
Performance and Variability Driven Guidelines for BEOL
Layout Decomposition with LELE Double Patterning

Tuck-Boon Chan†, Kwangok Jeong† and Andrew B. Kahng†‡

†ECE and ‡CSE Depts., University of California at San Diego, La Jolla, CA USA 92093

Abstract
Litho-etch-litho-etch (LELE) double patterning lithography (DPL) is a strong candidate for BEOL patterning at the 20nm
logic half-node (sub-80nm pitch). In double patterning lithography, layout pattern features must be assigned opposite
colors if their spacing is less than the minimum coloring spacing. However, complex layouts usually have features that
are separated by less than the minimum coloring spacing for any coloring assignment. To resolve the minimum coloring
spacing constraint, a pattern feature (polygon) can be split into two different-color segments, introducing a stitch at the
splitting location. Although many DPL layout decomposition heuristics have been proposed, the impact of stitches on
circuit performance is not clearly analyzed. In this work, we study the impact of stitches on BEOL electrical performance
based on analytical RC equations. Our studies with 45nm (commercial) and 22nm (ITRS) technology parameters show
that (1) optimal stitching location can reduce delay variation by 5%, and (2) introducing redundant stitches (i.e., splitting
an interconnect segment intentionally) can potentially reduce circuit delay variation.

1. INTRODUCTION
In litho-etch-litho-etch (LELE) double patterning lithography (DPL), layout patterns are decomposed into two masks –
denoted henceforth as Color 1 and Color 2 – such that all polygons on a given mask satisfy an inter-polygon minimum
spacing requirement. If a spacing violation, or coloring conflict, arises during decomposition, a polygon (net) can be split
into two different-color segments to resolve the violation; this introduces a stitch where the two segments are overlapped
to avoid disconnection due to overlay and/or line-end shortening. Each segment has different parasitic resistance (R) and
capacitance (C), and a stitch also affects total RC delay values of the net, depending on its color, geometric dimensions,
overlay, stitching location and length, etc.

In this work, we study the impact of stitch insertion on interconnect RC as well as on circuit performance. Our
motivation is that Color 1 and Color 2 interconnect segments have independent CD distributions (bimodal CD distribution)
due to two independent exposures in DPL. Gupta et al.5 note that bimodality of CD variation on poly-silicon features
causes delays across spatially adjacent transistors have less correlation. When a signal path passes through the transistors,
its delay variability is reduced due to the averaging of uncorrelated transistor delays. Following the observation that
bimodality of CD variation can reduce delay variability, we study the impact of stitching insertion, which induces
bimodality in interconnects.

Conventional layout decomposition algorithms2, 3, 8 focus on solving the color assignment problem, and ignore the
impact of stitches on circuit performance. Yang et al.12 propose a multi-objective layout decomposition framework
that accounts for circuit timing. In their algorithm, stitching locations are defined based on the result of initial layout
segmentation. Their experimental results show that introducing more stitches (at arbitrary locations on interconnect) help
reduce circuit delay variation. However, detailed analysis for stitch insertion is not discussed. Oosten et al.9 study overlay
margin in stitch insertion but do not extend their work on the impact of stitching on circuit performance.

Our studies using 45nm (commercial) and 22nm (ITRS) technology parameters show that 3σ delay variation varies
by as much as 5% when a stitch location is swept along an interconnect. We notice that delay variations are higher
when a stitch is located at the driver or receiver end, but lower in the middle. This is because the split segments have
different colors and their RC values deviate differently under lithographic variations. Due to the averaging effect across
the segments, the delay deviations compensate each other and reduce overall delay variation of the interconnect. This
result suggests a design guideline whereby timing-critical routes in dense patterns should preferentially receive stitches to
reduce delay variation in the regime of combined CD bimodality and overlay error.
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The remainder of this paper is organized as follows. Section 2 introduces analytical formulas to evaluate interconnect
RC values and their variations. Section 3 shows the impact of stitching location on interconnect RC and circuit performance.
Section 4 summarizes guidelines for DPL layout decomposition and concludes the paper.

