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Abstract

We give new, e�ective algorithms for k-way cir-
cuit partitioning in the two regimes of k � n and
k = �(n), where n is the number of modules in the
circuit. We show that partitioning an appropriately
designed geometric embedding of the netlist, rather
than a traditional graph representation, yields im-
proved results as well as large speedups. We derive d-
dimensional geometric embeddings of the netlist via (i)
a new \partitioning-speci�c" net model for construct-
ing the Laplacian of the netlist, and (ii) computation
of d eigenvectors of the netlist Laplacian; we then ap-
ply (iii) fast top-down and bottom-up geometric clus-
tering methods.

1 Preliminaries

In top-down layout synthesis of complex VLSI sys-
tems, the goal of partitioning/clustering is to reveal
the natural circuit structure, via a decomposition into
k subcircuits which minimizes connectivity between
subcircuits. A generic problem statement is as fol-
lows:

k-Way Partitioning: Given a circuit netlist G =
(V;E) with jV j = n modules, construct a k-way par-
titioning Pk which divides the modules into a set of k
disjoint subcircuits fC1; C2; : : : ; Ckg, such that a given
objective function F (Pk) is minimized.

The relative sizes of k and n determine one of two dis-
tinct multi-way partitioning applications: the small-k
partitioning (SKP) problem or the large-k partitioning
(LKP) problem.

1.1 The SKP Problem

In the SKP regime, k � n and is in practice
bounded by a small constant, e.g., k � 10. The
SKP problem arises in high-level system partition-
ing and oorplanning. Early approaches involved
seeded epitaxial growth, extensions of the Fiduccia-
Mattheyses iterative interchange bipartitioning algo-
rithm [18], and a primal-dual iteration motivated by
a generalization of the minimum ratio cut metric [21].
These methods use simple objective functions based
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only on the number of nets crossing partition bound-
aries; they moreover require the partition sizes to
be speci�ed in advance. Recently, Yeh et al. [22]
proposed a \shortest-path clustering" (SPC) method,
where \shortest paths" between random pairs of mod-
ules are iteratively deleted from the netlist graph
until it becomes disconnected into multiple compo-
nents (i.e., the clusters). This algorithm probabilisti-
cally captures the relationship between multicommod-
ity ow and the minimum ratio cut. SPC solutions
are of high quality when measured by the cluster ra-
tio, which Yeh et al. argue to be the \proper" k-way
generalization of the ratio cut objective.

Minimum Cluster Ratio SKP: Find a clustering
Pk = fC1; C2; : : : ; Ckg, 2 � k � jV j, that minimizes

F (Pk) =
c(Pk)Pk

j=i+1

Pk�1
i=1 jCij � jCjj

:

Here c(Pk) is the number of nets which cross between
two or more of the clusters of Pk. The SPC method,
while of high quality, requires shortest-path computa-
tions in the netlist graph and exhaustive enumeration
of all partitions of disconnected components obtained
through the shortest-path deletion; its O(mn log n)
time complexity also depends on two \accuracy" pa-
rameters b and 1

� .

In [4], Chan et al. generalize the result of [10] from
2-way to k-way ratio cut partitioning. Chan et al.
use the �rst k eigenvectors of the netlist Laplacian to
construct an orthogonal \projector" which maps an n-
dimensional space into a k-dimensional space. Ideally,
n elementary unit vectors in the n-space (modules)
will be mapped to exactly k distinct points in the k-
space (partitions) by this projector. Since this is not
the case in practice, the authors of [4] use heuristic
clustering methods in k-space to obtain a k-way par-
titioning. The approach requires additional matrix
manipulations and a more complicated, netlist-based
clustering methodology than our methods below.

The authors of [4] also generalize the ratio cut ob-
jective using a dimensionless scaled cost:

Minimum Scaled Cost SKP: Find a clustering
Pk = fC1; C2; : : : ; Ckg, 2 � k � jV j, that minimizes

F (Pk) =
1

n(k � 1)

kX

i=1

Ei

jCij
:



Here, Ei is the number of signal nets crossing the
boundary of the Ci partition.

We see that [4] and [22] each establish a generaliza-
tion of the ratio cut concept. Each metric is robust,
and automatically accounts for both cut nets and size
balance among the partitions. Below, we compare our
new methods against the results in [4] and [22], using
their respective metrics.

1.2 The LKP Problem

In the LKP regime, k = �(n), e.g., k = n
5 . The

LKP problem arises with two-phase enhancements of
Fiduccia-Mattheyses (F-M) [2] [11] [15]; a partitioning
into small clusters induces a \compacted" netlist and
reduces the solution space so that it can be searched
more e�ectively. Thus, we wish to achieve LKP solu-
tions with k just small enough for standard iterative
approaches to once again become e�ective.

