
Toward PDN Resource Estimation:
A Law of General Power Density

Kwangok Jeong
ECE Department, UC San Diego

La Jolla, CA 92093, USA
kjeong@ucsd.edu

Andrew B. Kahng
ECE and CSE Departments, UC San Diego

La Jolla, CA 92093, USA
abk@ucsd.edu

ABSTRACT

The power distribution network (PDN) is an increasingly signifi-
cant consumer of on-chip interconnect resources. Thus, PDN esti-
mation is increasingly central to system-level interconnect predic-
tion for modern ICs. PDN design and verification require accurate
power estimation and realistic current source distribution across a
die. However, at early design stages, detailed placement or switch-
ing information is rarely available, so that designers either rely on
pessimistic overdesign, which can lead to severe routing conges-
tion, or encounter unexpected voltage noise problems at late design
stages, which can lead to costly design iterations. In this work,
we seek to identify a general trend for power density. From both
empirical and analytical studies on random activity distributions,
we propose a power law of activity density, which can potentially
enable estimates of power density and voltage noise, as well as of
required power distribution network (PDN) resources, in early de-
sign stages.

1. INTRODUCTION
Due to the increase in transistor density and operating frequency,

power consumption has also been increased. While operating volt-
age reduction can quadratically reduce power consumption, voltage
margin is also reduced and the impact of voltage noise (e.g., IR-
drop, and Ldi/dt) increases. To suppress the voltage noise, a large
portion of on-chip interconnect resources is dedicated to the power
distribution network (PDN). Major issues with PDN design are (1)
how accurately and (2) how early power can be estimated: overes-
timation wastes valuable routing resources, while underestimation
results in parametric yield loss as low-Vcc faults. Since PDN de-
sign is a very early step in the IC implementation flow, excessive
voltage noise observed in late design stages due to insufficient PDN
design will cause costly design iterations.

Power is estimated at all levels of design abstraction. Electronic
system level (ESL) estimation typically exploits a history of mea-
sured power of IPs. Register-transfer level (RTL) tools can apply
quick-synthesis method before power estimation. For gate-level
netlists, more accurate power estimation techniques are available
given accurate parasitic estimates and SPICE-characterized power
models.

At all design levels, the most important input is the switching ac-
tivity information. Switching activity information can be dumped
from stimuli-based functional simulations and then fed to power
estimation tools via .vcd, .saif, .fsdb etc. formats. However, func-
tional simulation requires large runtime and substantial data stor-
age. Finding a representative stimulus is time-consuming, and guar-
antees of quality or relevance are difficult to establish. Due to these
difficulties, at early design stages (or even at signoff stages) vec-
torless power estimation is used. This approach relies on statis-
tical assumptions for the switching probabilities of primary input
ports; the switching probabilities are then propagated into internal

logic with consideration of functionality. Existing statistical tech-
niques in power estimation include transition density [7], proba-
bilistic waveform [9] and binary decision diagram (BDD) [4] based
techniques [8]. Probabilistic waveforms [9] provide more details in
time domain compared with signal probabilities on signal switch-
ing activities. BDDs [4] better capture signal correlations arising
from reconvergence in a netlist.

For early-stage PDN design, another important issue is where
the estimated power values should be distributed in a die. An es-
timated lumped power value of a functional block can be assumed
to be evenly distributed to all nodes in an R(L)C PDN network, or
a single current source can be assumed to be placed at the center
of a target region of the PDN network. However, the former does
not account for worst-case power distribution, and the latter can be
too pessimistic and result in overdesign. To achieve a realistic cur-
rent source distribution assumption, trends for current density must
be understood at multiple length scales. Coarse-grain current den-
sities determine C4 bump pitch and the amount of on-chip routing
resources required for the power distribution network. Local power
densities contribute to voltage noise hotspots, with increased volt-
age gradients then causing local on-chip performance variations.
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Figure 1: Power density with respect to sample area [11].