2. RESISTANCE AND CAPACITANCE VARIATION MODEL
Ghaida et al.4 study the impact of overlay on parasitic RC but they do not clarify the impact of stitching location. Here,
we study RC variation of VLSI interconnects with layout configurations as illustrated in Figure 1. For each layout
configuration, we define an interconnect under test as victim and other interconnects as neighbors. T , W1,2, SL,R and H are
respectively the thickness, width, spacing and dielectric thickness of the interconnects. Cs and Cc are ground capacitance
and coupling capacitance of the victim. Displacement between interconnects with different colors is modeled as a vector
(M,θ) in polar coordinates, where M is magnitude and θ is polar angle of the displacement. To account for CD variation,
we define interconnect width and spacing as follows.

W1 = W0 +ΔW1

W2 = W0 +ΔW2

SR = S0 −0.5(ΔW1)−0.5(ΔW2)−M× cos θ

SL =
{

S0 −0.5(ΔW1)−0.5(ΔW2)+M× cos θ for case (a) and (c) of Figure1
S0 − (ΔW1) for case (b) of Figure1

(1)

where ΔW1 and ΔW2 are width variations due to two independent CD distributions in DPL, W0 is nominal width, and S0
is nominal spacing. We model ΔW1, ΔW2 and M as Gaussian distributions, and θ as a uniform distribution from 0 to 2π.
The values of nominal geometric dimensions and lithography variation parameters are summarized in Table 1. It should
be noted that Smin in Table 1 corresponds to the minimum spacing achievable between different-color segments. Since the
spacing requirements are different among the interconnect cases in Figure 1(a)∗, we use S0 = 2×Smin for all interconnect
cases to enable a fair comparison.

(a) Three interconnects with symmetric coloring. (b) Three interconnects with asymmetric coloring.

(c) Two interconnects.
Figure 1: Interconnect dimensions and displacement due to overlay.

∗A larger minimum spacing must exist between same-color segments as in the asymmetric case (b) of Figure 1.
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Table 1: Geometric dimensions and lithography variation parameters for 45nm (commercial) and 22nm (ITRS6) technologies.

Parameter unit 45nm 22nm
Smin nm 70 32
S0 nm 140 64
W0 nm 70 32
T nm 140 60
H nm 140 60

Mean(W1) nm 0 0
Mean(W2) nm 0 0
Mean(M) nm 0 0
3 σ (W1) nm 14 6.4
3 σ (W2) nm 14 6.4
3 σ (M) nm 14 6.4

εe f f - 3.3 2.75
ρ Ω 27×109 50×109

In our study, we assume that the interconnects in Figure 1 have stitch locations as defined in Figure 2, where x1 and x2
are lengths of victim interconnects with Color 1 and Color 2, respectively. Although interconnects with different colors
will overlap at stitching locations, the overlap length is much smaller than the interconnect length (e.g. 30nm out of
50,000nm). Hence, we do not separately model the parasitic RC of the overlapping region.

Figure 2: Top view of interconnect configurations from Figure 1, with stitches.

Proc. of SPIE Vol. 8166  81663O-3



2.1. Capacitance Formulas for Three Parallel Interconnects with Symmetric Coloring
We use formulas from Chang1 for ground capacitance (Cs) and from Sakurai et al.10 for coupling capacitance (Cc). Then,
total capacitance (Cv) for three parallel interconnects with symmetric coloring (Figure 1(a)) is given as follows.

Cv = (Cs +Cc)

Cs = εox

[
x1

x1 + x2
×h(W1)+

x2

x1 + x2
×h(W2)

]

Cc = εox

[
x1

x1 + x2
× f (W1)×g(W1,W2,Y )+

x2

x1 + x2
× f (W2)×g(W2,W1,−Y )

]

h(W1) = k1 + k2

(
W1

H

)
+ k3

(
W1

H

)m1

+ k4

(
T
H

)m2

f (W1) = k5

(
W1

H

)
+ k6

(
T
H

)
+ k7

(
T
H

)m3

g(W1,W2,Y ) =
[(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y
H

)m4
]

