
DDRO: A Novel Performance Monitoring Methodology Based on Design-Dependent
Ring Oscillators

Tuck-Boon Chan†, Puneet Gupta§, Andrew B. Kahng‡, Liangzhen Lai∗

UC San Diego ECE†‡ and CSE‡ Departments, La Jolla, CA 92093
UC Los Angeles EE Department§∗, Los Angeles, CA 90095

E-mails: tbchan@ucsd.edu†, puneet@ee.ucla.edu§, abk@cs.ucsd.edu‡, liangzhen@ucla.edu∗

Abstract—As CMOS technology scales, circuit performance
becomes more sensitive to manufacturing and environmental
variations. Hence, there is a need to measure or monitor circuit
performance during manufacturing and at runtime. Since each
circuit may have different sensitivities to process variations,
previous works have focused on synthesis of circuit performance
monitors that are specific to a given design. In this work, we
study the potential benefit of having multiple design-dependent
monitors. We develop a systematic approach to the synthesis of
multiple design-dependent monitors, as well as a corresponding
delay estimation method.

Our approach synthesizes design-dependent ring oscillators
(DDROs) using standard library gates. This has the advantage
of quick design turnaround time and reduced schedule impact,
because the DDRO implementation can leverage automation
in conventional implementation flows. Our delay estimation
method seeks to minimize the number of parameters as well
as computing resources (i.e., to limit information storage and
exchange) used in delay estimation based on monitoring results.
Experiments show that our delay estimation method using
multiple DDROs reduces overestimation (timing margin) by up
to 25% compared to use of a single DDRO.

Keywords— circuit performance monitoring, design for
manufacturing, ring oscillators.

I. INTRODUCTION

Circuit performance variability continues to increase due
to process variability, wide operating ranges, and other
factors. Performance variability can often be compensated
if accurate circuit performance estimation is available. For
example, (1) circuit performance can be estimated early in
the manufacturing flow for process tuning, or (2) circuits
with adaptive mechanisms can optimize the tradeoff between
energy and performance based on feedback from runtime
circuit performance monitors. In this paper, we define circuit
performance monitoring as a process which estimates the worst-
case delay of a circuit, based on measurements obtained from
on-chip monitors.

Previous works on VLSI circuit performance monitoring
can be classified according to the taxonomy shown in
Figure 1. Generic monitors range from simple inverter-based
ring oscillators (ROs) to more sophisticated process-specific
ROs (PSROs) [2] and alternative monitoring structures such
as phase-locked loops (PLLs) [11]. However, such generic
monitors are inadequate to capture design characteristics such as
mix of device types, which cause differing responses to process
variations. As a result, delay estimation using generic monitors
is less accurate and hence incurs larger margins.

Design of monitoring structures that are correlated to circuit
performance (design-dependent monitors) has been addressed in
several ways. Liu and Sapatnekar in [13] propose a method to
synthesize a single representative critical path (RCP) for post-
silicon delay prediction. The RCP is designed such that it is
highly correlated to all critical paths for some expected process
variations. This approach uses only a single RCP to estimate the
worst-case delay of multiple critical paths. Since the critical
paths may have different sensitivities to process variations,
using multiple RCPs can potentially improves delay estimation
accuracy. The tunable replica circuit (TRC) method in [9] can
synthesize different delay paths to more flexibly mimic circuit
performance, but has higher design overhead compared to RO
approaches. TRC also requires costly calibrations to obtain
configurations that correspond to different operating conditions.

By coupling process parameters extracted from parametric
monitors with a design-specific delay model, more accurate
and design-dependent delay estimation can be obtained from
generic test structures [4] [15] [6]. Such an approach is flexible
because an arbitrary delay model can be used and calibrated
post-manufacturing. Meanwhile, parametric monitors can be
designed such that they are highly sensitive to the targeted
process variation. However, this approach requires many
calibrations and resources for storage and computation of
parameters. Another class of design-dependent monitors
[3] [10] [14] [16] [19] [20] estimates circuit performance by
tracking delays of critical paths. Although these monitors show
good estimation accuracies, having a monitor per path incurs
high area overhead as well as longer design turnaround time.

In this paper, we propose a systematic methodology to
synthesize multiple design-dependent ROs (DDROs) for circuit
performance monitoring. A crucial and enabling observation
is that critical path delay sensitivities form natural clusters
(see Figure 4). Therefore, we can capture the design-
specific delay sensitivities by synthesizing a monitor to match

Fig. 1. Taxonomy of performance monitoring methods.

the delay sensitivities of each cluster. This approach has a lower
implementation overhead compared to tracking each critical
path because the number of clusters is much smaller than the
number of critical paths.