With this goal in mind, Bui et al. [2] proposed
the \matching-based compaction" (MBC) algorithm,
where the edges of a maximal random matching in the
netlist graph induce a compacted instance of n

2 ver-
tices, and the compaction is iterated until the problem
size becomes manageable. After compaction, heuris-
tic F-M bipartitioning is performed, and the netlist
is re-expanded into a \at" initial con�guration for a
second F-M phase.

Recently, Hagen et al. [11] developed the proba-
bilistic RW-ST method which �nds \natural clusters"
via a self-tuning random walk in the circuit netlist.
Strongly connected regions of the netlist are detected
by multiple revisitations of modules within the walk.
[11] reports that the RW-ST clusters lead to signi�-
cant improvements in the performance of two-phase
F-M, as compared to the MBC strategy. However,
�(n3) time is required to process a random walk of
the recommended �(n2) length.

1.3 Outline of Paper

The remainder of this paper develops our new
methodology, which applies fast geometric clustering
algorithms to a geometric embedding of the netlist.
Phase I of our methodology constructs the embedding,
i.e., we map each module of the netlist to a point in d-
dimensional Euclidean space. The success of this pro-
cedure is strongly inuenced by a new \partitioning-
speci�c" net model used in constructing the weighted
netlist graph. Phase II of our methodology computes a
fast (top-down or bottom-up) clustering of the points
in the embedding and then maps the clustering back
to the original netlist, returning it as a k-way netlist
partitioning. We propose use of a min-diameter clus-
tering objective in conjunction with two fast methods,
KC and AGG; these a�ord consistently good k-way
netlist partitions in O(n log k) and O(n2) time respec-
tively. Section 4 presents experimental data showing
that our multi-way partitioning approach is quite ro-
bust. For SKP, we average 11.2% improvement over
the work of Chan et al. in [4], and are also competi-
tive with the method of [22] while maintaining better

algorithmic complexity.1 For LKP in the context of
two-phase F-M bisection, our results signi�cantly im-
prove over the results of [2] [11], and achieve an overall
26.9% improvement over standard F-M bipartitioning.
We conclude in Section 5 with directions for future re-
search.

2 Phase I: Fast Embeddings

Many graph optimizations achieve speedups when
the input is embedded in a geometric space (e.g.,
computing a minimum spanning tree (MST) [17]).
For typical netlist sizes, speedups for the partition-
ing problem can become very signi�cant. An embed-
ding should be \distance-preserving": the distance be-
tween two points in the embedding should reect the
strength of connectivity between the corresponding
modules. Following ideas of Hall [12], our approach
embeds the netlist into d-dimensional Euclidean space
via the well-established relationship between eigenvec-
tors of the netlist Laplacian2 and minimum ratio cut
partitionings (or minimum squared wirelength place-
ments) (see [11] [9] for surveys).

Every eigenvector of the Laplacian gives a dis-
tinct, one-dimensional spatial embedding of the cir-
cuit graph wherein strongly connected modules will
tend to be placed close to each other. Because
the squared wirelength of each eigenvector placement
is given by its corresponding eigenvalue, the lowest
eigenvalues will correspond to eigenvectors that are
the most \distance-preserving". Thus, we derive a d-
dimensional embedding of the netlist from the eigen-
vectors corresponding to the lowest d nonzero eigen-
values of the Laplacian. The ith components of these d
eigenvectors give the d coordinates <d of the ith mod-
ule. We compute embeddings using the same Lanc-
zos code as [10]; Lanczos solves the sparse symmetric
eigenproblem with O(n1:4) runtime and is very com-
petitive with the complexity of iterative partitioning
methods. Moreover, our studies indicate that achiev-
ing a d-dimensional embedding (d eigenvectors) re-
quires 1.15, 1.83, 2.00, 2.58, 2.64, 3.25, 3.29, 4.31 and
4.44 times the CPU cost of achieving a 1-dimensional
embedding (i.e., just the �rst nontrivial eigenvector),
for d = 2; 3; : : : ; 10 respectively.

A \Partitioning-Speci�c" Net Model

The success of our approach relies on an en-
hancement to the traditional eigenvector embedding,
namely, a new clique net model for constructing the
adjacency matrix A. Recall that the clique net model

1Recently, the authors of [4] have improved their algorithm
by combining geometric and graph clustering [23]; see Section
5 for further discussion.

