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ABSTRACT
Vectorless power grid verification algorithms, by solving linear pro-
gramming (LP) problems under current constraints, enable worst-
case voltage drop predictions at an early design stage. However,
worst-case current patterns obtained by many existing vectorless
algorithms are time-invariant (i.e., are constant throughout the sim-
ulation time), which may result in an overly pessimistic voltage
drop prediction. In this paper, a more realistic power grid ver-
ification algorithm based on hierarchical current and power con-
straints is proposed. The proposed algorithm naturally handles gen-
eral RCL power grid models. Currents at different time steps are
treated as independent variables and additional power constraints
are introduced; this results in more realistic time-varying worst-
case current patterns and less pessimistic worst-case voltage drop
predictions. Moreover, a sorting-deletion algorithm is proposed to
speed up solving LP problems by utilizing the hierarchical con-
straint structure. Experimental results confirm that worst-case cur-
rent patterns and voltage drops obtained by the proposed algorithm
are more realistic, and that the sorting-deletion algorithm reduces
runtime needed to solve LP problems by > 85%.

Categories and Subject Descriptors: B.7.2 [Design Aids]: Sim-
ulation
General Terms: Algorithms.

Keywords:
Power grid, worst-case voltage drop, hierarchical current and power
constraints, sorting-deletion algorithm

1. INTRODUCTION
With decreasing feature size and increasing complexity of inte-

grated circuits, 𝐼𝑅 and 𝐿𝑑𝐼/𝑑𝑡 voltage drops on power grids are
becoming increasingly significant, which may result in longer gate
delays and logic errors. Thus, power grid verification is becom-
ing an indispensable procedure to guarantee a functional and ro-
bust chip design. However, the extremely large size of power grid
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models (from tens of thousands to millions of nodes or circuit el-
ements) renders traditional simulation tools such as SPICE ineffi-
cient. Much work has been done to find efficient methods for power
grid simulation and optimization [1, 4, 8, 9, 12–14, 17].

Most existing power grid verification algorithms fall into the cat-
egory of time-domain simulation. These algorithms model power
grids as RC(L) circuits and model currents drawn by transistors and
logic gates as ideal time-varying current sources. Nodal voltages
can be solved given the waveforms of current sources [1,8,9,12,17].
Yet, such methods are not always feasible for two reasons. First,
there may exist too many current sources, with each current source
having various patterns. Hence it is expensive to determine which
patterns result in the worst-case voltage drop. Second, one may
wish to perform an early-stage power grid verification before the
design of specific functional blocks, in which case current wave-
form information is unknown.

To facilitate early-stage power grid verification, a class of vec-
torless algorithms has been proposed [2, 3, 5–7, 11, 15, 16]. These
algorithms determine the worst-case voltage drop by solving linear
programming (LP) problems under a set of current constraints. The
vectorless method is based on DC analysis in [7] and is extended
to transient analysis in [3, 6]. An approximate matrix inversion
method and a convex dual algorithm are proposed in [5] and [15],
respectively, to speed up the LP solution. An impulse response-
based approach considering the transition time of current sources
is presented in [2]. Some vectorless algorithms rely on the assump-
tion that the system matrix is an 𝑀 -matrix [10] and hence can-
not handle power grid models with inductors. Additionally, some
methods assume constant current patterns; since such patterns may
keep their peak values throughout the simulation period, voltage
drop prediction may be overly pessimistic.

In this paper, we propose a novel algorithm, based on hierarchi-
cal current and power constraints, which generates more realistic
time-varying current patterns and provides less pessimistic voltage
drop predictions. Our main contributions are as follows.

1. The proposed algorithm is based on modified nodal analysis
(MNA) and thereby naturally handles general RCL power
grid models.

2. Currents at different time steps are treated as independent
variables in LP problems, and additional power constraints
are introduced which restrict the energy consumption of a
current source. The current patterns solved are time-varying
and do not stay at their peak values all the time. Conse-
quently the proposed algorithm generates more realistic cur-
rent patterns and provides less pessimistic voltage drop pre-
dictions.
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3. A sorting-deletion algorithm is proposed which exploits hier-
archical constraint structure for greater efficiency than stan-
dard LP methods. The time needed to solve the LP problems
is reduced by > 85%.

The paper is organized as follows. Background is introduced in
Section 2. Hierarchical current and power constraints and LP opti-
mization problem formulations are proposed in Section 3. Problem
reductions and a sorting-deletion algorithm are proposed in Section
4. Experimental results are given in Section 5, and Section 6 draws
conclusions.

2. BACKGROUND

2.1 RCL Power Grid Model
A typical 3D power grid consists of several metal layers, with

each layer containing either horizontal or vertical conductors. Con-
ductors in different layers are connected to each other by vias at
their intersection points. External power supplies are connected
to conductors of the top layer. Power drains, such as logic gates,
transistors and memory units, are connected to conductors of the
bottom layer. Such power grid structures are usually modeled as
RCL circuits. Each conductor segment is modeled as a resistor
in series with an inductor and each grid node is connected to the
ground through a capacitor. External power supplies are modeled
as ideal constant voltage sources and current drains are modeled as
ideal time-varying current sources. The power grid model may or
may not be regular.

Assume there exist a total of 𝑁 grid nodes that are not terminals
of ideal voltage sources. If only the voltage drops at these 𝑁 nodes
are of interest, a revised circuit model can be generated by short-
circuiting all ideal voltage sources and reversing the directions of
all ideal current sources [7]. Nodal voltages of the revised circuit
are voltage drops of the original circuit. The MNA equation of the
revised circuit can be written as

𝐶�̇�(𝑡) +𝐺𝑥(𝑡) = 𝐻𝑢(𝑡). (1)

Here, 𝑥(𝑡) ∈ ℝ
𝑛 is the state vector of nodal voltages and inductor

currents; 𝑛 is the total number of nodes, voltage sources and induc-
tors; 𝑢(𝑡) ∈ ℝ

𝑚 is the vector of current sources; 𝐶 ∈ 𝑀𝑛,𝑛(ℝ) is a
diagonal matrix with its diagonal elements being capacitances and
inductances; 𝐺 ∈ 𝑀𝑛,𝑛(ℝ) is a matrix of conductances and “±1”;
𝐻 ∈ 𝑀𝑛,𝑚(ℝ) is the 0-1 current distribution matrix. Note that
each row of 𝐻 may contain more than one “1”, which means that
more than one current source can be attached to a single node. On
the other hand, each column of 𝐻 contains exactly one “1”, which
corresponds to the position at which a current source is attached.

