figure 8, with the following input
parameters:

S1P1 c1

ClustersProcess conditionsCritical paths

Q1

S2
P2

c2P Q3

Q2

…

P

c2

ck

…

SM

…

P3

QM

Q3

PN

eh,j bj,l

Fig. 7. Graphical depiction of clustering of process conditions for adaptive
testing. A process condition S j needs to test path Ph if there is an edge eh, j
between the corresponding vertices. The clustering problem entails finding
optimal connections (assignments) from the S j to the Ck to minimize testing
cost.
• N = total number of critical paths
• M = total number of process conditions
• α = probability of P1 ∈ S j, j = 1,2, ...,M
• β = probability of PN ∈ S j, j = 1,2, ...,M
• proc dist = {uniform, Gaussian, power-law} distribution of

process condition occurrence probabilities

The connections between process conditions and critical paths
are affected by the timing slack of each critical path. Moreover,
the connections are strongly dependent on the the paths’
sensitivities to process variations. Since we do not have the
circuit and process information to generate input instances, we
generate the connections between process conditions and critical
paths using the random graph model G(n,P) in [3]. In the
proposed random graph, we assume that every process condition
is equally likely to be connected to a path. However, the
probability of adding an edge from Ph to any process condition is
determined by Rh, which varies linearly from α to β, i.e., Rh =
α− (α− β)× h/N. Further, we define the average number of
edges in the hypergraph (µ) to be the average of α and β. Hence,
the α and β parameters allow us to change the expected total
number of edges in the hypergraph as well as the distribution of
edges.

Procedure genTestcase(N,M,α,β, proc dist)
1. for (h = 1 ; h ≤ N ; h++) do
2. for (j = 1 ; j ≤ M ; j ++) do
3. edge prob = α− (α−β)× h

N
4. if ((rand(100) < (edge prob×100)) then
5. eh, j = 1
6. end if
7. end for
8. end for
9. for (j = 1 ; j ≤ M ; j ++) do
10. Q j = cal Q(j, proc dist)
11. end for
12. for (cnt = 1 ; cnt ≤ M ; cnt ++) do
13. a = rand(M)
14. b = rand(M)
15. swap (ex,a,ex,b), x = 1,2, ...,N
16. end for

Fig. 8. Testcase generation algorithm.

In Figure 8, we first calculate the Rh for each path, and
assign edges eh, j with a random number function Rand(X)
that generates an integer from 1 to X . We then calculate and
assign Q j to process conditions randomly using a sub-function
cal Q():

cal Q(j,uni f orm) = 1/M

cal Q(j,Gaussian) = cd f (−3+
6 j
M

)− cd f (−3+
6(j−1)

M
)

cal Q(j, powerlaw) =
1

j×∑
M
m=1

1
m

Here, cd f (·) is the cumulative distribution function for the
normal distribution.

VI. EXPERIMENTAL RESULTS

We have implemented both the Greedy algorithm and our
proposed method in C++, and have run experiments on a
3.3GHz CPU. We compare the algorithms’ solution quality
using random testcases generated as described in Section V. We
also compare the algorithms using a design testcase provided
by the authors of [5]. In the following, we report a relative
performance ratio, f (CM)/ f (CGreedy), where f (CGreedy) and
f (CM) are the test costs for the Greedy algorithm and our
algorithm, respectively. To reduce impacts of randomization
in testcase generation and (tie-breaking) in algorithms, each
experiment is performed 10 times, and we report the average
of the 10 resulting performance ratios.

A. Experiments with Generated Testcases

Performance Ratio. Figure 9 shows that the performance ratios
of our algorithm versus the Greedy algorithm are consistently
less than 1.0 for all values of k < M, and for all the
testcases. This means that our algorithm gives consistently
better clustering results than the Greedy algorithm for the
randomly generated testcases. (When k = M, performance ratio
is 1.0 because there is only one feasible solution.)