Our DDRO approach offers several potential benefits
compared to previous works. First, DDROs are more accurate
compared to conventional ROs because they are synthesized
to match the delay sensitivities of critical paths. Second,
DDROs are more accurate compared to a single representative
critical path because multiple DDROs are used to account for
the differences between critical paths. Third, DDROs are less
intrusive compared to in-situ monitoring methods. Fourth,
DDROs can be used during early manufacturing stages since
the DDRO routing can be limited to local metal layers. Fifth,
the total number of ROs (silicon area) is greatly reduced due to
the clustering of critical paths. Only a few DDROs are required
to provide accurate delay estimation. Finally, DDROs can be
used for both early process tuning and real-time performance
monitoring. Switching the monitoring purpose is simply a
matter of redefining target variation sources (manufacturing or
real-time variations) with minimal design modifications.

Our experimental results below show that use of multiple
DDROs can reduce delay overestimation by 15% - 25%
compared to use of only one DDRO. Additional results show
that the mean delay overestimation of our delay estimation
method has negligible difference compared to a reference
method, but the number of parameters used by our estimation
method is significantly reduced compared to the reference case.
Our contributions are summarized as follows.
• We propose a systematic methodology to design multiple

DDROs for chip frequency estimation. Experiments show that
using from 3 to 7 DDROs can achieve similar performance as
“perfect” replica-based monitors.

• We propose a method to estimate chip delay and minimize
guardband margin by using multiple DDRO measurements,
within practical limits on information exchange between
design and manufacturing.
In the following, Section II gives an overview of our

methodology. We present two delay estimation methods in
Section III. In Section IV, we discuss implementation details of
DDRO synthesis. In Section V, we present experimental data to
illustrate the use of DDROs to estimate circuit timing. Finally,
we summarize our conclusions and future work in Section VI.
All notations in this paper are defined in Table I.

II. OVERVIEW OF DDRO APPROACH

An overview of our monitoring strategy is shown in Figure 2.
First, we extract critical paths of a design and characterize their
delay sensitivities to variation sources. Delay sensitivity of
path i (Vpath

i) is obtained using finite differences, i.e.,

Vpath
i =

[
dpath

i1 −dnom
i

dnom
i

. . .
dpath

iQ
−dnom

i

dnom
i

]
(1)

where dpath
ij is the delay of path i when the jth variation

source is biased by +1σ from its nominal value, and dnom
i is

the nominal delay of path i. Second, we cluster the critical
paths based on their path sensitivities, and synthesize DDROs
to match delay sensitivity of the clusters. By matching DDRO
and cluster delay sensitivities, we ensure that the synthesized

TABLE I
GLOSSARY OF TERMINOLOGY

Term Description
wi Probability that critical path i fails to meet circuit timing
Z User-defined confidence, 0 ≤ Z < 1
sh Total number of gate modules h in a DDRO
zh Indicates whether gate module j is inverting
h Index for gate instance or gate module
i Index for path
j Index for variation source
k Index for DDRO
x Index for cluster
N Total number of critical paths
H Total number of gate instances
Q Total number of variation sources
M Total number of DDROs
Y Total number of gate module types
dnom ro

k Nominal delay of DDRO k
dnom clust

x Nominal delay of a cluster x

dnom path
i Nominal delay of path i

dnom gate
h

Nominal delay of gate h
dro

k Delay of DDRO k
dclust

x Delay of a cluster x

dpath
i Delay of path i

dmax Maximum delay of a chip
d′max Estimated maximum delay of a chip
dpath

ij Delay of path i when variation source j is = +1σ

Vro
k Delay sensitivity of DDRO k to all Q variation sources

Vmax
x Delay sensitivity of cluster x to all Q variation sources

Vpath
i Delay sensitivity of path i to all Q variation sources

Vres clust
x Residue of delay sensitivity in a cluster x

Vres path
i Residue of delay sensitivity of path i

Vgate
h

Delay sensitivity of gate module h to all Q variation sources
bik Constant coefficient
lb Lower bound of bik
ub Upper bound of bik
axk Constant coefficient
R Correlation matrix for local path delay variation
G Global variation vector with Q variation sources
lpath
i Local variation of path i
ui Uncertainty of delay estimation for path i
rx Local delay variation of cluster x
N (·, ·) Gaussian random variable
σ(·) Standard deviation function
µ(·) Expectation (mean) function
erf(·) Error function of Gaussian distribution
P (·) Accumulative probability function

DDROs have good correlation with the critical paths. Since
we use only standard cells (gates) to synthesize the DDROs,
the design and placement of DDROs can be easily integrated
with conventional implementation flows. Based on DDRO
frequencies, we can estimate chip delay during manufacturing
or runtime.