Y = M×cos θ
εox = εe f f × ε0

(2)

In the above, k1, ...,k7 and m1, ..., m4 are unitless constants, εe f f is dielectric constant, and ε0 is free-space permittivity.
Values of these parameters are summarized in Table 1 and Table 2. To derive the impact of dimensional variations, we
linearize the capacitance formulas using first-order Taylor series expansion:†

Cs ≈ Cs|W=W0, S=S0 +
∂Cs

∂W1
(ΔW1)

Cc ≈ Cc|W=W0, S=S0 +
∂Cc

∂W1
(ΔW1)+

∂Cc

∂W2
(ΔW2)+

∂Cc

∂Y
(ΔY )

(3)

Since Cc and Cs are linear functions of W1, W2 and Y , we calculate the mean and variance of Cc and Cs as follows.

Mean(Cv) = Cs|W=W0, S=S0 +Cc|W=W0, S=S0

VarDPL(Cv) =
[(

∂Cs

∂W1

)
+

(
∂Cc

∂W1

)]2

Var(W1)+
(

∂Cc

∂W2

)2

Var(W2)+
(

∂Cc

∂Y

)2

Var(Y )

Var(Y ) = E
[
Y 2]− [Mean(Y )]2

= E[M2]E[cos2θ]

= σ2
M ×

Z 2π

0

cos2θ
2π

dθ

=
σ2

M
2

(4)

In the case of conventional single-patterning lithography (SPL), all interconnects have identical widths and there is no
variability due to overlay. Therefore, W1 and W2 are fully correlated, and Y = 0. The capacitance variance for SPL is given
as follows.

VarSPL(Cv) =
[(

∂Cs

∂W1

)
+

(
∂Cc

∂W1

)
+

(
∂Cc

∂W2

)]2

Var(W1) (5)

†Detailed derivations for ∂Cs
∂W1

, ∂Cc
∂W1

, ∂Cc
∂W2

and ∂Cc
∂Y are given in Appendix A.
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Table 2: Capacitance model parameters.1, 10

Parameters Values
k1 0.770
k2 1.000
k3 1.060
k4 1.060
k5 0.030
k6 0.830
k7 -0.070
m1 0.250
m2 0.500
m3 0.222
m4 -1.340
ε0 8.854 F ·m−1

2.2. Capacitance Formulas for Three Parallel Interconnects with Asymmetric Coloring
The capacitance formulas for the asymmetric case are as follows (see Appendix B for detailed derivation).

gasym(W1,W2,Y ) =
[(

S0 − (W1 −W0)
H

)m4

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y
H

)m4
]

Cs−asym = Cs

Cc−asym = εox ×
[

x1

x1 + x2
× f (W1)×gasym(W1,W2,Y )+

x2

x1 + x2
× f (W2)×gasym(W2,W1,−Y )

] (6)

Mean(Cv−asym) = Cs−asym|W=W0, S=S0 +Cc−asym|W=W0, S=S0

Var(Cv−asym) =
[(

∂Cs−asym

∂W1

)
+

(
∂Cc−asym

∂W1

)]2

Var(W1)+
(

∂Cc−asym

∂W2

)
Var(W2)+

(
∂Cc−asym

∂W2

)
Var(Y ) (7)

Note that the form of the Equation (7) is not changed compared to Equation (4), but we label all the terms with asym to
indicate that the parameters are different from those in the symmetric interconnect case. Based on the equations, victim
interconnects in Figure 1(a) and Figure 1(b) have the same mean capacitance value (if SL = SR) but different variations.

2.3. Capacitance Formulas for Two Parallel Interconnects
Capacitance of the victim in Figure 1(c) is different from that in Figure 1(a) as there is no right-hand side neighbor.
Capacitance for two parallel interconnects (see Appendix C for detailed derivation) is given as follows, with a subscript
dual to indicate there are two parallel interconnects.