2.2 Previous Vectorless Power Grid Verifica-
tion Methods

Vectorless power grid verification is first proposed in [7], where
only DC analysis is considered. The worst-case voltage drop is
solved from LP problems under current constraints. In [3, 6], the
algorithm is extended to transient analysis. [3] uses geometry-based
methods to solve the LP problems. This algorithm achieves lower
computational complexity with some sacrifice of accuracy. The
current constraints in [3] are time-independent, and current pat-
terns obtained there are constant throughout the simulation time
span. [6] takes inductors into consideration and is applicable to gen-
eral RCL power grid models. In [2] an impulse response-based al-
gorithm is proposed which considers the transition time of current
sources. With the transition time constraints, the current patterns

generated are more realistic, the method is inefficient for large in-
stances. In [5] an approximate matrix inversion method is proposed
to more quickly formulate the LP problems faster. The small en-
tries in the approximate matrix are set to zero, so this method intro-
duces added inaccuracy in predicting the voltage drops. In [15], a
dual formulation is proposed in which the dual problems are convex
with fewer variables. Solving these “reduced” convex optimization
problems is expected to be more efficient than solving the original
LP problems. The problem formulations of [3, 5, 15] are based on
𝑀 -matrix assumptions (i.e., the system matrix of the model is an
𝑀 -matrix).

3. HIERARCHICAL CONSTRAINTS AND
LINEAR PROGRAMS

Given a power grid model and current and power constraints, our
objective is to predict the worst-case voltage drops on the power
grid by solving LP problems. In this section, we focus on how
to formulate the LP problems with hierarchical current and power
constraints. The next section will focus on how to efficiently solve
the LP problems.

3.1 Transient Analysis
In this subsection, backward Euler-based transient analysis is

performed to derive the relationship between voltage drops and cur-
rents. Similar derivations appear in [5]. Using backward Euler
method, (1) can be discretized as(

𝐺+
𝐶

Δ𝑡

)
𝑥(𝑡+Δ𝑡) =

𝐶

Δ𝑡
𝑥(𝑡) +𝐻𝑢(𝑡+Δ𝑡). (2)

Under the stability assumption (all the poles of (1) are distributed
on the left half of complex plane), the system matrix 𝐺 + 𝐶

Δ𝑡
is

invertible. Define

ℳ =

(
𝐺+

𝐶

Δ𝑡

)−1
𝐶

Δ𝑡
, (3a)

𝒩 =

(
𝐺+

𝐶

Δ𝑡

)
𝐻. (3b)

We have

𝑥(𝑡+Δ𝑡) = ℳ𝑥(𝑡) +𝒩𝑢(𝑡+Δ𝑡). (4)

By dividing the simulation time span into 𝑘𝑡 time steps, and assum-
ing a zero initial state (i.e., 𝑥(0) = 0), the voltage drops at the last
time step can be represented as

𝑥(𝑘𝑡Δ𝑡) =

𝑘𝑡∑
𝑘=1

ℳ𝑘𝑡−𝑘𝒩𝑢(𝑘Δ𝑡). (5)

3.2 Hierarchical Constraints
In practice the peak value of a current source is usually bounded,

i.e., 𝑢𝑖(𝑡) ≤ 𝐼𝐿,𝑖. Local current constraints can be formulated by
combining all these inequalities as

0 ≤ 𝑢(𝑡) ≤ 𝐼𝐿 or 0 ≤ 𝑢(𝑘Δ𝑡) ≤ 𝐼𝐿, (6)

where 𝐼𝐿 ∈ ℝ
𝑚 is a vector with its 𝑖𝑡ℎ element being the upper

bound of the 𝑖𝑡ℎ current source. Here, and in what follows, “≤” is
taken to be element-wise. On the other hand, global current con-
straints are formulated as

𝑈𝑢(𝑡) ≤ 𝐼𝐺 or 𝑈𝑢(𝑘Δ𝑡) ≤ 𝐼𝐺, (7)

where 𝑈 ∈ 𝑀𝑝,𝑚(ℝ) is a 0-1 matrix. Each inequality in (7) cor-
responds to a certain functional block, i.e., the total current of a
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Figure 1: Block-level current constraints based on total cur-
rents of functional blocks.

functional block is bounded. The global current constraints here
are different from [5,7] in the sense that each column of 𝑈 contains
at most one nonzero entry. This implies that one current source be-
longs to only one specific functional block (i.e., appears in only one
inequality). Hence if two different functional blocks draw currents
from one grid node, the current drawn from this node should be
modeled as two independent current sources. This agrees with the
fact that more than one “1” may exist in one row of 𝐻 , as shown in
Fig. 1.

Besides current constraints, novel power constraints are intro-
duced which restrict the average power consumption of a functional
block:

𝑈

(
𝑘𝑡∑

𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝐵 . (8)

Here 𝑉𝑑𝑑 is the voltage value of the external power supply. 𝑃𝐵 ∈
ℝ

𝑝 is a vector with its 𝑖𝑡ℎ element being the power limit of the
𝑖𝑡ℎ functional block. The power constraint is reasonable as power
consumption of a functional block is usually bounded in the design
requirements.

If by design some functional blocks have interactions with each
other, high-level power constraints can be introduced which restrict
the total power consumption of certain groups of functional blocks:

[1𝑠𝑡 level]: 𝑈1𝑈

(
𝑘𝑡∑

𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝑇1;

⋅ ⋅ ⋅

[𝑟𝑡ℎ level]: 𝑈𝑟𝑈𝑟−1 ⋅ ⋅ ⋅𝑈1𝑈

(
𝑘𝑡∑

𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝑇𝑟.

(9)

Here 𝑈1 ∈ 𝑀𝑝,𝑝(ℝ), 𝑈2 ∈ 𝑀𝑝2,𝑝1(ℝ), . . .,𝑈𝑟 ∈ 𝑀𝑝𝑟,𝑝𝑟−1(ℝ)
are 0-1 matrices with each column containing at most one “1”.

With the property that 𝑈 , 𝑈1, ..., 𝑈𝑟 containing at most one
nonzero entry in every column, (6)-(9) constitute a group of hi-
erarchical constraints, as depicted in Fig. 2. Based on this spe-
cial hierarchical structure, solving LP problems can be significantly
simplified by applying a sorting-deletion algorithm, which will be
detailed in Section 4.3.

Figure 2: Illustration of hierarchical current and power con-
straints. Each column represents a current source vector at a
single time step. Unlike current constraints, power constraints
define an upper bound of the sum of currents at different time
steps.

3.3 LP Formulation
Linear programs to solve the worst-case voltage drop can be for-

mulated as

max
𝑖 = 1, ..., 𝑁
𝑘′ = 1, ..., 𝑘𝑡

𝑥𝑖(𝑘
′Δ𝑡) =

𝑘′∑
𝑘=1

𝑐𝑖,𝑘′,𝑘𝑢(𝑘Δ𝑡)

s.t.