As mentioned in Section III, the merging operation in
the Greedy algorithm can be prone to generating suboptimal
solution choices. Since the number of merging operations
increases as k decreases, it is reasonable to suspect that the
accumulation of “wrong choices” by the Greedy algorithm also
increases. This would be consistent with the observed decrease
in performance ratio as k decreases (merging operations in
Greedy algorithm = M − k). With the generated testcases,
performance ratios reach their minimum values at k < M/2 and
increase sharply after that. The performance ratios increase
because absolute costs of both algorithms increase much faster
than the difference between them when k approaches 1 (e.g., see
Figure 10). Also, the experimental data in Figure 9 show that
there are negligible differences from N = 5000 to N = 20000.
This is because the total number of process conditions is much
smaller than the number of critical paths. In other words, when
each process condition has many critical paths, increasing the
total number of critical paths changes the absolute cost but not
the performance ratio between the algorithms. The minimum
performance ratio seen in our experiments is about 0.60 for
testcases with power-law distributed Q j.
Impact of µ and Rh on Performance Ratio. Experimental
results in Figure 11 show that performance ratio increases when
µ increases for testcases with uniform and linearly decreasing
Rh. When µ is greater than 50% the performance ratio is
greater than 1.0 for testcases with large k. This means that
the solution obtained by our algorithm has higher cost than the
Greedy solution. From Figures 11 (a) and (b), we can see that
performance ratios for testcases with nonuniform Rh are slightly
higher than for those with uniform Rh. The trend is clearly
shown in Figure 12, in which the performance ratios increase
along with the variance of Rh or, equivalently, α−β. We observe
that the Greedy algorithm outperforms our algorithm as variance
of Rh and µ increases, especially when k is large. This is likely

(a) Uniform Q j (b) Gaussian Q j

(c) Power-law Q j

Fig. 9. Performance ratio of our algorithm versus Greedy for different numbers
of paths (N) and process conditions (µ = 2%/M). Performance ratio smaller
than 1.0 means that the clustering solution obtained by our algorithm is better
than that of the Greedy algorithm.

Fig. 10. As k approaches 1, test costs of both solutions increase faster than the
difference between them. (N = 5000, M = 100, Gaussian process distribution.)

due to the number of total splitting operations in our algorithm
being monotone in k; more splitting operations reduces the
probability of finding an optimal solution. Meanwhile, the trend
of optimality versus k is opposite for the Greedy algorithm,
which is more likely to obtain an optimal solution for k ≈ M.
Also, when α − β is large, many of the process conditions
will have similar paths. Such an instance favors the Greedy
algorithm, which tends to merge highly overlapped clusters.7

Runtime and Performance Ratio Summary. Tables I and II
summarize the average performance ratio and the total CPU
runtime to generate M − 1 clustering solutions for different
testcases. The results show that the runtime of our algorithm
is proportional to µM3N while the runtime of Greedy algorithm
is proportional to M2N. The performance ratios (averaged over
different k) for different testcases range from 0.78 to 1.03.
Choice of Refinement Steps and Number of Starts. Table III

7A metaheuristic that runs both Greedy and our algorithm, and returns the
better solution, may be useful in practice.

(a) Uniform Rh (b) Linearly decreasing Rh
Fig. 11. Performance ratio of our algorithm versus Greedy with Gaussian
process distribution, M = 50 and N = 10000. Performance ratio increases along
with µ for uniform and linear path distributions.

Fig. 12. Performance ratio increases along with the variance of Rh. When
α−β > 50% and k > n/2, our solution from our algorithm has higher cost than
the Greedy solution. Shown: µ = 50%, M = 50, N = 10000, Gaussian process
distribution.
shows that noticeable improvement results from performing a
refinement step (i.e., 0 refinement steps versus 1 refinement
step). However, the incremental improvement reduces
drastically with further increase in the maximum number of
refinement iterations. At the same time, CPU time increases
linearly as we increase the maximum number of refinement
iterations. We believe that using one refinement step is a good
strategy to limit CPU runtime without losing much solution
quality. The bipartitioning operation starts from a single
randomly generated initial solution. We have tried bipartitioning
with multiple initial solutions and choosing the best outcome,
i.e., a multi-start approach. However, since multi-start gives
very little (≈ 1%) improvement over a single start, we do not
pursue this further.