Cs−dual = εox ×
[

x1

x1 + x2
×h(W1)+

x2

x1 + x2
×h(W2)

]

Cc−dual = εox ×
[

x1

x1 + x2
× f (W1)×gdual(W1,W2,Y )+

x2

x1 + x2
× f (W2)×gdual(W2,W1,−Y )

]

gdual(W1,W2,Y ) =
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4

(8)
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where Cs−dual , and Cc−dual are ground and coupling capacitance, respectively. Consequently, the linearized expressions
for capacitance mean and variance of two parallel interconnects are as follows.

Cs−dual ≈ Cs−dual |W=W0, S=S0 +
∂Cs−dual

∂W1
(ΔW1)

Cc−dual ≈ Cc−dual |W=W0, S=S0 +
1
2

[
∂Cc−dual

∂W1
(ΔW1)+

∂Cc−dual

∂W2
(ΔW2)+

∂Cc−dual

∂Y
(ΔY )

]
Mean(Cv−dual) = Cs−dual |W=W0, S=S0 +Cc−dual |W=W0, S=S0

VarDPL(Cv−dual) =
[(

∂Cs−dual

∂W1

)
+

(
∂Cc−dual

∂W1

)]2

Var(W1)+
(

∂Cc−dual

∂W2

)2

Var(W2)+
(

∂Cc−dual

∂Y

)2

Var(Y )

VarSPL(Cv−dual) =
[(

∂Cs−dual

∂W1

)
+

(
∂Cc−dual

∂W1

)
+

(
∂Cc−dual

∂W2

)]2

Var(W1)

(9)

2.4. Interconnect Resistance Formulas
Resistance variation on the victim interconnect is only affected by the width of the victim. Therefore, all interconnect
segments in Figure 2 have the same parasitic resistance model:

Rv =
ρ

W ×T
Mean(Rv) = Rv|W1=W0

Var(Rv) ≈
( −ρ

TW 2
0

)2

×Var(W1)

(10)

3. EXPERIMENTAL RESULTS
3.1. RC Variation Analysis
Based on the RC equations in Section 2, we calculate capacitance values of interconnects in Figure 1 (i.e., there is
no stitching, and each victim interconnect is assigned to a single color). To compare different interconnect cases, we
use S0 = 2× Smin so that all interconnect patterns satisfy minimum coloring spacing. Results in Table 3‡ show that
capacitance variation with DPL is marginally smaller than with SPL. This is because the width and spacing variations of
DPL interconnects are not correlated, as a consequence of the two independent exposures. Even though DPL interconnects
are affected by overlay, the overall variation is less than the SPL case. As one would expect, the two-line interconnect
pattern has smaller variance (relative to mean) than the three-line interconnect pattern. This is because the victim in
the two-line interconnect pattern has less coupling capacitance that is sensitive to width or spacing variation (ground
capacitance is identical for all interconnect patterns).

Table 3: Capacitance values of victim interconnects in Figure 1.
22nm technology 45nm technology

3 lines 2 lines 3 lines 2 lines
SPL DPL sym DPL asym SPL DPL SPL DPL sym DPL asym SPL DPL

μ (aF/um) 114.3 114.3 114.3 96.9 96.9 139.4 139.4 139.4 116.8 116.8
3σ(aF/um) 25.5 19.8 22.8 18.3 16.0 31.4 24.1 28.0 22.0 19.2

3σ
μ (%) 22.3 17.3 19.9 18.9 16.5 22.5 17.3 20.1 18.9 16.4

To study the effect of interconnect coloring and stitching location, we sweep the stitching location along the x-axis
in Figure 2. Results in Figure 3 show that capacitance variation of DPL interconnect changes according to the stitching
location. The minimal capacitance variation is achieved when stitching point is at the middle of interconnect (i.e., x1 = x2).
These data suggest that

‡Jeong et al.7 obtained capacitance values similar to the ones in Table 3 using a commercial 3D RC field solver tool (Synopsys
Raphael, Version 2004.0611).
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1. DPL interconnects always have lower capacitance variation (relative to mean) than SPL interconnects.