Intuitively, local power density should increase exponentially as
area reduces. For example, an LVT clock buffer (occupying only a
couple of square microns) may dissipate up to tens of microwatts,
even as the entire SOC chip (occupying a square centimeter) dissi-
pates just one watt. One motivation for our work is from Figure 1,
which shows local power density with respect to normalized area,
reported from an industry source [11]. The curve is described as

I/A = c1Ac2e−c3α

(1)

where I/A denotes the current consumption I within area A, and
α represents the activity factor of the design. Coefficients c1, c2

and c3 capture design characteristics [11]. Although the curve does



not explain any physical mechanisms, it is shown that the measured
data (i.e., blue dots) closely follow the fitted power function (i.e.,
blue curve).1

A second motivation for our work is the well-known Rent’s rule,
a simple, empirical power-law relationship between the number of
I/O terminals T for a logic block and the number of gates N con-
tained in that block [6]:

T = kN p

where k and p are empirical parameters. In the field of intercon-
nect prediction, Rent’s rule has provided a powerful foundation to
various subfields such as wirelength distribution estimation [2] [3],
fanout distribution estimation [13], and via count estimation [12]
[5].

Motivated by the power law relationship between the power den-
sity and area as shown in Figure 1, and the variety of applications
of the power law-based Rent’s rule, we seek a power law for power
density. In this work, we consider (1) the maximum possible activ-
ity density for a given area, and (2) how activity density changes
with time. We also (3) seek to identify a general trend for the activ-
ity density, so as to enable estimates of power density and voltage
noise, as well as of required power distribution network (PDN) re-
sources, in early design stages.

2. DENSITY OF RANDOM ACTIVITY
Intuitively, given an average activity factor of a design, the ac-

tivity density can change with the area and the location of the sam-
pling area. Figure 2 illustrates the sampling of area and the changes
of the activity density. In addition, activity density can change with
time. Figure 3 illustrates the temporal dependency of activity den-
sity. At each time (e.g., clock cycle) t the activity can change due
to the design’s functional activity.
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Figure 2: Spatial sampling for power density calculation.
Power density changes due to the sampling area and location.
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Figure 3: Temporal sampling for power density calculation.
Power density changes due to the sampled timeframe.

1Coefficients in Equation (1) can vary depending on the design
types and activity factor α. The yellow curve shows a 3σ maxi-
mum power density observed from various designs with different
activity factors.

We evaluate maximum activity density of a design using an un-
correlated activity model, as follows. Average activity factor (0
≤ p ≤ 1) of a design is the average number of toggled gates (or
nets) per cycle in the entire design. The maximum activity density
d(m) is defined as the maximum activity observed within m×m
(1 ≤ m ≤ N) windows among all possible m×m windows in the
design. To remove the dependency to the design size, we define a
normalized maximum activity density dnorm(m) as d(m)/d(N).

2.1 Activity Density Calculation
Given an N×N array that represents a design having an aver-

age activity factor p, we find the maximum activity density over
all m×m regions using the procedure in Figure 4. For instance,
for a design with p = 0.2, and N = 5 as shown in Figure 5(a), we
find the maximum activity density for each value of m from 1 to 5,
while moving the m×m window. (Trivially, when m = 1, d(1) = 1.)
Examples of maximum activity density windows are shown in Fig-
ure 5(b), and the corresponding maximum density and normalized
density are shown in Figure 5(c).

Procedure: MaximumActivityDensity
Inputs: activity information ∈ {0,1} for each element in N×N
array

for m = 1 to N

c(m)← maximum activity count enclosed by m×m window

d(m)← c(m)/m2

end

for m = 1 to N

dnorm(m)← d(m)/d(N)

end

Figure 4: Calculation of maximum activity density.
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c(2)�=�2��Æ d(2)�=�0.50��Æ dnorm(2)�=�2.50
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Figure 5: Activity density calculation. (a) 5×5 grids of a given
design with average activity factor p = 0.2. (b) Maximum den-
sity windows for different window sizes (m). (c) Maximum ac-
tivity density and normalized maximum activity density calcu-
lation.

2.2 Maximum Activity Calculation for Artifi-
cial Data

To study activity density in large grid arrays and over many
timesteps, an efficient counting method is required. Figure 6 shows
an efficient algorithm to calculate the switching activity in an m×m



window with bottom-left corner (x, y), from the given activity in-
formation countInBox1. The value of countInBox1 for location (x,
y) is 1 if there is switching activity at that location, and 0 other-
wise. The proposed algorithm iterates over m from 1 to N for all
possible locations of m-sized windows within the N×N grid array,
and computes the counts of activities in larger-sized windows from
the previously-computed counts of smaller-sized windows, based
on the dynamic programming approach.