A circuit performance monitor typically feeds back the
estimated delay with some margin to reduce the probability of
reporting an underestimated delay value. However, the margin
should be minimized to avoid significant performance loss due
to a pessimistic delay estimation. Thus, we define the goal of
circuit performance monitoring as:

minimize: µ(d′max − dmax)

subject to: P (d′max ≥ dmax) > Z
(2)

Here dmax = maxN
i=1{d

path
i }, where dmax is actual chip

delay, d′
max is the estimated chip delay, dpath

i is the delay of
the ith critical path, µ(d′max−dmax) is the expectation of delay

Fig. 2. Overview of DDRO design methodology.

overestimation, P (d′max ≥ dmax) is the probability that d′
max

is larger than dmax, N is the total number of critical paths of a
chip, and Z is a user-specified confidence.

III. PROPOSED METHOD

A. Delay and Variation Model

In this work, we use the variation model in [7], whereby
lot-to-lot, wafer-to-wafer, and die-to-die process variations are
lumped and modeled as global variation of a chip. The
global variation also includes supply voltage and temperature
fluctuations. Within-die gate delay mismatch is modeled as
uncorrelated Gaussian random variables. Spatial correlation is
ignored in the current work as it is small for most chips [7].
When the effect of spatial correlation is significant, DDROs can
be distributed within a die as in [17] to improve correlations
between DDROs and critical paths. The critical path delay is
represented as a linear function of the variation sources, i.e.,

dpath
i = dnom path

i (1 + Vpath
i ·G + lpath

i)lpath
1

...
lpath
N

 = R

N (0, 1)
...

N (0, 1)

 (3)

where G is a [Q × 1] vector that represents the global variation
of Q variation sources, lpath

i is local delay variation of the ith

path, R is the correlation matrix for local delay variation, and
N (0, 1) are independent Gaussian random variables.

To verify the accuracy of our delay model, we first simulate
a critical path using HSPICE [24] with a set of random global
variations (100 trials)1. Then, we compare the simulated path
delays with the ones calculated from the linear delay model in
(3). Figure 3 shows that path delays obtained from the linear
model correlate very well with those from HSPICE simulation.

For DDROs, we use the same delay model as in (3). Since
each RO has many identical gates, uncorrelated local variation
is insignificant due to averaging of uncorrelated delay deviation.
Therefore, we do not model local variation in the DDROs, i.e.,

dro
k = dnom ro

k (1 + Vro
k ·G) (4)

where dnom ro is the nominal delay of the DDRO (obtained
from simulation) and Vro

k is a [1 × Q] vector that represents
delay sensitivity of the kth DDRO to global process variations.

1Variation sources are listed in Table II.

Fig. 3. Rank correlation between delays obtained from HSPICE simulation and
linear delay model.

B. A Reference Approach

A straightforward delay estimation method is to extract global
variation using multiple process variation-specific monitors and
calculate chip delay based on the linear delay model in (3).
In other words, monitoring methods in [4] [15] and [6] can
be combined and extended for delay estimation. However,
we use this approach only as a reference because it requires a
large amount of memory to store parameters, as well as long
computation time.

Given M DDROs, we can represent Vpath
i as a linear

combination of Vro
k (k = 1, ...,M) to utilize measurements

from the DDROs:

Vpath
i =

M∑
k=1

bik ·Vro
k + Vres path

i (5)

where bik is a [1 × M] matrix containing constant coefficients
and Vres path

i is a [1 × Q] matrix that represents the residue.
Substituting Vpath

i in (3) as a linear combination of Vro, we
obtain

dpath
i = dnom path

i (1 +
M∑

k=1

measurable︷ ︸︸ ︷
(bikVro

k ·G) + ui︸︷︷︸
uncertainty

)

where ui = lpath
i + Vres path

i ·G

(6)

Equation (6) shows that dpath
i consists of a measurable term and

an uncertainty term. While the value of the measurable term
can be determined from the delays of DDROs, the value of the
uncertainty term cannot be measured directly. Since a larger
ui leads to a larger d′

max − dmax in (2), we should choose the
value of bik to minimize ui.

Assuming that G is multivariate Gaussian, we can calculate
the distribution of dmax using the method in [18] based on (6)
and (3). I.e., we repeatedly approximate the maximum of two
path delays as a Gaussian distribution by matching the first two
moments. After that, we can approximate the maximum delay

dmax as a Gaussian distribution2.

dmax =
N

max
i=1

{N (µ(dpath
i), σ(dpath

i)),R}

≈ N (µ(dmax), σ(dmax))
(7)

where µ(dpath
i) and σ(dpath

i) are the mean and standard
deviation of the ith path delay. Given µ(dmax) and σ(dmax),
d′

max can be readily obtained using the erf function for
Gaussian distribution:

erf(
d′

max − µ(dmax)
σ(dmax)

) > Z. (8)

C. Clustering

The next step is to minimize delay margin and find Vro
k .