2. Redundant stitching in DPL is beneficial as it reduces capacitance variations compared to DPL with no stitching,
i.e., 3σ/μ capacitance of DPL interconnects reduce as x1 changes from 0 (100% Color 2) to x1 = x2 (one stitch,
Color 1 and Color 2 interconnect lengths are balanced.).
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Figure 3. Capacitance variation of interconnects. Normal (SPL) interconnects have no stitching, hence their capacitance values do not
vary with stitching location. Capacitance variation for DPL interconnects is minimized when the color assignment is balanced, i.e.,
stitching is located at the middle of the interconnect.

3.2. Delay Variation Analysis
To study the impact of stitching on circuit delay, we simulate a testing circuit illustrated in Figure 4. The testing circuit
consists of a pair of inverters connected by a series of RC modules, each of which represents 5% of a victim interconnect
(i.e., the victim interconnect is divided into 20 identical segments). The RC values for a given RC module are calculated
using the analytical equations in Section 2, with dimensions according to its color assignment. In this study, the inverter
cell is obtained from a commercial library (45nm) and predictive technology model13 (22nm). The test circuit is simulated
using SPICE with a 50ps ramp input signal and a Monte Carlo setup with 3000 trials§. The size of the inverter is scaled

§Small sample size for Color 1 and Color 2 CD random variables can induce additional (unwanted) mean CD shift between them.
This may lead to incorrect interpretations on the impact of stitching.
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according to the length of interconnect, e.g., a 100um interconnect uses a (1×) inverter while a 1000um interconnect uses
a (10×) inverter.

Figure 5 shows the impact of stitching location on circuit delay. Stitching location is denoted by an index from 1 to 21
which corresponds to equally-spaced discrete locations from source to sink. In particular, stitching location = 1 (resp. =
21) means that the stitching location is immediately after the driver (resp. immediately before the receiver), and the entire
interconnect is assigned to Color 2 (resp. Color 1). If the stitching location = 11, the driver-side half is Color 1 and the
receiver-side half is Color 2.

All testcases in Figure 5 show that DPL interconnect has less delay variation compared to the SPL case. As mentioned
earlier, this is due the averaging effect of DPL interconnects. We also notice that stitching around the middle of interconnect
leads to minimal delay variation (long interconnect). This is expected because the capacitance variation of interconnect is
minimal when the portions of Color 1 and Color 2 are equal (for DPL). Note that for all testcases, minimum 3σ/mean is
attained when stitching location is slightly shifted towards the driver side. This is because circuit delay is more sensitive
to RC changes on the driver side, due to the resistance shielding effect. Resistance shielding implies that driver-side
capacitance has more contribution to RC delay than receiver-side capacitance. As a result, the stitching location shifts
slightly toward the driver side to balance the effective RC of interconnects with Color 1 and Color 2.

To model the bimodal distribution in DPL, we perturb the mean of interconnect Color 1 by ±2nm. Figures 5(c) and (d)
show that testcases with ±2nm ΔCD mean behave similarly to those with ΔCD mean = 0. In other words, the impact of
ΔCD mean is negligible for circuit delay analysis. Similarly, the delay variation trends for 45nm and 22nm technologies
(Figures 5(b) and (e)) are qualitatively the same. This hints that we should expect similar delay variation phenomena
in future technologies. Comparing Figure 5(a) and Figure 5(b), we see that the impact of stitching location on short
interconnect (100um) is slightly less than that on long interconnects (1000 um), but the trends are similar.

Figure 4. Testing circuit to study the impact of stitching locations. Each of the 20 RC modules represents 5% of the parasitic RC of the
entire interconnect, and is assigned to either Color 1 or Color 2. There is only one splitting/stitching point along the modules.