Procedure: MaxActivityCount (N)
Inputs: Size of the grid N

for x = 1 to N

for y = 1 to N

CA[x][y][1] = CountInBox1 (x,y)

end

end

for m = 2 to N

for x= 1 to N

for y = 1 to N

if ( m % 2 == 0 )

lb← CA[x][y][m/2]

lt ← CA[x][y+m/2][m/2]

rb← CA[x+m/2][y][m/2]

rt ← CA[x+m/2][y+m/2][m/2]

CA[x][y][m] = lb+ lt + rb+ rt

else

lb← CA[x][y][m/2]

lt ← CA[x][y+m/2][m/2+1]

rb← CA[x+m/2][y][m/2+1]

rt ← CA[x+m/2+1][y+m/2+1][m/2]

cn← CA[x+m/2][y+m/2][1]

CA[x][y][m] = lb+ lt + rb+ rt− cn

end

end

end

end

Figure 6: Dynamic programming-based activity counting.

3. EMPIRICAL MODEL FROM POWER

DENSITY CALCULATIONS
Due to the random nature of activity distribution, we find an av-

erage maximum activity density from multiple trials of activity dis-
tribution. Figures 7 and 8 show our design of experiments for a
single timeframe and multiple timeframes, respectively, for various
activity factors (p) and various sizes of timeframes (w).

3.1 Normalized Activity Density
Figure 9 shows the normalized maximum activity density for

different average activity factors. We observe that when m = 1,
the normalized maximum activity density dnorm(1) is roughly 1/p,
and as m increases, dnorm(m) decreases and converges to 1. Fig-
ure 10 shows the normalized activity density changes with respect
to the number of timeframes. We observe that as the number of
timeframes considered increases, the normalized maximum activ-

Procedure: FindAverageMaximumActivity-SingleTimeframe
Inputs: N = 100, P = {0.05, 0.10, 0.15, 0.25, 0.50, 0.90}, k = 50

foreach p ∈ P

generate k random activity maps on the N×N grids

calculate average activity count c(m) from k maps

calculate average maximum activity density dnorm(m)

end

Figure 7: Calculation of average maximum activity density
dnorm(m) for a single timeframe.

Procedure: FindAverageMaximumActivity-MultipleTimeframe
Inputs: N = 100, P = {0.05, 0.10, 0.15, 0.25, 0.50, 0.90}, k = 50,
W = {1, 2, 4, 8, 32 }

foreach p ∈ P

generate k random activity maps on the N×N grid

foreach w ∈W

select w activity maps from k random activity maps

accumulate activities for each grid for w maps

(i.e., pointwise-summation)

calculate average activity count c(m) from w maps

calculate average maximum activity density dnorm(m)

end

end

Figure 8: Calculation of average maximum activity density
dnorm(m) for multiple timeframes.

ity density dnorm(m) decreases, with the rate of decrease depending
on the given average activity factor (p).
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Figure 9: Average normalized maximum activity density
dnorm(m) from experiments in Figure 7, for a single timeframe.

Important characteristics of the maximum activity density are
summarized as follows.

(1) dnorm(m) exponentially decreases as the area (m×m) in-
creases.

(2) When m = 1 and w = 1, dnorm = 1/p.

(3) When m increases, dnorm(m) converges to 1.

(4) As the number timeframe (w) increase, dnorm(m) decreases.

(5) The decay rate of dnorm(m) depends on p; for large p, the
rate is small, but for small p, the rate is large.

(6) dnorm(m) decreases slowly as w increases.

(7) As p decreases to near zero, dnorm(m) diverges to infinity.
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Figure 10: Average normalized maximum activity density
dnorm(m) from experiments in Figure 8, for multiple time-
frames.

3.2 Normalized Activity Density Model
Based on the observations in the previous subsection, we propose

an empirical activity density model.

dnorm(m,w) =

(

1− p

p

)wc1(p−1)

·m−c2 pc3
+1 (2)

In Equation (2), the term
1−p

p and the last constant 1 model the

observed characteristics (2) and (3), the exponent wc1(p−1) models
characteristics (4) and (5), and together these terms represent char-
acteristic (6). The term m−c2 pc3

models exponential decay of the
density with respect to m, i.e., characteristic (1).