Equations (7) and (8) show that the value of d′
max is mainly

determined by the Vres path, i.e., a larger Vres path will
increase the magnitude of σ(dpath

i), which leads to a larger
d′

max. Therefore, it is desirable to select Vro that minimizes
Vres path. We find Vro

k by clustering critical paths with similar
Vpath into the same group, then assigning the centroid of the
cluster as Vro

k . To cluster the paths, we use the kmeans++
algorithm in [1] and choose the best clustering solution in 100
random starts. The objective function of the clustering is defined
as

minimize
N∑

i=1

(wi × |Vpath
i −Vro

k |) (9)

where the summation is taken over paths i in cluster k, and wi

is the probability of a critical path delay exceeding the clock
period of the design. The weight factor wi is added so that
we can impose a higher penalty for having mismatched delay
sensitivities on a path with higher probability to fail (less timing
slack). Based on the delay model in (3) and the distribution
of variation sources, we can calculate the delay distribution of
path i and extract wi. Since the upper bound for Vres path

i is
defined by Vpath

i − Vro
k , minimizing the cost function in (9)

helps reduce the upper bound of Vres path. An example output
of our clustering is shown in Figure 4.

(%
)

te
m
p
(

1.0

ti
vi
ty
 –

0 5

y
se
ns
it 0.5

D
el
ay

0.0

D l iti it Vdd (%)
‐3.5 ‐3.0 ‐2.5

Delay sensitivity – Vdd (%)
Fig. 4. Every dot in the figure represents a critical path’s delay deviation
for 20mV deviation in supply voltage (Vdd) and 15 degrees C deviation in
temperature (temp). The critical paths are extracted from an ARM M3 processor
(45nm technology) and simulated using HSPICE. We cluster the paths into 5
clusters and label them by different colors. The centroid of each cluster is
marked by a black cross.

2In our experiments, calculating the maximum delay distribution of several
hundreds of critical paths takes up to a minute of CPU time.

D. Proposed Delay Estimation Method

The reference method requires N × (M + H) parameters for
runtime delay estimation. To reduce the number of parameters,
we propose to design DDROs such that each of them is similar
to the maximum delay distribution of each cluster. We calculate
the maximum delay of paths in each cluster using the method in
[18], assuming that the means of path delays correspond to their
nominal values. The outcome of this step gives us the expected
maximum delay. But more importantly, it also extracts the
sensitivity of the maximum delay to variation sources (Vmax).
Similar to the reference approach, we represent Vmax as a
function of Vro:

Vmax
x =

M∑
k=1

{axkVro
k }+ Vres clust (10)

where axk is a constant coefficient, and Vres clust is the
mismatch between Vmax

x and Vro. Note that when Vro is
equal to Vmax, Vres clust = 0. However, the synthesized Vro

is usually slightly different from Vmax. Thus, having axk is
useful to reduce Vres clust. The approximate delay of cluster x
is given by

dclust
x = dnom clust

x (1 +
M∑

k=1

{axk ·Vro
k ·G}

+ Vres clust ·G + rx)

(11)

where dclust
x denotes the delay of the xth cluster, dnom clust

x

represents the nominal delay of the xth cluster, and rx represents
the random local delay of the xth cluster. After measuring
DDROs, we can calculate the maximum delay distribution of
a chip dmax as

σ(dclust
x) = {σ(||Vres clust ·G||)2 + σ(rx)2} 1

2

µ(dclust
x) = dnom clust

x (1 +
M∑

k=1

axkVro
k ·G)

dmax =
M

max
x=1

{N (µ(dclust
x), σ(dclust

x))}.

(12)

Then, based on the distribution of dmax, we can find the value
of d′

max as in (8).
Using this approximation method, the total number of

parameters reduces from N(1 + M + H) to M(2 + M), where
M << N << H . Moreover, the number of operations for to
calculate maximum of two delay distributions during runtime is
reduced from log(N) to log(M). For small M , this method can
be implemented in hardware. Clearly, this estimation method is
faster and more hardware resource-efficient than the reference
method. As we will show later, the estimation error of this
approximation approach compared to the reference method is
very small.

IV. SYNTHESIS OF DDROS

A. ILP Formulation

Given a delay sensitivity target (Vro), we want to choose
the number of each gate module in a DDRO, so that the delay
sensitivities of the DDRO match the targeted delay sensitivities.

Since each gate module type is instantiated a discrete number
of times, we formulate DDRO synthesis as an integer linear
programming (ILP) problem:

min.:
∣∣ Y∑

h=1

{dnom gate
h × sh} ×Vro

−
Y∑

h=1

{dnom gate
h × sh ×Vgate

h }
∣∣

s.t.:
Y∑

h=1

dnom gate
h × sh ≥ minimum DDRO delay

Y∑
h=1

sh ≤ maximum gate count

∑Y
h=1 zh − 2sinv = 1

sinv ≥ 0
}

ensure RO oscillates

(13)

where dnom gate
h is the nominal delay of candidate gate type

h and sh is the integer variable that indicates the number of
copies of gate type h in the DDRO. Y is the total number of
gates allowed, zh is a binary variable that indicates whether
gate h is inverting, and sinv is a positive integer variable.
In our experiments, solving the ILP with the public-domain
solver [12], takes about one hour on a 3GHz single-core CPU.