2We represent the circuit netlist by a simple undirected
graph G = (V;E) with jV j = n vertices v1; : : : ; vn represent-
ing the n modules, and edges in E capturing superposed hyper-
edges of the netlist hypergraph via a clique net model [15]. The
n� n adjacency matrix A = A(G) has Aij equal to the weight
of fvi; vjg 2 E, and by convention Aii = 0 for all i = 1; : : : ; n.
If we let d(vi) denote the degree of node vi (i.e., the sum of the
weights of all edges incident to vi), we obtain the n�n diagonal
degree matrix D de�ned by Dii = d(vi). The Laplacian of the
netlist graph is given by Q = D � A.



represents a p-pin signal by a clique of C(p; 2) edges
among its p modules; the cliques for all signal nets are
superposed to yield the matrix A. Previous work has
adopted a \standard" clique model [15], wherein a p-
pin net contributes weight 1

p�1 to each of C(p; 2) Aij

values.

This standard clique model seems to be motivated
by the following consideration: in bipartitioning, when
one p-pin signal net crosses the partition boundary, at
least (p � 1) edges in its clique must be cut, hence
the weight of cut edges will be � (p � 1) � 1

(p�1) = 1.

In other words, the standard net model ensures that
a cut net will make a minimum contribution of 1 to
the partitioning cost function. Unfortunately, a cut

net can also contribute up to p2

4 � 1
(p�1) to the parti-

tioning objective, meaning that large nets will receive
disproportionate attention in the partitioning process.
To remedy this, we propose a new partitioning-speci�c
clique net model, whereby any cut net will make an ex-
pected contribution of 1 to the cost function. Thus, all
nets will receive uniform priority in the optimization.
By enumerating all possible bipartitions of a net, it is
simple to show that a uniform edge weight of 4

p(p�1)

achieves this goal. We use this revised clique model in
constructing our netlist Laplacian.3

3 Phase II: Geometric Clustering
The geometric embedding in Phase I maps the n

netlist modules to n points in d-dimensional Euclidean
space, denoted by V = fv1; v2; : : : ; vng � <d. The
goal of Phase II is to divide V into k disjoint clusters,
which will correspond to the output partitions. We de-
�ne a k-way clustering of V as Pk = fC1; C2; : : : ; Ckg
where [iCi = V and the Ci are disjoint. A large
body of work has established various objectives f(Pk)
that capture whether a given clustering of V is nat-
ural. Intuitively, clusters should be compact and
well-separated. Clusters with small diameter, de�ned
as diam(C) = max

vi;vj2C
d(vi; vj) (where d(vi; vj) denotes

the Euclidean distance between vi; vj 2 V ), satisfy
the former goal; clusters with large split, de�ned as
split(C1; C2) = min

vi2C1;vj2C2

d(vi; vj), achieve the lat-

ter. Thus, standard objective functions in the liter-
ature include:

1. Max-Split Clustering: Maximize

f(Pk) = min
Ci;Cj2Pk

fsplit(Ci; Cj)g

2. Min-Diameter Clustering: Minimize

f(Pk) = max
C2Pk

fdiam(C)g

3We ignore the (0; p) and (p;0) bipartitioning cases, since
these do not actually cut the signal net. The actual uniform

edge weight that we use is 4
p(p�1) �

2p�2
2p . (Recent work in

our group has more generally demonstrated the e�ects of net
modeling on partition/placement quality.)

3. Min-Sum-Diameters Clustering: Minimize

f(Pk) =
kX

1=i

diam(Ci)

Each of these is an intuitively reasonable objective for
our purposes. Previous works (e.g., [4] [12]) use \geo-
metric clustering", but do not specify f . However, we
have found the choice of f to be critical.

Formulation 1 is solved optimally by the Single-
Linkage algorithm [14], which iteratively merges the
closest pair of clusters. The same solution may be
derived by removing the k � 1 largest edges from the
MST; the k connected components which remain form
the clustering. The complexity of this approach is
dominated by the MST construction, e.g., O(n log n)
in the plane [17]. With respect to Formulations 2 and
3, the following results are known.

Fact 1: Formulations 2 and 3 are NP-Complete for
k � 3 and d � 2 [16].

Fact 2: Solving Formulation 2 within a factor < 2 of
optimal is NP-complete for d � 3 [5].

Fact 3: In general graphs whose edge weights do not
satisfy the triangle inequality, neither Formulation 2
nor Formulation 3 may be approximated within any
�xed constant factor of optimal for k � 3 [7].