4. CONCLUSIONS
In this work, we derive analytical RC equations for LELE DPL-based interconnects to study the impact of stitching
insertion on interconnects RC and circuit performance. Our experimental results show that DPL without any stitching
along victim interconnect has less delay variation compared to SPL. This suggests that layout decomposition algorithms
should alternate color assignments of interconnects, so that delay variation is partially alleviated due to averaging effect.
The results also show that interconnect with a stitch always has a smaller delay variation compared to interconnect without
any stitch. This implies that, long interconnect should preferentially receive stitches to reduce delay variation. The results
in Figure 5 suggest that stitching location should be placed along an interconnect such that the interconnect has equal
proportion of segments. Although the stitching location is slightly shifted towards driver side, there is only a small
difference between the minimum delay variation versus the case where a stitch is placed at the middle of the interconnect.
Therefore, always splitting an interconnect at its midpoint could be a simple yet near-optimal mask optimization strategy
for minimum performance variation.
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Appendix A : Derivations for Symmetric 3-lines Interconnect

let h(W1) = k1 + k2

(
W1

H

)
+ k3

(
W1

H

)m1
+ k4

(
T
H

)m2

f (W1) = k5

(
W1

H

)
+ k6

(
T
H

)
+ k7

(
T
H

)m3

g(W1,W2,Y ) =
[(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4
+

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4
]

Cs = εox ×
[

x1

x1 + x2
×h(W1)+

x2

x1 + x2
×h(W2)

]

Cc = εox ×
[

x1

x1 + x2
× f (W1)×g(W1,W2,Y )+

x2

x1 + x2
× f (W2)×g(W2,W1,−Y )

]

∂h(W1)
∂W1

=
k2

H
+

k3 ×m1 ×W (m1−1)
1

Hm1

∂h(W2)
∂W2

=
k2

H
+

k3 ×m1 ×W (m1−1)
2

Hm1

∂ f (W1)
∂W1

=
∂ f (W2)

∂W2
=

k5

H
∂ f (W1)

∂W2
=

∂ f (W2)
∂W1

= 0

∂g(W1,W2,Y )
∂W1

=
∂g(W1,W2,Y )

∂W2
=

−m4

2H

[(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y
H

)m4−1
]

∂g(W2,W1,−Y )
∂W1

=
∂g(W2,W1,−Y )

∂W2
=

−m4

2H

[(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4−1

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4−1
]

∂g(W1,W2,Y )
∂Y

=
∂g(W2,W1,−Y )

∂Y
=

−m4

H

[(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1

−
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y
H

)m4−1
]

∂Cs

∂W1
= εox × x1

x1 + x2
× ∂h(W1)

∂W1

∂Cs

∂W2
= εox × x2

x1 + x2
× ∂h(W2)

∂W2

∂Cc

∂W1
= εox ×

[
x1

x1 + x2

(
∂ f (W1)

∂W1
×g(W1,W2,Y )+

∂g(W1,W2,Y )
∂W1

× f (W1)
)

+
x2

x1 + x2

(
∂g(W2,W1,−Y )

∂W1
× f (W2)

)]
∂Cc

∂W2
= εox ×

[
x1

x1 + x2

(
∂g(W1,W2,Y )

∂W2
× f (W1)

)
+

x2

x1 + x2

(
∂ f (W2)

∂W2
×g(W1,W2,Y )+

∂g(W2,W1,−Y )
∂W2

× f (W2)
)]

∂Cc

∂Y
= εox ×

[
x1

x1 + x2

(
f (W1)× ∂g(W1,W2,Y )

∂Y

)
+

x2

x1 + x2

(
f (W2)× ∂g(W2,W1,−Y )

∂Y

)]
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Appendix B : Derivations for Asymmetric 3-lines Interconnect

gasym(W1,W2,Y ) =
[(

S0 − (W1 −W0)
H

)m4
+

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4
]

Cs−asym = Cs

Cc−asym = εox ×
[

x1

x1 + x2
× f (W1)×gasym(W1,W2,Y )+

x2

x1 + x2
× f (W2)×gasym(W2,W1,−Y )

]

∂gasym(W1,W2,Y )
∂W1

=
−m4

2H

[
2
(

S0 − (W1 −W0)
H

)m4−1

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y
H

)m4−1
]

∂gasym(W1,W2,Y )
∂W2

=
−m4

2H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4−1

∂gasym(W2,W1,−Y )
∂W1

=
−m4

2H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1

∂gasym(W2,W1,−Y )
∂W2

=
−m4

2H

[
2
(

S0 − (W2 −W0)
H

)m4−1

+
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4−1
]