Instead of minimizing the difference in relative delay
sensitivity, the formulation in (13) minimizes the absolute delay
sensitivity so that the objective function is linear in sh. This
favors a solution with a smaller DDRO nominal delay, which
may be suboptimal. To compensate this inherent bias in the
ILP, we add a constraint to define the minimum DDRO delay.
We then sweep the value of minimum DDRO delay at 10 evenly
spaced intervals along its feasible range.

B. Practical Considerations

Selecting major variation sources: To identify major variation
sources that affect delay sensitivity, we simulate a seven-stage
RO using HSPICE, and perturb each variation source one at a
time. Based on the results in Figure 5, we can see that most of
the variation sources have noticeable effect on the delay except
for Cgdl, Cgdo and Cjswg . Therefore, we only consider 12 out
of the 15 major variation sources, summarized in Table II. We
do not include second-order sensitivities to the variation sources
because their magnitudes are very small. This assumption is
supported by the experiment data in Figure 3.

In our experimental setup, the impact of interconnect is
modeled by parasitic resistance and capacitance extracted from
design layout. However, we do not model interconnect as a
variation source because its impact is relatively small compared
to that of active devices [5]. If interconnect variations are to
be included, the DDRO must be built with gate modules (see
Figure 6) that are sensitive to interconnect variations. While
this can be achieved by connecting the standard cells in gate
modules with interconnects at higher metal layers, in such a case
DDROs cannot be measured at an early manufacturing stage,
making short-loop process monitoring infeasible.

3Where not mentioned, the σ values of variation sources are taken from a
commercial 45nm process.

Fig. 5. Delay sensitivities of an RO to different variation sources show that most
of the sources have noticeable effect except for Cgdl, Cgsl and Cjswg .

TABLE II
LIST OF VARIATION SOURCES

Variation source Descriptions3

Vdd Supply voltage. Vdd nominal (Vnom) is 0.9V,
3σ = 0.05× Vnom = 45mV .

Temperature Ambient temperature. Nominal temperature = 25oC,
3σ = 30oC.

Cgdo MOSFET gate overlap capacitance at drain junction
Cgso MOSFET gate overlap capacitance at source junction
Rdsw Channel series resistance per unit width
µ0 Mobility of MOSFET
Lgate MOSFET gate length
Tox Oxide thickness of MOSFET
Rvtn Threshold voltage of RVT NMOS
Rvtp Threshold voltage of RVT PMOS
Hvtn Threshold voltage of HVT NMOS
Hvtp Threshold voltage of HVT PMOS

Characterizing gate sensitivity: Our ILP formulation in (13)
assumes that delay sensitivity of a gate is insensitive to other
gates connected before and after it. This is a key assumption
that simplifies the problem. If we model Vgate as a function
of its adjacent gate type, the total number of variables and the
design space become intractable.

To decouple the load and slew interaction between the gates,
we introduce gate modules as basic building blocks for DDRO.
A gate module is defined as several identical gates connected
in series as illustrated in Figure 6. Simulation results in Figure
7 show that the sensitivity difference due to different input slew
and output load is reduced from 0.15% to 0.03%, as the number
of stages in a gate module increases from 1 to 15. In this work,
we use 5-stage gate modules as a tradeoff between stability of
sensitivity and total area of a gate module.

Vdd
enable

node1 node2 node3 node4

Gate module

Connect to
other modules

Gate module

Fig. 6. Illustration of a gate module in a DDRO.

To further reduce the effect of output load, we carefully select
the candidate gate types such that each of them has similar gate
capacitance. Since the interconnect is also important for path
sensitivity, we use two types of interconnect lengths in building

0.03%0.08%

0.15%

Fig. 7. Simulation results show that the sensitivities under different input
slews {5ps, 50ps} and output loads {FO1, FO5} combinations converge as the
number of stages in a gate module increases.

our gate modules, i.e., the interconnect between consecutive
gates in a module can be either short (5µm) or long (20µm).
All interconnects in a gate module have the same length and gate
modules with different interconnect lengths are considered to be
of different instance types even if they have the same gate type.
Extra input pins of a multi-input gate are assigned to high or low
to make a gate module inverting or buffering (see Figure 6).