TABLE II
AVERAGE PERFORMANCE RATIO FOR k = 1,2, ...,M AND TOTAL CPU

RUNTIME TO GENERATE M SOLUTIONS. N = 10000.

Uniform Rh Linear Rh
M µ perf. Runtime (s) perf. Runtime (s) α−β

(%) ratio Our work Gd. ratio Our work Gd. (%)
50 4 0.90 446 21 0.90 444 21 8
50 25 0.94 1077 20 0.95 1193 20 50
50 50 0.98 2319 20 1.01 2603 21 50
50 75 1.03 4412 21 1.03 4534 20 50
25 25 0.98 104 5 1.00 113 5 50
50 25 0.94 1076 20 0.95 1193 20 50

100 25 0.93 12836 85 0.95 14874 84 50

B. Experiments with Industrial Testcase
We have also compared our algorithm and the Greedy

algorithm using an industrial testcase obtained from the authors
of [5]. In this testcase, threshold voltage variations of PMOS
and NMOS transistors are considered. The range of threshold
voltage deviation is from -80mV to +80mV for both PMOS

TABLE I
AVERAGE PERFORMANCE RATIO FOR k = 1,2, ...,M AND TOTAL CPU RUNTIME TO GENERATE M SOLUTIONS. UNIFORM PATH DISTRIBUTION (α−β = 0).

Uniform process distribution Gaussian process distribution Power-law process distribution
N M µ performance Our work CPU Greedy CPU performance Our work CPU Greedy CPU performance Our work CPU Greedy CPU

(%) ratio time (s) time (s) ratio time (s) time (s) ratio time (s) time (s)
5000 50 4 0.92 207 10 0.88 206 11 0.91 251.70 10.80
5000 100 2 0.88 1571 43 0.84 1566 44 0.86 1755.90 52.60
5000 200 1 0.85 12845 189 0.78 12826 194 0.81 12633.00 176.10
10000 50 4 0.92 414 21 0.88 423 22 0.92 798.70 36.90
10000 100 2 0.89 3249 89 0.85 3207 91 0.87 4374.80 114.60
10000 200 1 0.85 26476 411 0.80 26552 408 0.83 26644.00 388.10
20000 50 4 0.92 860 43 0.89 853 44 0.92 890.40 40.10
20000 100 2 0.90 7050 194 0.84 7092 204 0.87 7406.60 188.70
20000 200 1 0.86 60398 928 0.80 59216 937 0.84 61543.30 897.90

TABLE III
TRADEOFF BETWEEN IMPROVEMENT AND RUNTIME. INCREMENTAL

IMPROVEMENT IS LESS FOR SUCCEEDING REFINEMENT ITERATIONS.
maximum performance CPU time (s)

refinement iterations ratio Our work Greedy
0 0.963 2.80 10.70
1 0.920 206.70 10.70
3 0.918 506.80 10.70

(∆Vtp) and NMOS (∆Vtp). These ranges of ∆Vtn and ∆Vtp
are each divided into 9 sections, creating 81 process condition
combinations, as shown in Figure 13. For ∆Vtp we adopt the
sign convention that -80mV is “fast” and +80mV is “slow”.
Each process condition is associated with a set of critical paths,
with the total number of critical paths being 6027. Because of
the simple relationship between delay and Vt, in this testcase
the set of paths that are critical (and hence tested) for a given
(∆Vtn,∆Vtp) process condition is a subset of the paths that are
critical at any “dominating” process condition with higher ∆Vtn
and/or ∆Vtp. In other words, the testcase has structure

fpath(∆Vt ′n,∆Vt ′p)⊆ fpath(∆Vtn,∆Vtp)