⎧⎨
⎩

0 ≤ 𝑢(𝑘Δ𝑡) ≤ 𝐼𝐿, 𝑈𝑢(𝑘Δ𝑡) ≤ 𝐼𝐺,

𝑈

(
𝑘𝑡∑

𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝐵 ,

𝑈𝑟′𝑈𝑟′−1 ⋅ ⋅ ⋅𝑈
(

𝑘𝑡∑
𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝑇𝑟′ (𝑟

′ = 1...𝑟).

(10)
Here 𝑐𝑖,𝑘′,𝑘 is the 𝑖𝑡ℎ row of ℳ𝑘′−𝑘𝒩 .

Equation (10) in fact contains 𝑁 × 𝑘𝑡 LP problems. We de-
note the solution of one single LP problem as Φ(𝑖, 𝑘′). The worst-
case voltage drop is recognized as max{Φ(𝑖, 𝑘′)} (𝑖 = 1, . . . , 𝑁 ,
𝑘′ = 1, . . . , 𝑘𝑡). However, solving all these LP problems is pro-
hibitively expensive. Therefore, the problem size is first reduced in
both time and space domains. Then, an efficient parallel algorithm
is proposed to calculate 𝑐𝑖,𝑘′,𝑘’s. Moreover, a sorting-deletion al-
gorithm is proposed which is more efficient than standard LP algo-
rithms. The details will be elaborated in the next section.

4. PROBLEM REDUCTION AND SORTING-
DELETION ALGORITHM

4.1 Problem Reduction in Both Time and Space
Domains

LEMMA 4.1. For any integers 𝑖, 𝑘1, 𝑘2 with 1 ≤ 𝑖 ≤ 𝑁 and
1 ≤ 𝑘1 < 𝑘2 ≤ 𝑘𝑡, we have Φ(𝑖, 𝑘1) ≤ Φ(𝑖, 𝑘2).

PROOF. Assume that the maximum value Φ(𝑖, 𝑘1) is reached
when currents are 𝑢(1)(𝑘Δ𝑡) for 𝑘 = 1, . . . , 𝑘𝑡, where 𝑢(1)(𝑘Δ𝑡)
satisfy the constraints in (10). Then, for the LP problem (𝑖, 𝑘2),
let 𝑢(2)(𝑘Δ𝑡) = 0 for 𝑘 = 1, . . . , 𝑘2 − 𝑘1 and 𝑢(2)(𝑘Δ𝑡) =

𝑢(1)((𝑘 − 𝑘2 + 𝑘1)Δ𝑡) for 𝑘 = 𝑘2 − 𝑘1 + 1, . . . , 𝑘𝑡. Notice that
since max{𝑢(2)

𝑖 (𝑘Δ𝑡)∣𝑘 = 1, . . . , 𝑘𝑡} ≤ max{𝑢(1)
𝑖 (𝑘Δ𝑡)∣𝑘 =
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1, . . . , 𝑘𝑡} ≤ 𝐼𝐿,𝑖, we have 𝑢(2)(𝑘Δ𝑡) satisfies the current con-

straints. Besides, since
𝑘𝑡∑

𝑘=1

𝑢(2)(𝑘Δ𝑡) =
𝑘𝑡−𝑘2+𝑘1∑

𝑘=1

𝑢(1)(𝑘Δ𝑡) ≤
𝑘𝑡∑

𝑘=1

𝑢(1)(𝑘Δ𝑡), 𝑢(2)(𝑘Δ𝑡) also satisfies the power constraints. With

the observation that the value of 𝑐𝑖,𝑘′,𝑘 is determined by 𝑘′−𝑘 only
(i.e., 𝑐𝑖,𝑘′

1,𝑘1
= 𝑐𝑖,𝑘′

2,𝑘2
if 𝑘′

1 − 𝑘1 = 𝑘′
2 − 𝑘2), we have

𝑥𝑖(𝑘2Δ𝑡) =

𝑘2∑
𝑘=1

𝑐𝑖,𝑘2,𝑘𝑢
(2)(𝑘Δ𝑡)

= 0 +

𝑘2∑
𝑘=𝑘2−𝑘1+1

𝑐𝑖,𝑘2,𝑘𝑢
(2)(𝑘Δ𝑡)

(𝑗
Δ
=𝑘−𝑘2+𝑘1) =

𝑘1∑
𝑗=1

𝑐𝑖,𝑘2,𝑗+𝑘2−𝑘1𝑢
(2)((𝑗 + 𝑘2 − 𝑘1)Δ𝑡)

=

𝑘1∑
𝑗=1

𝑐𝑖,𝑘1,𝑗𝑢
(1)(𝑗Δ𝑡) = Φ(𝑖, 𝑘1)

Therefore Φ(𝑖, 𝑘2) ≥ Φ(𝑖, 𝑘1).

The main idea of this proof is that the longer the time span is,
the worse the voltage drop can be. If the worst-case voltage drop
at 𝑡0 is obtained under a specific current pattern, the same voltage
drop can also be obtained after 𝑡0 by translating the same current
pattern. Lemma 4.1 indicates that to obtain the worst-case voltage
drop, we only have to solve LP problems (10) when 𝑘 = 𝑘𝑡, which
significantly reduces the computation load in the time domain.

Furthermore, we need not solve (10) for all 𝑖 = 1, . . . , 𝑁 . In
practice the most significant voltage drops often appear at nodes
having longest distances to voltage sources. For example, the largest
voltage drops of a mesh-like power grid with voltage sources at
corners are most likely to occur near the center of the power grid.
Hence we can choose a set of nodes (the indices of which form a
set Ω) farthest from voltage sources and solve LP problems only
for nodes belonging to Ω. Or we can first perform a DC analysis-
based vectorless verification as in [7] and choose Ω to be the set
of nodes with the largest voltage drops. This works in practice
as the solutions of the DC analysis-based algorithm, although po-
tentially inaccurate, are able to provide a rough picture of voltage
drops and identify nodes where the worst-case is most likely to
occur. It is also possible to determine Ω based on previous experi-
ence, or choose Ω to be the set of nodes which are critical to circuit
performance. In any event, we need only to solve (10) for 𝑖 ∈ Ω,
and the cardinality of Ω can be made much smaller than 𝑁 , i.e.,
∣Ω∣ ≪ 𝑁 .

As a result, the LP problems (10) can be reduced to

max
𝑖∈Ω

𝑥𝑖(𝑘𝑡Δ𝑡) =
𝑘𝑡∑

𝑘=1

𝑐𝑖,𝑘𝑢(𝑘Δ𝑡)

s.t.