Extracting bik and axk: Section III, represented Vpath

and Vmax as linear combinations of Vro
k , using bik and axk,

respectively. The challenge in this step is to find the values
of bik (resp. axk) such that the resulting residue, Vres path

(resp. Vres clust), is minimized. It is important to note
that critical path and DDRO delays have nonlinear dependence
on parameters in Table II, and that they are subjected to
process and environment variations. Thus, solving (5) and (10)
using simple least-squares fitting can lead to large bik (resp.
axk) value, which may magnify the noise from DDRO. For
example, Figure 8(a) shows that solving (5) using a linear
least-squares method (without constraints on bik) leads to little
delay overestimation when we consider global variation only.
However, this is not true when we repeat the experiment with
global and local variations, as well as other variations that are
absent in our delay model.

To reduce the impact of large bik (resp. axk) values, we
solve the extraction problem using linear programming and
apply constraints to bound bik (resp. axk). The optimization
formulation that we use is

min.:

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Vpath

1
...

Vpath
N

−


∑M

k=1 b1kVro
k

...∑M
k=1 bNkVro

k


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

s.t.: lb ≤ bik ≤ ub,∀ i, k

(14)

Since delay sensitivity mismatch between the critical paths
and

∑M
k=1 bikVro

k is represented as a [N × Q] matrix, we use
Frobenius norm function in (14) to account for each entry in
the matrix. We solve the problem using the optimizer in [25],
setting ub as 1 and lb as −0.5. Results in Figure 8(b) show that
with the constraints in (14), the delay estimation becomes less
sensitive to circuit nonlinearity and other variations.

V. EXPERIMENTAL RESULTS

To validate our performance monitoring methodology, we
synthesize, place and route three benchmark circuits using a

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

1 3 5 12
0

2

4

6

8

10

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(a) Linear model results (left) vs. HSPICE results (right) without constraints on bik
for MIPS testcase.

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

1 3 5 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(b) Linear model results (left) vs. HSPICE results (right) with constraints on bik
for MIPS testcase.

Fig. 8. In case (a), bik is extracted using linear programming without
constraints. Linear model simulation results show that mean delay estimation
reduces as the number of clusters increases. However, the HSPICE simulation
results show a drastic increase in overestimation due to variations and
nonlinearity unmodeled by the linear model. In case (b), simulation results
based on bik extracted with constraints (14) shows that linear model and
HSPICE results are similar. This suggests that bik must be extracted with
constraints so that the mean delay overestimation is less sensitive to variations
and nonlinearity.

TABLE III
PHYSICAL IMPLEMENTATION RESULTS OF BENCHMARK CIRCUITS. A

PATH IS CONSIDERED TO BE CRITICAL WHEN ITS TIMING SLACK IS LESS

THAN 10% OF THE SS CORNER CLOCK PERIOD. CRITICAL PATHS ARE

EXTRACTED AT BOTH FF AND SS CORNERS TO CAPTURE THE SLOWEST

PATHS AT DIFFERENT PROCESS CONDITIONS.
Benchmark Total number Clock period Number of

circuits of cells at SS corner critical paths
M0 8169 500ps 218

MIPS 8283 450ps 107
AES 10634 600ps 420

commercial 45nm technology. Details of the implemented
benchmark designs are listed in Table III. The benchmark
circuits are obtained from ARM [26] and Opencores [27]. Then,
following the proposed DDRO design flow in Figure 2, we
extract delay sensitivity of each critical path to each of the
variation sources in Table II using HSPICE. Note that HSPICE-
based sensitivity characterization is not mandatory in our design
flow, and that it can be replaced by other methods (e.g., the
statistical method in [20]).

To evaluate the quality of our DDRO synthesis and delay
estimation methodologies, we run Monte Carlo experiments on
the critical paths and DDROs. Since each critical path is defined
for a specific input and simulated independently, we cannot
capture the correlation of local variation due to gate sharing. As
an alternative, we run another set of Monte Carlo experiments
using the linear model in (3). In both simulations, we use
the path and DDRO delay sensitivities extracted from HSPICE

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(a) AES

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(b) M0

1 3 5 7 12
0

0.5

1

1.5

2

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(c) MIPS
Fig. 9. Linear model simulation results with global variations only and constrained bik (ub = 1, lb = −0.5).

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(a) AES

1 3 5 7 12
0

1

2

3

4

5

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(b) M0

1 3 5 7 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(c) MIPS
Fig. 10. Linear model simulation results with global and local variations, and constrained bik (ub = 1,lb = −0.5).

1 3 5 12
0

0.5

1

1.5

2

2.5

3

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(a) AES

1 3 5 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(b) M0

1 3 5 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

(c) MIPS
Fig. 11. HSPICE results with constrained bik for global and local variations.

simulation results to minimize the discrepancy between them. In
the linear model experiment, we sample the values of variation
sources by using the Gaussian random number generator in
Matlab [23]. In HSPICE simulation, we use the built-in Monte
Carlo setup in the 45nm commercial device model. The
number of trials in the Monte Carlo experiment is 1000 and 100
for the linear model and for HSPICE simulation, respectively. In
all experiments, we set the user-specified confidence Z = 99%.