∂gasym(W1,W2,Y )
∂Y

=
m4

H

[(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4−1
]

∂gasym(W2,W1,−Y )
∂Y

=
−m4

H

[(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1
]

∂Cs−asym

∂W1
=

∂Cs

∂W1

∂Cs−asym

∂W2
=

∂Cs

∂W2

∂Cc−asym

∂W1
= εox ×

[
x1

x1 + x2

(
∂ f (W1)

∂W1
×gasym(W1,W2,Y )+

∂gasym(W1,W2,Y )
∂W1

× f (W1)
)

+
x2

x1 + x2

(
∂gasym(W2,W1,−Y )

∂W1
× f (W2)

)]
∂Cc−asym

∂W2
= εox ×

[
x1

x1 + x2

(
∂gasym(W1,W2,Y )

∂W2
× f (W1)

)
+

x2

x1 + x2

(
∂ f (W2)

∂W2
×gasym(W1,W2,Y )+

∂gasym(W2,W1,−Y )
∂W2

× f (W2)
)]

∂Cc−asym

∂Y
= εox ×

[
x1

x1 + x2

(
f (W1)× ∂gasym(W1,W2,Y )

∂Y

)
+

x2

x1 + x2

(
f (W2)× ∂gasym(W2,W1,−Y )

∂Y

)]

Appendix C : Derivations for Asymmetric 2-lines Interconnect

let gdual(W1,W2,Y ) =
(

S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y
H

)m4

Cs = εox ×
[

x1

x1 + x2
×h(W1)+

x2

x1 + x2
×h(W2)

]

Cc = εox ×
[

x1

x1 + x2
× f (W1)×gdual(W1,W2,Y )+

x2

x1 + x2
× f (W2)×gdual(W2,W1,−Y )

]

∂gdual(W1,W2,Y )
∂W1

=
∂gdual(W1,W2,Y )

∂W2
=

−m4

2H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1

∂gdual(W2,W1,−Y )
∂W1

=
∂gdual(W2,W1,−Y )

∂W2
=

−m4

2H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4−1

∂gdual(W1,W2,Y )
∂Y

=
−m4

H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)−Y

H

)m4−1

∂gdual(W2,W1,−Y )
∂Y

=
m4

H

(
S0 −0.5(W1 −W0)−0.5(W2 −W0)+Y

H

)m4−1

∂Cs−dual

∂W1
=

∂Cs

∂W1

∂Cs−dual

∂W2
=

∂Cs

∂W2

∂Cc

∂W1
= εox ×

[
x1

x1 + x2

(
∂ f (W1)

∂W1
×gdual(W1,W2,Y )+

∂gdual(W1,W2,Y )
∂W1

× f (W1)
)

+
x2

x1 + x2

(
∂gdual(W2,W1,−Y )

∂W1
× f (W2)

)]
∂Cc

∂W2
= εox ×

[
x1

x1 + x2

(
∂gdual(W1,W2,Y )

∂W2
× f (W1)

)
+

x2

x1 + x2

(
∂ f (W2)

∂W2
×gdual(W1,W2,Y )+

∂gdual(W2,W1,−Y )
∂W2

× f (W2)
)]

∂Cc

∂Y
= εox ×

[
x1

x1 + x2

(
f (W1)× ∂gdual(W1,W2,Y )

∂Y

)
+

x2

x1 + x2

(
f (W2)× ∂gdual(W2,W1,−Y )

∂Y

)]
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(a) 22nm technology, length = 100um, ΔCD mean = 0nm, inverter size = 1X.

(b) 22nm technology, length = 1000um, ΔCD mean = 0nm, inverter size = 10X.

(c) 22nm technology, length = 1000um, ΔCD mean = -2nm, inverter size = 10X.

(d) 22nm technology, length = 1000um, ΔCD mean = 2nm, inverter size = 10X.

(e) 45nm technology, length = 1000um, ΔCD mean = 0nm, inverter size = 10X.

Figure 5: Average delay (rising and falling transitions) of an inverter and its variation due to interconnect.
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