⎧⎨
⎩

0 ≤ 𝑢(𝑘Δ𝑡) ≤ 𝐼𝐿, 𝑈𝑢(𝑘Δ𝑡) ≤ 𝐼𝐺,

𝑈

(
𝑘𝑡∑

𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝐵 ,

𝑈𝑟′𝑈𝑟′−1 ⋅ ⋅ ⋅𝑈
(

𝑘𝑡∑
𝑘=1

𝑢(𝑘Δ𝑡)

)
≤ 𝑘𝑡

𝑉𝑑𝑑
𝑃𝑇 (𝑟′ = 1...𝑟),

(11)
where 𝑐𝑖,𝑘 is the 𝑖𝑡ℎ row of ℳ𝑘𝑡−𝑘𝒩 . If all nodes must be con-
sidered (i.e. Ω = {1, . . . , 𝑁}), we can solve 𝑐𝑖,𝑘 in parallel as
proposed in the next subsection to reduce the runtime.

4.2 Efficient Calculation of Coefficients
By definition

𝑐𝑖,𝑘 = 𝑒𝑇𝑖

[(
𝐺+

𝐶

Δ𝑡

)−1
𝐶

Δ𝑡

]𝑘𝑡−𝑘 (
𝐺+

𝐶

Δ𝑡

)−1

𝐻, (12)

where 𝑒𝑖 ∈ ℝ
𝑛 is the 𝑖𝑡ℎ elementary unit vector. Directly solv-

ing 𝑐𝑖,𝑘 by computing the matrix inverse is prohibitively expensive.
Now we propose an efficient method which costs only one sparse-
LU decomposition and 𝑘𝑡 forward/backward substitutions.

Performing transposition on both sides of (12), we have

𝑐𝑇𝑖,𝑘 = 𝐻𝑇

(
𝐺𝑇 +

𝐶𝑇

Δ𝑡

)−1
[
𝐶𝑇

Δ𝑡

(
𝐺𝑇 +

𝐶𝑇

Δ𝑡

)−1
]𝑘𝑡−𝑘

𝑒𝑖.

(13)
Assuming that 𝐺𝑇 + 𝐶𝑇

Δ𝑡
= 𝐿𝑑𝑈𝑑 (sparse-LU decomposition),

(13) can be written as

𝑐𝑇𝑖,𝑘 = 𝐻𝑇𝑈−1
𝑑 𝐿−1

𝑑

(
𝐶𝑇

Δ𝑡

)
𝑈−1

𝑑 𝐿−1
𝑑 ⋅ ⋅ ⋅

(
𝐶𝑇

Δ𝑡

)
𝑈−1

𝑑 𝐿−1
𝑑︸ ︷︷ ︸

𝑘𝑡−𝑘 times

𝑒𝑖.

(14)
Note that 𝐿−1

𝑑 (𝑈−1
𝑑 ) multiplied to a vector is in fact a forward

(backward) substitution. Hence computing (14) for all 𝑘 = 1, . . . , 𝑘𝑡
only involves one sparse-LU decomposition, 𝑘𝑡 matrix-vector mul-
tiplications and 𝑘𝑡 forward (backward) substitutions. The matrix-
vector multiplication is extremely efficient as 𝐶

Δ𝑡
is a diagonal ma-

trix. Solving all the 𝑐𝑖,𝑘’s (𝑖 ∈ Ω) requires one sparse-LU and
𝑘𝑡∣Ω∣ forward (backward) substitutions and matrix-vector multi-
plications. Note that 𝑐𝑖,𝑘 can be solved in parallel as calculations
of 𝑐𝑖,𝑘’s for different 𝑖 are independent of each other. The calcula-
tion of (14) is equivalent to the numerical computation of transient
analysis and thus is numerically robust.

4.3 Sorting-Deletion Algorithm
Consider one LP problem in (11) (a specific 𝑖 ∈ Ω), with all the

𝑐𝑖,𝑘 (𝑘 = 1, . . . , 𝑘𝑡) vectors computed following Section 4.2. It
can be seen that the objective function is a linear combination of
all the currents at all time steps. The coefficient of the 𝑗𝑡ℎ current
source at time step 𝑘 is the 𝑗𝑡ℎ entry of the vector 𝑐𝑖,𝑘. To simplify
notations, we reorder the subscripts of coefficients and variables as

𝑐1 = 𝑒𝑇1 𝑐𝑖,1; ⋅ ⋅ ⋅ 𝑐𝑚 = 𝑒𝑇𝑚𝑐𝑖,1;
...

. . .
...

𝑐(𝑘𝑡−1)𝑚+1 = 𝑒𝑇1 𝑐𝑖,𝑘𝑡 ; ⋅ ⋅ ⋅ 𝑐𝑘𝑡𝑚 = 𝑒𝑇𝑚𝑐𝑖,𝑘𝑡 ;

(15a)

�̃�1 = 𝑢1(Δ𝑡); ⋅ ⋅ ⋅ �̃�𝑚 = 𝑢𝑚(Δ𝑡);
...

. . .
...

�̃�(𝑘𝑡−1)𝑚+1 = 𝑢1(𝑘𝑡Δ𝑡); ⋅ ⋅ ⋅ �̃�𝑘𝑡𝑚 = 𝑢𝑚(𝑘𝑡Δ𝑡).

(15b)

Consequently, any constraint in (11) is in the form of
∑

𝑖∈ℒ �̃�𝑖 ≤
ℓ, where ℒ is a subset of the indices {1, . . . , 𝑘𝑡𝑚}. Assume the
total number of constraints is 𝜅𝑡. In the case of (11) 𝜅𝑡 = 𝑚𝑘𝑡 +

𝑝𝑘𝑡 + 𝑝+
𝑟∑

𝑟′=1

𝑝𝑟′ . (11) can be rewritten as

max 𝑥𝑖𝑛𝑜𝑑𝑒 =

(
𝑚𝑘𝑡∑
𝑖=1

𝑐𝑖�̃�𝑖

)
s.t.

∑
𝑖∈ℒ𝜅

�̃�𝑖 ≤ ℓ𝜅(𝜅 = 1, . . . , 𝜅𝑡),

(16)
where 𝑖𝑛𝑜𝑑𝑒 ∈ Ω is the index of a node.

LEMMA 4.2. The maximum of (16) is hit when all the �̃�𝑖’s as-
sociated with negative 𝑐𝑖’s are set to zero.
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Figure 3: Different current and power constraints: (a) has
a hierarchical structure as ℒ12

∩ℒ34 = ∅, ℒ12 ⊂ ℒ1234

and ℒ34 ⊂ ℒ1234; (b) is not hierarchical as ℒ12 ∕⊂ ℒ23 and
ℒ12 ∕⊃ ℒ23 and ℒ12

∩ℒ23 ∕= ∅.