A. Simulation Results

Experiments using linear model: The simulation results in
Figure 9 and 10 show that our approximate delay estimation
method achieves similar results compared to the reference
method. The results also show that mean delay overestimations
of all benchmark circuits decrease noticeably as the number of
clusters increases from 1 to 12. This confirms our hypothesis
that having multiple DDROs that correlate well with the critical
paths can reduce chip delay overestimation. The results also
show that delay overestimation is nonzero even when the
number of DDROs = 12. This is because Vres path and Vclust

are nonzero when we apply constraints in the bik and axk

extractions.
We further observe that the benefit of using multiple DDROs

is more significant when the local variation is relatively less
compared to the global variation. This is because replica-

like monitors (e.g., PSRO, DDRO, PLL) can only replicate the
impact of global variation on critical paths. If local variation
dominates, more intrusive monitoring is required to measure the
impact of local variation.

Based on the simulation results with global and local
variations, minimum delay overestimations for the AES, M0
and MIPS testcases are 2.4%, 2.6% and 3.3%, respectively. Note
that the values of minimum delay overestimation correlate with
the clock period of the benchmark circuits (see Table III), which
is related to the magnitude of local variations. This suggests
that the achievable minimum delay overestimation is limited
by the local variation of a design. Therefore our performance
monitoring method may be more suited for low-speed designs
with longer critical paths that are less susceptible to local delay
variations.

HSPICE Simulations: The HSPICE results in Figure 11 are
mostly similar to the linear model results. Several sources of
inaccuracies contribute to the discrepancies between HSPICE
and linear model results. First, our delay estimation does not
account for nonlinearity in circuit delay. Although we have
shown that the impact of nonlinearity is small (Figure 3), small
errors from nonlinearity could be magnified by bik or axk. In
other words, due to circuit nonlinearity, the delay estimation
is sensitive to the extraction of bik and axk. For example, the

MIPS benchmark circuit has a higher overestimation when the
number of DDROs is 12. This is an artifact of the constraints in
(14), whereby a tighter constraint can reduce delay estimation
quality (see Figure 12). We leave understanding of the tradeoff
between estimation quality and robustness for future work.

1 3 5 12
0

1

2

3

4

number of clusters

m
e
a
n

o
v
e
r
e
s
t
i
m
a
t
i
o
n

(
%
)

reference this work

Fig. 12. After applying tighter constraints ub = 1 and lb = −0.1 for MIPS,
the HSPICE results with global and local variations become less sensitive to
variations and unmodeled nonlinearity.

Despite a user-specified confidence of 99%, the results show
2.5% and 5.3% of instances (chips) being underestimated
in the linear model and HSPICE experiments, respectively.
Since the results of the linear model experiment are free
from nonlinearity error, the underestimation error is mainly
due to the approximation in the statistical maximum function
given by [18]. The HSPICE results have more underestimated
instances because local variation is not modeled correctly, i.e.,
HSPICE simulates critical paths with uncorrelated local random
variation but our delay estimation accounts for correlation
between local variations. As a result, our delay estimates are
slightly smaller than the path delays obtained from HSPICE
simulation.

VI. CONCLUSION
In this paper, we have proposed methods to systematically

design multiple DDROs, and to estimate circuit performance
(chip delay) based on the measurements from the multiple
DDROs. Our study shows that by using multiple DDROs we
can reduce up to 25% (from 4% to 3%) of the mean delay
overestimation of a design. We also show that our delay
estimation method can achieve similar results as the reference
method with significantly less parameters. Therefore, our
method is more amenable to hardware implemention.

We also observe that the benefit of using replica-like monitors
(such as DDROs) is more significant when the local variation is
relatively less compared to the global variation. If local variation
dominates, then in-situ monitoring, though expensive, will fare
better. With shrinking feature dimensions, increasing wafer
sizes and changing device structures (e.g. fully depleted SOI,
FinFETs), it is difficult to project which of the two components
of variation is going to dominate in future technologies.

To verify the performance of DDRO and the proposed delay
estimation approach, we have taped out a testchip using 45nm
technology together with an ARM CORTEX M3 CPU. Ongoing
work also addresses (1) the tradeoff between estimation quality
and robustness during bik and axk extraction; and (2) silicon
measurements from our testchip.

ACKNOWLEDGMENTS
This work is supported in part by SRC, the UC Discovery

program IMPACT center, and NSF Variability Expedition grant
CCF-1029030.

REFERENCES

[1] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful
Seeding”, Proc. ACM-SIAM Symposium on Discrete Algorithms, 2007, pp.
1027-1035.