From curve fitting (using nlinfit in MATLAB [15]), we find model
coefficients c1, c2 and c3, and finally, we obtain the following
model equation for the maximum activity density.

dnorm(m,w) =

(

1− p

p

)w0.1585(p−1)

·m−0.7781p−0.0896

+1

3.3 Model Validation
We compare our model with actual data collected. Figure 11

shows the model accuracy with respect to different w values for a
given p (= 0.05) and various m values. We can see that our model
can correctly capture the impact of multiple timeframes w. Figure
12 shows the model accuracy with respect to p for a given time-
frame (e.g., w = 1) and various m values. We again observe that our
model can account for the impact of p with sufficient accuracy.

We also validate our model on a real design with the estimated
power values using a typical power estimation flow. Figure 13 sum-
marizes the following (typical) power estimation flow.

1. Run a cycle-accurate architectural simulator with benchmarks
and periodically take a snapshot of the entire circuit state,
i.e., values of all registers and input/output traces.

2. Generate a Verilog testbench that initializes the circuit states,
drives inputs and check outputs.

3. Synthesize, place and route RTL designs.

4. Run circuit (gate-level) simulation with the generated Ver-
ilog testbench and with standard delay format (SDF) back-
annotated, then generate a value change dump (VCD) file.

5. Feed the VCD file into a power estimator (Synopsys Prime-
Time-PX [18]) to report power.

We study a submodule sparc_exu_alu from OpenSparcT1 [17],
which is implemented in 65GP technology with ∼3,000 standard
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Figure 11: Estimated maximum activity density from our
model versus measured maximum activity density from exper-
iments, for a given average activity factor p = 0.05.

cells placed in a 130µm ×130µm region. We use Synopsys Design
Compiler [14] for synthesis, and Cadence SoC Encounter [20] for
placement and routing. We use VirtuTech SIMICS [19] for system-
level simulation and Cadence NC Verilog [16] for RTL and gate-
level simulations for a high-activity trace of 1 million cycles. Fi-
nally, we use Synopsys PrimeTime-PX [18] to analyze and report
power for the top-1000 highest power cycles out of the 1 million
cycles.

To analyze power density trends, we split the design into 100×100
grids, and assign power values of cell instances to corresponding
grids where the cell instances are placed. Then, we calculate power
density changes with respect to the area (m). Figure 14 shows nor-
malized maximum power density of the sparc_exu_alu design for
a single (maximum-power) cycle and multiple clock cycles. From
the figure, we observe that power density trends with the real design
are similar to the activity density trend with artificially generated
data: (1) power density increases exponentially as area increases,
and (2) activity density slowly decreases as the number of cycles
considered increases. However, power density from the real design
shows even larger discrepancy from our model than the artificial
activity density data. This may be due to the switching activity of
the real design being significantly lower than the assumed average
activity for artificial data.

4. ANALYTIC MODEL BASED ON

DISCREPANCY THEORY
Separately, we have attempted to analytically estimate maximum

activity density based on Chernoff bounds [1].

4.1 Model Construction
Let Gn denote an n× n grid of devices. We assume that each
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Figure 12: Estimated maximum activity density from our
model versus measured maximum activity density from exper-
iments, for a single timeframe (i.e., w = 1) with various p.

device is either quiescent (i.e., no switching) or active (i.e., switch-
ing) at each time step. For time step t and device di j, let si j(t)
denote the random variable that indicates whether di j is active at
the time step. We find the number of active devices in geomet-
ric rectangles Ruv

m = Ruv
m×m of size m×m whose top-right corner

is (u,v). The number of active devices in a rectangle at time t is
Suv

m (t) = ∑(i, j)∈Ruv
m

si j(t). We define the maximum activity count

Sm(t) over rectangles Ruv
m as Sm = max(u,v) Suv

m (t). We seek to de-

termine how Sm(t) behaves as a function of m and t.
We first start with a simplified time-invariant model in which

we assume that si j(t) = 1 with probability p independent of other
devices and t. Since this model is time-invariant, we drop the de-
pendence on t in our notation.

Fact 1 (Chernoff Bound). Let x1, · · · ,xn be mutually independent
0/1 random variables, each equal to 1 with probability p. If X =
∑

n
i=1 xi, for any 0 < δ < 1, we have the following inequalities,

Pr[X > (1+δ)µ] < e−δ2µ/4 (3)

Pr[X < (1−δ)µ] < e−δ2µ/2 (4)

Equation (3) gives the probability of X being larger than its av-
erage value µ by δµ. Without loss of generality, X can be replaced
with Suv

m . With the average activity factor p, the average count µ of
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Suv
m is calculated as pm2, and by probability theory, the following

inequality must be satisfied.