PROOF. Assume the maximum is hit at a feasible point �̃� with
at least one �̃�𝑗 associated with a negative 𝑐𝑗 is set to a positive
number. It is readily verified that the new point �̃�′ obtained by
setting �̃�𝑗 to zero is still feasible (as the sum of any subset of �̃�′

𝑖’s
is equal to or smaller than that of �̃�𝑖’s). On the other hand, 𝑥∣�̃� <
𝑥∣�̃�′ , which conflicts with the assumption that the maximum is hit
at �̃�.

There exist negative 𝑐𝑖’s due to the existence of inductors. Some-
times the voltage drops on inductors caused by the “change” of cur-
rents are more significant than static voltage drops on resistors, so
the worst-case voltage drop has a negative correlation with some
current points. With Lemma 4.2, we can set all the �̃�𝑖’s associ-
ated with negative 𝑐𝑖’s to zero and then delete these �̃�𝑖 from the
constraints of (16). Constraint 𝜅 is also deleted if ℒ𝜅 becomes
empty after deleting �̃�𝑖’s. Suppose after the deletions there exist
𝑘 variables and �̄� constraints. Reorder remaining 𝑐𝑖’s such that
𝑐1 ≥ ⋅ ⋅ ⋅ ≥ 𝑐�̄� > 0 and reorder �̄�𝑖’s accordingly. (16) can be
reformulated as

max𝑥𝑖𝑛𝑜𝑑𝑒 =
�̄�∑

𝑖=1

𝑐𝑖�̄�𝑖 s.t.
∑
𝑖∈ℒ𝜅

�̄�𝑖 ≤ ℓ𝜅 (𝜅 = 1, . . . , �̄�)

(17)
Now we digress to take a look at the constraints of (17), which

have a hierarchical structure as depicted in Fig. 2. The hierarchical
constraints structure implies that for any two sets ℒ𝜅1 and ℒ𝜅2 ,
one of the following equations must hold: (i) ℒ𝜅1

∩ℒ𝜅2 = ∅; (ii)
ℒ𝜅1 ⊂ ℒ𝜅2 ; (iii) ℒ𝜅1 ⊃ ℒ𝜅2 . See Fig. 3.

DEFINITION 4.3 (BOUNDARY POINT). Suppose
�̄� = [�̄�1, . . . , �̄��̄�]

𝑇 is a feasible point under the constraints of (17).
�̄� is called a boundary point if for any 1 ≤ 𝑖 ≤ 𝑘 and any 𝜖 > 0,
[�̄�1, . . . , �̄�𝑖 + 𝜖, . . . , �̄��̄�]

𝑇 is not feasible.

We look at an illustrative example as shown in Fig.3(a). The
constraints in Fig.3(a) can be written explicitly as:

0 < �̄�1 < 𝑙1, 0 < �̄�2 < 𝑙2, 0 < �̄�3 < 𝑙3, 0 < �̄�4 < 𝑙4;

�̄�1 + �̄�2 < 𝑙12, �̄�3 + �̄�4 < 𝑙34;

�̄�1 + �̄�2 + �̄�3 + �̄�4 < 𝑙1234

(18)

The upper bounds of {�̄�1, �̄�2, �̄�3, �̄�4} and its subsets are:

ℬ(�̄�1) = min{𝑙1, 𝑙12, 𝑙1234}, ℬ(�̄�2) = min{𝑙2, 𝑙12, 𝑙1234},
ℬ(�̄�3) = min{𝑙3, 𝑙34, 𝑙1234}, ℬ(�̄�4) = min{𝑙4, 𝑙34, 𝑙1234};

ℬ(�̄�1 + �̄�2) = min{ℬ(�̄�1) + ℬ(�̄�2), 𝑙12, 𝑙1234};
ℬ(�̄�3 + �̄�4) = min{ℬ(�̄�3) + ℬ(�̄�4), 𝑙34, 𝑙1234};

ℬ(�̄�1 + �̄�2 + �̄�3 + �̄�4) = min{ℬ(�̄�1 + �̄�2) + ℬ(�̄�3 + �̄�4), 𝑙1234};
(19)

LEMMA 4.4. The sum of elements (coordinates) of any bound-

ary point is the same, i.e.,
�̄�∑

𝑖=1

�̄�𝑖 is a constant as long as [�̄�1, . . . , �̄��̄�]
𝑇

is a boundary point.

PROOF. Consider a general (arbitrary) hierarchical constraint
structure,
which can be represented by a “tree”. Let the depth of the “tree”
be 𝑑 and each node of the tree have at most 𝑤 children. Denote the
𝑗𝑡ℎ node in the 𝑖 level as ℒ𝑖,𝑗 . Assuming there exists a boundary

point (�̄�1, . . . , �̄��̄�) with
�̄�∑

𝑖=1

�̄�𝑖 < ℬ(
�̄�∑

𝑖=1

�̄�𝑖), let 𝜖 = ℬ(
�̄�∑

𝑖=1

�̄�𝑖) −
�̄�∑

𝑖=1

�̄�𝑖 > 0. So there exists at least one child (w.l.o.g, we as-

sume this is the first child) with
∑

𝑖∈ℒ2,1

�̄�𝑖 ≤ ℬ( ∑
𝑖∈ℒ2,1

�̄�𝑖) − 𝜖/𝑤.

Otherwise,
�̄�∑

𝑖=1

�̄�𝑖 > ℬ(
�̄�∑

𝑖=1

�̄�𝑖) − 𝜖. Perform this deduction to

the bottom of the tree, we conclude that there exists at least one
child (w.l.o.g.. we assume it is the first child of its parent) with
�̄�1 ≤ ℬ(�̄�1)−𝑤−𝑑𝜖. Thus we conclude that (�̄�1+𝑤−𝑑𝜖, . . . , �̄��̄�)
is feasible. This contradicts the fact that (�̄�1, . . . , �̄��̄�) is a boundary
point.

The main idea behind this lemma is that all the boundary points
belong to the plane �̄�1 + ⋅ ⋅ ⋅ + �̄��̄� = ℬ(�̄�1 + ⋅ ⋅ ⋅ + �̄��̄�). Now
we return to the LP problem (17), and show that the solution com-
puted by the sorting-deletion algorithm (Algorithm 1) is optimal.
We begin with the following two lemmas.