[2] M. Bhushan, A. Gattiker, M. Ketchen and K. K. Das, “Ring Oscillators
for Cmos Process Tuning and Variability Control”, IEEE Transactions on
Semiconductor Manufacturing 19(1) (2006), pp. 10-18.

[3] T. Black, “A Critical Path Based Parametric Ring Oscillator”, Master’s
Thesis, Texas Tech University, 2000.

[4] L. M. Burns, L. Dauphinee, R. A. Gomez and J. Y. C. Chang, “Process
Monitor for Monitoring and Compensating Circuit Performance”, U.S.
Patent No. US7375540B2, May 2008.

[5] T.-B. Chan, R. S. Ghaida and P. Gupta, “Electrical Modeling of
Lithographic Imperfections”, Proc. IEEE/ACM International Conference on
VLSI Design, 2010, pp. 423-428.

[6] T.-B. Chan, A. Pant, L. Cheng and P. Gupta, “Design Dependent
Process Monitoring for Back-End Manufacturing Cost Reduction”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2010, pp.
116-122.

[7] L. Cheng, P. Gupta, K. Qian, C. Spanos and L. He, “Physically Justifiable
Die-Level Modeling of Spatial Variation in View of Systematic Across
Wafer Variability”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 30(3) (2011), pp. 388-401.

[8] B. Das, B. Amrutur, H. Jamadagni, N. Arvind and V. Visvanathan,
“Within-Die Gate Delay Variability Measurement Using Reconfigurable
Ring Oscillator”, IEEE Transactions on Semiconductor Manufacturing
22(2) (2009), pp. 256-267.

[9] A. Drake, R. Senger, H. Singh, G. Carpenter and N. James,
“Dynamic Measurement of Critical-Path Timing”, Proc. IEEE International
Conference on Integrated Circuit Design and Technology and Tutorial,
2008, pp. 249-252.

[10]D. Fick, N. Liu, Z. Foo, M. Fojtik, J.-S. Seo, D. Sylvester and D. Blaauw, “In
Situ Delay-Slack Monitor for High-Performance Processors Using An All-
Digital Self-Calibrating 5ps Resolution Time-to-Digital Converter”, Proc.
IEEE International Solid-State Circuits Conference, 2010, pp. 188-189.

[11]K. Kang, S. P. Park, K. Kim and K. Roy, “On-Chip Variability Sensor
Using Phase-Locked Loop for Detecting and Correcting Parametric Timing
Failures”, IEEE Transactions on Very Large Scale Integration Systems 18
(2010), pp. 270-280.

[12]lp solve reference guide. http://lpsolve.sourceforge.net/5.5/ .
[13]Q. Liu and S. S. Sapatnekar, “Capturing Post-Silicon Variations Using

a Representative Critical Path”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 29(2) (2010), pp. 211-222.

[14]H. C. Ngo, G. D. Carpenter, A. J. Drake and J. B. Kuang, “Circuit
Timing Monitor Having a Selectable-Path Ring Oscillator”, U.S. Patent No.
US7810000B2, October 2010.

[15]D. J. Philling and C. Talledo, “In-Situ Monitor of Process and Device
Parameters in Integrated Circuits”, U.S. Patent No. US7583087B2,
September 2009.

[16]K. Shaik, “Implementation of a Critical Path Based Parametric Ring
Oscillator”, BSEE Thesis, Texas Tech University, 2011.

[17]A. Tetelbaum and S. Chakravarty, “Electronic Design Automation Tool and
Method for Optimizing the Placement of Process Monitors in an Integrated
Circuit”, U.S. Patent Application No. US20090282381, November 2009.

[18]C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan,
D. K. Beece et al., “First-Order Incremental Block-Based Statistical Timing
Analysis”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(10) (2006), pp. 2170-2180.

[19]X. X. Wang, M. Tehranipoor and R. Datta, “Path-RO: a Novel On-
Chip Critical Path Delay Measurement Under Process Variations”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2008, pp.
640-646.

[20]L. Xie and A. Davoodi, “Representative Path Selection for Post-Silicon
Prediction Under Variability”, Proc. ACM/IEEE Design Automation
Conference, 2010, pp. 593–599.

[21]J. Xiong, V. Zolotov, N. Venkateswaran and C. Visweswariah, “Criticality
Computation in Parameterized Statistical Timing”, Proc. ACM/IEEE Design
Automation Conference, 2006, pp. 63-68.

[22]Synopsys PrimeTime User’s Manual. http://www/synopsys.com/ .
[23]Mathworks Matlab documentation. http://www/mathworks.com/help/techdoc/ .
[24]Synopsys HSPICE User’s Manual. http://www/synopsys.com/ .
[25]CVX: Matlab Software for Disciplined Convex Programming.

http://cvxr.com/cvx/ .
[26]ARM Cortex-M0 processor. http://www.arm.com/products/processors/cortex-

m/cortex-m0.php .
[27]http://opencores.org