∀∆Vt ′n ≤ ∆Vtn, ∆Vt ′p ≤ ∆Vtp
(9)

where fpath(∆Vtn,∆Vtp) is the set of critical paths at process
condition (∆Vtn,∆Vtp). The exact number of paths at each
process condition is given in Figure 13: for example, the total
number of critical paths at the SS (+80mV,+80mV) corner is
6027, while the total number of critical paths at the FF (-80mV,
-80mV) corner is 33. In our study, we consider two types of
probability distributions for the process conditions: (1) ∆Vtn and
∆Vtp have independent Gaussian distributions with zero mean
and 20mV standard deviation, and (2) each of the 81 process
conditions is equiprobable.

Since the computation time of our algorithm is mainly spent
on the refinement steps, we experiment with different refinement
settings to study the tradeoff between observed performance
ratio and the CPU resource. Specifically, we perform refinement
only when the number of clusters during partitioning is less than
or equal to a refinement upper bound that takes on values {0, 15,
30, 81}.

Experiment results in Figure 14 show that our algorithm
always achieves a lower test cost than the Greedy algorithm for
both process condition probability distributions. The minimum
values achieved for the relative performance ratio are 0.56
and 0.65 for the Gaussian and uniform process condition
distributions, respectively. Values of performance ratio are
similar for different refinement settings, except for the case

Fig. 13. Number of paths at each condition in the industry testcase supplied by
the authors of [5].

where refinement upper bound = 0 (no refinement) case. This
implies that refinement steps at the beginning of partitioning
(when the number of clusters is small) have more benefit than
later refinement steps.

(a) Gaussian distribution (b) Uniform distribution
Fig. 14. Relative performance ratio of our algorithm versus the Greedy
algorithm with different refinement options and process condition probability
distributions, for an industry testcase received from the authors of [5]. Minimum
achieved values of performance ratio are 0.56 and 0.65 for Gaussian and uniform
process condition distributions, respectively.

Table IV shows incremental benefits of increasing the
refinement upper bound. The performance ratio does not
improve further with refinement upper bound greater than 30.
The data suggest that use of a smaller refinement upper bound
can substantially reduce CPU cost with negligible degradation
of test cost.

C. Testcase-Specific Algorithms

The testcase in Figure 13 has the unique property that
adjacent process conditions (i.e., two process conditions are
next to each other in the gridded 2-D process space) have

TABLE IV
TRADEOFF BETWEEN TEST COST IMPROVEMENT AND RUNTIME,

ACCORDING TO THE REFINEMENT UPPER BOUND. INCREMENTAL BENEFITS

DECREASE WITH FURTHER INCREASES IN THE UPPER LIMIT ON NUMBER

OF CLUSTERS BEING REFINED.
Gaussian Uniform

refine perf. CPU time (s) perf. CPU time (s)
when ratio Our Work Greedy ratio Our Work Greedy
k ≤ 0 0.796 15 36 0.838 15 32
k ≤ 15 0.786 88 36 0.820 87 32
k ≤ 30 0.784 716 36 0.818 627 32

many shared critical paths. The Greedy algorithm in [5]
exploits this property and applies an additional constraint such
that its merging operation only considers adjacent process
conditions. This additional constraint ensures that the Greedy
algorithm only merges process conditions with overlapping
paths. We have implemented this testcase-specific Greedy
clustering algorithm (Greedy+) with the added constraints, and
have compared the performance with the proposed method.
Figure 15 shows that the modified Greedy approach outperforms
our algorithm especially when k is small. This is because our
algorithm ignores the systematic process condition distribution
and randomly selects an initial solution. As a result, the
performance ratio is larger than 1.0 at the beginning and
eventually converges to 1.0 as the number of clusters increases.

(a) Uniform (b) Gaussian

Fig. 15. Relative performance ratio of our algorithm versus the Greedy
algorithm with different refinement options and process condition probability
distributions, for the 9x9 testcase received from the authors of [5].