When distances satisfy the triangle inequality, as they
do in geometry, several heuristics achieve performance
ratio 2 for Formulation 2. We use the simple k-center
(KC) technique of Gonzalez [7], which runs in O(nk)
time and achieves this ratio:4

KC Algorithm
1. Initialize W , a set of cluster centers, to empty.
2. Choose some random v from V and add it to W .
3. While jW j � k, �nd v 2 V s.t. minw2W d(v; w)
is maximized, and add it to W .

4. Form clusters C1; C2; : : : ; Ck each containing a
single point of W ; place each v 2 V into
the cluster of the closest wi 2W .

Fact 2 states that Formulation 2 is NP-complete
only for k � 3. Indeed, for k = 2, there are well-
known e�cient algorithms, e.g., bicoloring a maxi-
mum spanning tree divides the point set into an opti-
mal min-diameter bipartitioning [8]. We may obtain
a heuristic k-way partitioning by iteratively applying
optimal bipartitioning to the largest current cluster;
we call this the Divisive Min-Diameter approach. This
technique illustrates the concept of a hierarchical clus-
tering where successive clusterings Pi and Pi+1 di�er
only in that a single C 2 Pi has been separated into
Cu; Cv 2 Pi+1.

4Feder and Greene [5] used the KC construction as the basis
for a more complicated but faster scheme which for V � <d

yields a 2-approximate clustering in optimal O(n logk) time.
However, we have chosen to use the O(nk) KC algorithm for its
simplicity.



Number of Clusters (k)
Algorithm Formulation Ref 9 8 7 6 5 4 3 2
RSBipart { [4] 48.8 44.5 40.6 37.1 41.0 36.6 27.3 14.6

KP (Chan et al.) { [4] 45.0 51.1 32.1 36.8 25.9 25.7 15.9 13.5
AGG 2 [14] 33.1 31.7 29.8 24.8 26.0 17.4 17.9 13.5
KC 2 [8] 34.6 33.6 34.4 30.7 27.5 16.4 17.4 13.5

Single-Linkage 1 [14] 49.5 39.2 39.9 23.7 13.5
Divisive Min-Diameter 2 [9] 59.5 46.8 42.9 32.8 13.5
Divisive Sum-Diameters 3 [13] 96.0 74.9 59.8 72.3 13.5
Agglom Sum-Diameters 3 { 154.5 127.2 88.3 72.3 13.5

Table 1: Comparison of the various clustering objectives and algorithms for the Primary1
benchmark netlist, using the partitioning-speci�c net model in constructing the Laplacian.
Numbers reported give the Scaled Cost metric of Chan et al. [4].

While the top-down hierarchical approach reects
current practice for k-way nelist partitioning, it is also
reasonable to construct a bottom-up hierarchical clus-
tering. To this end, we propose to use an \agglomera-
tive" algorithm AGG (cf. the Complete Linkage algo-
rithm of Johnson [14]), which begins with each point
in its own cluster and then iteratively merges a pair
of clusters so as to minimize the increase in maximum
cluster diameter. Benzecri [1] has given an O(n2) im-
plementation of this algorithm based on constructions
of chains of nearest neighbors.

AGG Algorithm
1. Initialize Pn = fC1; C2; : : : ; Cng s.t. each Ci

contains exactly one vertex in V . Set m = n.
2. Given Pm, �nd clusters Ci; Cj s.t. diam(Ci [Cj)
is minimum. Pm�1 = (Pm [C)� Ci �Cj.

3. Decrement m; if m > k go to Step 2.

Formulation 3 may also be addressed by divisive
and agglomerative approaches. [13] gives an e�cient
algorithm for Formulation 3 when k = 2; we apply
this algorithm iteratively and call it Divisive Sum-
Diameters. The Formulation 3 analogue of AGG is
called Agglom Sum-Diameters. Table 1 summarizes
the six algorithms that we have discussed in this sec-
tion; the table also provides comparison data which
we discuss next.

4 Results and Discussion

4.1 Results for the SKP Problem

Our experiments show clear di�erences in the par-
tition quality a�orded by the various objectives.

Table 1 shows the best results obtained by each of
the six algorithms for the Primary1 benchmark. For
2 � k � 6, the six algorithms are compared by taking
the best clustering result over dimensions 1 � d � 5,
expressed using the Scaled Cost objective [4]. The
Sum-Diameters objective tends to force our algorithms
to isolate outliers in the embedding, thus generating
poorly balanced clusters and high Scaled Cost. Single-
Linkage slightly outperforms Divisive Min-Diameter,
but both are noticeably inferior to AGG and KC. Since
Single-Linkage solves Formulation1 optimally, we con-
clude that minimization of split is not a good objec-

tive vis-a-vis the eigenvector-induced embeddings. We
hypothesize that Divisive Min-Diameter's poor perfor-
mance is due to the nature of our embeddings (dense
with very few outliers), a problem class for which Di-
visive Min-Diameter often behaves poorly.