Pr[∃uv,S
uv
m > (1+δ)µ)]≤∑

uv

Pr[Suv
m > (1+δ)µ)] < ε.

The probability Pr[Suv
m > (1 + δ)µ)] is then bounded by ε/(n−

m+1)2, where (n−m+1)2 is the number of locations of an m×m
window in an n× n design. Equating the right-hand side of Equa-

tion (3) to ε/(n−m+1)2 results in δ =

√

4p ln
(n−m+1)2

ε
/pm.

Substitution of δ in Equation (3) gives the following property.

Lemma. For any (u,v),

Pr[Suv
m > pm2 +m

√

4p ln
(n−m+1)2

ε
]≤ ε/(n−m+1)2

From the Lemma, Fact 2 for the maximum activity count of an
m×m window for a single time step is derived.



Fact 2.

Sm ≤ pm2 +m

√

4p ln
(n−m+1)2

ε
with probability at least 1− ε.

Similarly, for multiple time steps, maximum activity count ST
m

(= max(u,v) ∑
T
t=0 ∑(i, j)∈Ruv

m
si j(t)) has the following property.

Fact 3.

ST
m ≤ pm2T +m

√

4pT ln
(n−m+1)2

ε
with probability at least 1− ε.

4.2 Model Validation
We verify Fact 3 using the generated data set described in Sec-

tion 2. We calculate ST
m from all 1,843,200 combinations of the

following parameters, using the algorithm given in Figure 6.

• p = {0.05, 0.10, 0.15, 0.25, 0.5, 0.9}

• n = {100, 200}

• m = {1,...,100} for n = 100, and m = {1,...,200} for n = 200

• T = {1,...,1024}

The inequality in Fact 3 is verified using data fitting. First, we
transform the inequality into an equation with a model coefficient
α as

ST
m = α

(

pm2T +m

√

4pT ln
(n−m+1)2

ε

)

. (5)

Second, we find coefficient α from curve fitting with the obtained
ST

m using the generated data set and evaluated values from Equation
(5) with given parameters p, m, n and T . Finally, we check whether
the value of α is reasonable; if Fact 3 is correct, α should approach
one.

Table 1 shows the fitted α values for various ε values and er-
rors of the proposed model in Equation (5) with each α. For each
combination of p, n, m, and T , we calculate error as a ratio of the
difference between the modeled value (ST

m from Equation (5)) and
the measured value (from our data set) to the measured value. We
then take “average” and “maximum” errors from all p, n, m, and
T combinations. From the table, we observe that all fitted α val-
ues are near one and are not larger than one. This suggests that
Fact 3 gives tight estimates. We also observe that the model shows
high accuracy; average model error is less than 2% for all ε val-
ues. However, as shown in the fourth column, we can see very high
maximum error for a small portion of the data. Since ST

m values
are small when m is small, small discrepancy between the data and
the estimation becomes significant in terms of percentage. (If we
discard cases m < 10, the average error reduces to 0.67% ∼ 1.01%
and the maximum error reduces to 51.94% ∼ 74%.)

Table 1: Average and maximum error of Eq. (3) with fitted α

over 1,843,200 data points.

ε α Average Error (%) Maximum Error (%)

0.001 0.9881 1.96 773.31
0.01 0.9893 1.74 720.90
0.1 0.9905 1.50 664.12
0.2 0.9909 1.42 646.04
0.5 0.9915 1.31 621.34
0.9 0.9918 1.24 604.87

5. CONCLUSION
We have presented a general law for power density which can po-

tentially enable new estimates of power density and voltage noise,
as well as of required power distribution network (PDN) resources

in early design stages. From computational experiments as well as
discrepancy analyses using random activity distributions, and from
experiments using a real design and a production design flow, we
empirically observe a power-law relationship between maximum
switching activity density and area. We provide closed-form ac-
tivity density models from empirical data analysis and probability
theory; these can be used to improve the accuracy and efficiency
of early-stage PDN resource prediction. Our ongoing work in-
cludes further simplification of models and validation of the pro-
posed models against large industry designs. Our ultimate goal is
to develop fast and accurate PDN design and optimization method-
ologies for early stages of IC design.
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