Fig. 16. Relative performance ratio of our DPRP algorithm versus the Greedy+
algorithm with different process condition probability distributions, for the 9x9
and 33x33 testcases received from the authors of [5]. A higher performance ratio
indicates relatively stronger performance of Greedy+ relative to our algorithm.

To better match the unique properties of the industrial
testcase, we have implemented the dynamic-programming
restricted partitioning (DPRP) approach of [1]. In the DPRP
algorithm, all process conditions in Figure 13 are ordered in
a 1-D array based on the merging sequence of the Greedy+
algorithm. If a merging operation in the Greedy+ algorithm
merges two clusters C1 and C2, then the process conditions of

C1 and C2 are adjacent to each other in the 1-D order (all of
C1’s process conditions follow all of C2’s or vice-versa, with no
intervening other conditions.).

S2 is placed after S1 in the 1-D array. After the merging and
ordering operations, we apply the k-way DPRP algorithm [1] to
partition the 1-D array into k clusters of process conditions to
minimize the expected test cost. Results in Figure 16 show that
the performance ratio of DPRP compared to Greedy+ is always
smaller than 1.0. The minimum performance ratio is 0.95,
which is equivalent to 5% test path reduction. The runtime of
the proposed DPRP algorithm is similar to that of the Greedy+
algorithm, which is proportional to M2N. In our experiments,
the runtime of DPRP is approximately 10% more than that of
Greedy+.

VII. CONCLUSION
In this work, we have studied the path clustering problem

for adaptive test. Via a family of constructions, we show that
the recent Greedy algorithm of [5] can result in test costs at
least twice optimal. To reduce the cost of adaptive test, we
formulate the clustering problem as hypergraph partitioning,
and apply a heuristic in the framework of the classic FM min-cut
bipartitioning algorithm. We show that our method can reduce
test cost by as much as 40% versus the Greedy algorithm for
generated testcases. In case runtime is a concern, we show that
the refinement upper bound parameter in our approach can be
tuned to reduce computation time with little loss of solution
quality. We also observe that while expected complexity of
the adaptive (i.e., process condition-specific) testing reduces
monotonically with increased number of clusters, more clusters
may reduce the efficiency of tester hardware [5]. This tradeoff
between test path reduction and tester efficiency should be
comprehended in setting the target number of clusters.

Finally, our experiments on an industry testcase obtained
from the authors of [5] show that the Greedy+ algorithm (a
modified Greedy algorithm which accounts for relationships
among process conditions) has lower test cost than the FM-
based heuristic, especially when k is small. To improve the
test cost achieved by the Greedy+ algorithm, we have proposed
integration of a DPRP clustering step, which can improve the
test cost of Greedy+ by as much as 5%.

ACKNOWLEDGMENT
We are grateful to Professor Takashi Sato of Kyoto University

for his very helpful correspondence and feedback, and for
providing the testcase from [5].

REFERENCES

[1]C. J. Alpert and A. B. Kahng, “Multi-Way Partitioning Via Spacefilling
Curves and Dynamic Programming”, Proc. Design Automation Conference,
1994, pp. 652-657.

[2]C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for
Improving Network Partitions,” Proc. Design Automation Conference, 1982,
pp. 175-181.

[3]E. N. Gilbert, “Random graphs,” Annals of Mathematical Statistics (30)
(1959), pp. 1141-1144.

[4]M. Shintani, T. Uezono, T. Takahashi, H. Ueyama, T. Sato, K. Hatayama,
T. Aikyo and K. Masau, “An Adaptive Test for Parametric Faults Based on
Statistical Timing Information,” Proc. IEEE Asian Test Symposium, 2009, pp.
151-156.

[5]T. Uezono, T. Takahashi, M. Shintani, K. Hatayama, K. Masu, H. Ochi and T.
Sato, “Path Clustering for Adaptive Test,” Proc. IEEE VLSI Test Symposium,
2010, pp. 15-20.