Algorithm 1 : Sorting-deletion algorithm

for 𝑖 = 1,...,𝑘 do
(1) Select all the sets ℒ𝜅 that satisfy 𝑖 ∈ ℒ𝜅. The subscripts
of these ℒ𝜅 form a set 𝒦𝑖;
(2) Set �̄�𝑖 to be min{ℓ𝜅∣𝜅 ∈ 𝒦𝑖};
(3) ℓ𝜅 = ℓ𝜅 − �̄�𝑖 for all 𝜅 ∈ 𝒦𝑖;

LEMMA 4.5. The solution computed by the sorting-deletion al-
gorithm is a boundary point.

PROOF. Assume that the solution [�̄�1, . . . , �̄��̃�]
𝑇 computed by

the sorting-deletion algorithm is not a boundary point. Then there
exist an integer 𝑖 ∈ [1, 𝑘] and 𝜖 > 0 such that [�̄�1, . . . , �̄�𝑖 +
𝜖, . . . , �̄��̃�]

𝑇 is feasible. However, from Algorithm 1 we know that
�̄�𝑖 = min{ℓ𝜅∣𝜅 ∈ 𝒦𝑖}. If the 𝑖𝑡ℎ variable is set to be �̄�𝑖+𝜖, at least
one constraint is violated. Therefore, [�̄�1, . . . , �̄�𝑖 + 𝜖, . . . , �̄��̃�]

𝑇 is
not feasible which leads to a contradiction.

LEMMA 4.6. Any optimal solution of the LP problem (17) is a
boundary point.

PROOF. Let �̄� = [�̄�1, . . . , �̄��̃�]
𝑇 be any optimal solution to LP

problem (17). Assume �̄� is not a boundary point for the sake of

163



contradiction. Then there exists an integer 𝑖 ∈ [1, 𝑘] and 𝜖 > 0
such that [�̄�1, . . . , �̄�𝑖 + 𝜖, . . . , �̄��̃�]

𝑇 is feasible. Since 𝑐𝑖 > 0 for
all 1 ≤ 𝑖 ≤ 𝑘, we have 𝑐1�̄�1 + . . . + 𝑐𝑖(�̄�𝑖 + 𝜖) + . . . + 𝑐�̃� >
𝑐1�̄�1 + . . .+ 𝑐𝑖�̄�𝑖 + . . .+ 𝑐�̃�. Hence, [�̄�1, . . . , �̄�𝑖 + 𝜖, . . . , �̄��̃�]

𝑇 is
a better solution for (17) than �̄�, a contradiction.

THEOREM 4.7. The solution computed by the sorting-deletion
algorithm is an optimal solution of the LP problem (17).

PROOF. Suppose the solution computed by the sorting-deletion
algorithm is �̄�(1) = [�̄�

(1)
1 , . . . , �̄�

(1)

�̃�
]𝑇 and an optimal solution of

the LP problem is �̄�(2) = [�̄�
(2)
1 , . . . , �̄�

(2)

�̃�
]𝑇 . Assume the two points

are different. From Lemma 4.4, Lemma 4.5 and Lemma 4.6 we

know that
�̄�∑

𝑖=1

�̄�
(1)
𝑖 =

�̄�∑
𝑖=1

�̄�
(2)
𝑖 .

Suppose 𝑗 is the lowest index at which �̄�(1) and �̄�(2) are differ-
ent. We have �̄�(2)

𝑗 < �̄�
(1)
𝑗 . Otherwise, �̄�(2)

𝑗 > �̄�
(1)
𝑗 , and at least one

constraint ℒ𝜅 (𝜅 ∈ 𝒦𝑗) is not satisfied. As
�̄�∑

𝑖=1

�̄�
(1)
𝑖 =

�̄�∑
𝑖=1

�̄�
(2)
𝑖 ,

there exists at least one 𝑗′ > 𝑗 such that �̄�(2)

𝑗′ > �̄�
(1)

𝑗′ ≥ 0. As
for ∀𝜅1, 𝜅2 ∈ 𝒦𝑗 , ℒ𝜅1

∩ℒ𝜅2 ∕= ∅ (both contain 𝑗), we have
ℒ𝜅1 ⊂ ℒ𝜅2 or ℒ𝜅1 ⊃ ℒ𝜅2 . Assume w.l.o.g. that ℒ1 ⊂ . . . ⊂ ℒ𝜇

(𝜇 is the cardinality of 𝒦𝑗). Suppose ℒ𝜅1 is the first (i.e. small-
est) set among ℒ1, . . . ,ℒ𝜇 that contains �̄�

(2)

𝑗′ > 0 (𝑗′ > 𝑗), we

adapt the optimal point �̄�(2) by setting �̄�
(2)
𝑗 to �̄�

(2)
𝑗 + 𝛿 and �̄�

(2)

𝑗′

to �̄�
(2)

𝑗′ − 𝛿 with 𝛿
Δ
= min{�̄�(1)

𝑗 − �̄�
(2)
𝑗 , �̄�

(2)

𝑗′ }. If no set among
ℒ1, . . . ,ℒ𝜇 contains such �̄�𝑗′ > 0 (𝑗′ > 𝑗), choose the first

�̄�
(2)

𝑗′ > 0 (𝑗′ > 𝑗) and perform the similar adaptation. It is readily
verified that the adapted point still satisfies all the constraints and
thus is feasible. On the other hand, because 𝑐𝑗 ≥ 𝑐𝑗′ , we have

𝑐1�̄�
(2)
1 + ⋅ ⋅ ⋅+ 𝑐𝑗(�̄�

(2)
𝑗 + 𝛿) + ⋅ ⋅ ⋅+ 𝑐𝑗′(�̄�𝑗′ − 𝛿) + ⋅ ⋅ ⋅+ 𝑐�̄��̄��̄� ≥

𝑐1�̄�
(2)
1 + ⋅ ⋅ ⋅+ 𝑐𝑗 �̄�

(2)
𝑗 + ⋅ ⋅ ⋅+ 𝑐𝑗′ �̄�

(2)

𝑗′ + ⋅ ⋅ ⋅+ 𝑐�̄��̄��̄�. Therefore the
adapted point is also an optimal point. After repeatedly performing
such adaptation, �̄�(1)

𝑗 = �̄�
(2)
𝑗 . Then the first difference appears at

a position after 𝑗. Perform all the steps so on and so forth we have
�̄�(1) = �̄�(2). As �̄�(2) is an optimal point, �̄�(1) is also an optimal
solution.

The intuition behind this theorem is that the optimal solution is
obtained by giving the variable associated with the largest coeffi-
cient the largest possible value.

4.4 Algorithm Flow and Complexity
The algorithm flow for the worst-case voltage drop prediction

is summarized as Algorithm 2. Its computational complexity is
analyzed as follows.

1. Computing 𝑐𝑖𝑛𝑜𝑑𝑒,𝑘’s. Computing 𝑐𝑖𝑛𝑜𝑑𝑒,𝑘’s for each 𝑖𝑛𝑜𝑑𝑒 ∈
Ω requires one sparse-LU decomposition and 𝑘𝑡 forward or
backward substitutions. As the system matrix is an 𝑛 by 𝑛
sparse matrix with 𝑂(𝑛) nonzero entries mainly distributing
near the diagonal line, this procedure has a complexity of
𝑂(𝑛𝛼𝑘𝑡), with 1 < 𝛼 < 2.

2. Sorting 𝑐𝑖’s. For each LP problem there exist 𝑚𝑘𝑡 variables
and coefficients. Employing the most efficient sorting algo-
rithm, this procedure has a complexity of 𝑂(𝑚𝑘𝑡 log(𝑚𝑘𝑡)).

3. Sorting-deletion algorithm. The sorting-deletion algorithm
determines �̄�𝑖 one at a time and then subtract the value from
the constraints. In practice each �̄�𝑖 involves only several con-
straints, i.e., ∣𝒦𝑖∣ < 10. This procedure has a complexity of
𝑂(𝑘) with 𝑘 ≤ 𝑚𝑘𝑡.

In summary, the complexity of Algorithm 2 is dominated by the
computation of 𝑐𝑖𝑛𝑜𝑑𝑒,𝑘’s. If executed in sequence, the overall

Algorithm 2 : Worst-case voltage drop prediction
1: Set up hierarchical current and power constraints based on pre-

vious experience and/or design requirements;
2: for ∀𝑖𝑛𝑜𝑑𝑒 ∈ Ω, execute 3 : 12 (in parallel)
3: Calculate 𝑐𝑖𝑛𝑜𝑑𝑒,𝑘’s following Section 4.2;
4: Set up the (reduced) LP problem as (11);
5: Set all �̃�𝑖’s associated with negative 𝑐𝑖’s to zero and delete

them from constraint sets ℒ𝑖’s;
6: Sort the coefficients 𝑐𝑖’s in the descending order and

reformulate the LP problem as (17);
7: for 𝑖 = 1 : 𝑘 do
8: Select all the sets ℒ𝜅 that satisfy 𝑖 ∈ ℒ𝜅. The

subscripts of these ℒ𝜅 form a set 𝒦𝑖;
9: Set �̄�𝑖 to be min{ℓ𝜅∣𝜅 ∈ 𝒦𝑖};

10: ℓ𝜅 = ℓ𝜅 − �̄�𝑖 for all 𝜅 ∈ 𝒦𝑖;
11: end
12: Compute 𝑥𝑖𝑛𝑜𝑑𝑒 =

∑�̄�
𝑖=1 𝑐𝑖�̄�𝑖;

13: end
14: Worst-case voltage drop is max{𝑥𝑖𝑛𝑜𝑑𝑒 ∣𝑖𝑛𝑜𝑑𝑒 ∈ Ω}.

complexity is 𝑂(𝑛𝛼𝑘𝑡∣Ω∣). If executed in parallel, the overall com-
plexity is 𝑂(𝑛𝛼𝑘𝑡).

5. EXPERIMENTAL RESULTS
We generate two 3D power grids as benchmarks. Each of the

power grids has four metal layers and is modeled as an equivalent
RCL circuit. Basic parameters of the power grids and correspond-
ing RCL circuits are recorded in Table 1. The simulation time is
0 − 1𝑛𝑠 and is divided into 100 intervals (𝑘𝑡 = 100) with each
interval being 10𝑝𝑠. LP problems are set up based on local current
constraints and global (including block-level current, block-level
power and high-level power) constraints. Sizes of the resulting LP
problems are also recorded in Table 1.

The LP problems are solved for every node 𝑖𝑛𝑜𝑑𝑒 ∈ Ω (∣Ω∣ =
100), first by standard LP methods and then by the proposed sorting-
deletion algorithm. The program is executed on a Linux worksta-
tion with 3.0GHz 8-core Intel Xeon CPU and 16G memory. CPU
times are reported in Table 2. The voltage drops are omitted in this
table as they are the same for both methods. From the table we con-
clude that solving the LP problems is speeded up by approximately
> 7× using the proposed algorithm when there exist no power con-
straints. If there exist power constraints, the standard LP method
does not work because the iteration number exceeds an acceptable
number. An intuitive explanation for this phenomenon is that in
the LP problem without power constraints, the coefficient matrix
of the inequality contains one entry in each column (like a “diag-
onal” matrix). Thus using standard methods to solve LP problems
without power constraints is much faster than to solve LP problems
with power constraints. The speedups for both single node case
and multiple node case are roughly the same because each node is
solved independently.

To show that omitting power constraints may result in an overly
pessimistic voltage drop prediction, we solve the LP problems (us-
ing sorting-deletion algorithm) for nodes belonging to Ω both with
and without the power constraints (pc’s). The results are shown
in Table 3. The worst-case current patterns of some specific cur-
rent sources are plotted in Fig. 4(a) & 4(b). It can be seen from
Table 3 that omitting power constraints may result in an 30% over-
estimation of the worst-case voltage drop. Fig. 4(a) & 4(b) show
that current sources keep their peak current values in a much longer
time period if power constraints are omitted, which are not realistic.
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Table 1: Parameters of the power grids used in the experiment
Power grid models LP problems

Nodes (N) Sources (m) Matrix size (n) No. of R’s No. of C’s No. of L’s Variables ∣Ω∣
Power grid 1 75,762 37,881 113,499 54,350 37,684 37,684 3.7M 100
Power grid 2 980,313 490,157 146,9755 608,792 394,444 394,444 690M 100

The worst-case current patterns with power constraints are more
realistic. To provide intuitive pictures of how voltage drop at the
node where worst-case voltage drop occurs changes, we perform
transient simulation using the worst-case current waveforms. It can
be seen from Fig. 5(a) & 5(b) that omitting power constraints does
result in overly pessimistic voltage drop predictions.

To show the impact of the constraint structure on voltage drops
and CPU times, we do experiments on power grid 1 (one single
node) using different constraint structures. The results are shown in
Table 4. Both standard method and sorting-deletion algorithm are
used. Sorting-deletion algorithm does not apply for non-hierarchical
constraint structure (“×” in Table 4). Standard methods do not
work for non-hierarchical constraints and constraints with pc’s be-
cause the iteration number exceeds an acceptable value (CPU time
too large). Table 4 indicates that more power constraint levels result
in lower voltage drop prediction. In practice the number of con-
straint levels should be determined based on design requirements
or experience. Table 4 also indicates that CPU time of sorting-
deletion algorithm does not increase significantly with hierarchical
levels.

Table 3: Voltage drop predictions with and without power con-
straints

Without With Over es- Percen-
pc’s pc’s timation tage

Average
62.3 mV 46.9 mV 15.4 mV 33%

Power for Ω
grid 1 Worst-

63.4 mV 48.1 mV 15.3 mV 32%
case

Average
80.2 mV 61.1 mV 19.1 mV 31%

Power for Ω
grid 2 Worst-

81.3 mV 63.2 mV 18.1 mV 29%
case

Table 4: Voltage drop and CPU times for different constraint
structures

non- w/o L-1 L-2 L-3
hier pc’s pc’s pc’s pc’s

Voltage − 61.5 − − −
Standard drop (mV)
method CPU − 7.14 − − −

time (s)
Voltage × 61.5 45.7 37.4 33.2

Sorting drop (mV)
deletion CPU × 0.74 0.83 0.90 0.96

time (s)
2Here “non-hier” represents non-hierarchical constraints. L-1 (L-2, L-3) pc’s

represent hierarchical constraints with 𝑟 = 1 (𝑟 = 2, 𝑟 = 3) level(s) of power
constraints.

6. CONCLUSIONS
A more realistic early-stage power grid verification algorithm

based on hierarchical current and power constraints has been pro-
posed in this paper. The proposed algorithm does not rely on the
𝑀 -matrix assumption and thus naturally handles general RCL po-
wer grid models. Besides, currents at different time steps are treated
as independent variables in LP problems and additional power con-
straints are introduced which restrict the energy consumed by cer-
tain current sources. As a result, worst-case current patterns solved
by the proposed algorithm are more realistic in the sense that they
are time-varying and cannot keep peak values all the time. Conse-
quently, the worst-case voltage drop prediction is less pessimistic.
Moreover, a sorting-deletion algorithm is proposed which signifi-
cantly speeds up the solutions of LP problems. Experimental re-
sults have verified that the proposed algorithm generates more re-
alistic worst-case current patterns and voltage drops. Utilizing the
proposed sorting-deletion algorithm, the CPU time needed to solve
LP problems is reduced by >85%.

7. REFERENCES
[1] T. Chen and C. Chen. Efficient large-scale power grid analysis based on

preconditioned krylov-subspace iterative methods. In DAC, pages 559–562,
2001.

[2] P. Du, X. Hu, S. Weng, A. Shayan, X. Chen, E. Engin, and C. Cheng.
Worst-case noise prediction with non-zero current transition times for early
power distribution system verification. In ISQED, pages 624–631. IEEE, 2010.

[3] I. Ferzli, F. Najm, and L. Kruse. A geometric approach for early power grid
verification using current constraints. In ICCAD, pages 40–47, 2007.

[4] J. Fu, Z. Luo, X. Hong, Y. Cai, S. Tan, and Z. Pan. A fast decoupling capacitor
budgeting algorithm for robust on-chip power delivery. In ASPDAC, pages
505–510, 2004.

[5] A. Ghani and F. Najm. Fast vectorless power grid verification using an
approximate inverse technique. In DAC, pages 184–189, 2009.

[6] N. Ghani and F. Najm. Handling inductance in early power grid verification. In
ICCAD, page 134, 2006.

[7] D. Kouroussis and F. Najm. A static pattern-independent technique for power
grid voltage integrity verification. In DAC, pages 99–104, 2003.

[8] S. Nassif and J. Kozhaya. Fast power grid simulation. In DAC, pages 156–161,
2000.

[9] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda. A stochastic
approach to power grid analysis. In DAC, pages 171–176, 2004.

[10] R. Plemmons. M-matrix characterizations. I–nonsingular M-matrices. Linear
Algebra and its Applications, 18(2):175–188, 1977.

[11] H. Qian, S. Nassif, and S. Sapatnekar. Early-stage power grid analysis for
uncertain working modes. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 24(5):676–682, 2005.

[12] H. Qian, S. Nassif, and S. Sapatnekar. Power grid analysis using random walks.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 24(8):1204–1224,
2005.

[13] Y. Wang, C. U. Lei, G. K. H. Pang, and N. Wong. MFTI: Matrix-Format
Tangential Interpolation for Modeling Multi-Port Systems. In DAC, pages
683–686, 2010.

[14] Y. Wang, Z. Zhang, C. K. Koh, G. K. H. Pang, and N. Wong. PEDS: Passivity
Enforcement for Descriptor Systems via Hamiltonian-Symplectic Matrix Pencil
Perturbation. In ICCAD, pages 800–807, 2010.

[15] X. Xiong and J. Wang. An efficient dual algorithm for vectorless power grid
verification under linear current constraints. In DAC, pages 837–842, 2010.

[16] W. Zhang, W. Yu, X. Hu, L. Zhang, R. Shi, H. Peng, Z. Zhu, L. Chua-Eoan,
R. Murgai, T. Shibuya, et al. Efficient power network analysis considering
multidomain clock gating. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 28(9):1348–1358, 2009.

[17] M. Zhao, R. Panda, S. Sapatnekar, and D. Blaauw. Hierarchical analysis of
power distribution networks. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 21(2):159–168, 2002.

165



Table 2: Runtime comparison of standard LP algorithms and the proposed sorting-deletion algorithm
Without pc’s With pc’s

Standard method Proposed algorithm Speed-up Standard method Proposed algorithm Speed-up

Single Setup 9.86 sec 9.86 sec − 9.86 sec 9.86 sec −
Power node Solving 6.08 sec 0.71 sec 8.56× −(1) 0.77 sec −
grid 1 ∣Ω∣ Setup 901 sec 901 sec − 901 sec 901 sec −

nodes Solving 577 sec 70.2 sec 8.22× −(1) 76.5 sec −
Single Setup 278 sec 278 sec − 278 sec 278 sec −

Power node Solving 74.4 sec 9.91 sec 7.51× −(1) 10.87 sec −
grid 2 ∣Ω∣ Setup 417 min 417 min − 417 min 417 min −

nodes Solving 120 min 15.4 min 7.83× −(1) 17.1 min −
1Here the standard LP solver does not work because the iteration number is too large and exceeds “MaxIter”.
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Figure 4: Worst-case current patterns with and without power constraints at some nodes of power grid 1 and power grid 2.
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Figure 5: Voltage drop pattern at the node where worst-case voltage drop occurs for both power grid 1 and power grid 2. The values
of the red and blue curves at 𝑡 = 1𝑛𝑠 are the worst-case voltage drops with and without power constraints.
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