We also compare our results to the KP method of
Chan et al. [4] for the Primary1 benchmark (we cen-
ter on the Primary1 benchmark in the SKP discus-
sion, since it is the only benchmark reported in [4]).
Here AGG and KC represent the best values used over
1 � d � 10. These values represent an average 11.2%
win for KC, and an average 15.6% win for AGG, over
KP. As would be expected, even larger improvements
are achieved over the recursive spectral bipartitioning
(RSBipart) results, which we quote from [4].

We digress momentarily to show the e�ect of
the partitioning-speci�c net model in obtaining high-
quality geometric embeddings that are suited to our
clustering algorithms (Table 2). For AGG and KC, the
partitioning-speci�c net model led to clearly improved
results as measured by the Scaled Cost objective: for
AGG, an average of 12.1% improvement in partition-
ing quality was observed, and KC results improved by
an average of 17.4% with the new net model.

AGG KC
k 1=(p� 1) 4=p(p� 1) 1=(p� 1) 4=p(p� 1)
2 14.6 13.5 14.2 13.5
3 18.6 17.9 14.3 17.4
4 30.7 17.4 47.6 16.4
5 27.8 26.0 43.4 27.5
6 31.2 24.8 39.5 30.7
7 30.5 29.8 42.5 34.7
8 35.0 32.7 41.2 33.6
9 37.8 35.5 51.6 54.4

Table 2: Comparison of the two net models 1
p�1

and 4
p�(p�1) (best clusterings over embeddings in

<d, 1 � d � 5) for AGG and KC. Results are for
the Primary1 benchmark netlist and are evalu-
ated using Scaled Cost [4].

Although Table 1 illustrates the superiority of AGG
over KC, the best known implementation of AGG re-
quires O(n2) time, while KC has an O(n log k) imple-
mentation. For the SKP problem, the speedup gained



Test Number of Clusters - k (Best dimension)
Case 9 8 7 6 5 4 3 2
19ks 15.0(10) 15.8(6) 15.6(1) 15.1(1) 14.4(1) 13.1(1) 12.5(1) 17.6(1)
bm1 27.6(6) 30.6(10) 28.6(10) 19.8(10) 17.9(6) 11.1(4) 7.0(2) 5.8(1)
Prim1 34.6(7) 33.6(5) 34.4(6) 30.7(4) 27.5(3) 16.4(3) 17.4(3) 13.5(1)
Prim2 11.7(6) 12.0(6) 11.8(9) 11.5(5) 10.4(4) 9.0(2) 7.5(1) 5.9(1)
Test02 21.5(8) 21.2(7) 21.1(6) 21.2(5) 23.1(3) 23.6(3) 19.1(2) 30.1(1)
Test03 21.0(9) 22.4(9) 23.2(9) 22.4(3) 22.2(2) 19.3(2) 21.4(2) 16.7(3)
Test04 22.1(6) 23.8(9) 24.4(6) 24.3(6) 27.2(5) 27.4(3) 36.0(2) 66.1(1)
Test05 11.0(6) 10.6(7) 10.7(5) 11.1(4) 10.3(10) 8.8(10) 10.2(6) 10.6(1)
Test06 31.0(10) 32.4(10) 33.6(4) 26.4(4) 28.8(4) 25.9(2) 19.3(2) 28.6(1)

Table 3: Scaled Cost measures of best k-way partitions obtained by KC using d-
dimensional embeddings, 1 � d � 10. Value in parentheses tells which dimension had
the best Scaled Cost, illustrating the diagonal e�ect.

by KC is very signi�cant. To facilitate comparison
with future work by other researchers, Table 3 gives
the best KC results over the geometric embeddings
for d = 1; : : : ; 10, again measured by the Scaled Cost
metric. We note that for a given value of k, the most
favorable dimension d seems to grow roughly with k
thereby creating a diagonal e�ect in the table.5

Finally, Table 4 shows comparisons between KC
and the Shortest-Path Clustering (SPC) results given
by Yeh et al., as measured by the Cluster Ratio objec-
tive [22]. In the table, we also include the \Recursive
Ratio Cut" (RR) results that were reported in [22]
(RSBipart is similar to RR; the former uses the spec-
tral method of [10] while the latter uses the F-M vari-
ant of [20]). Here, as in [22], we assume uniform mod-
ule areas. For each benchmark, and 2 � k � 9, we re-
port the best k-way partition obtained for 1 � d � 10.
Although our results are better than those of the re-
cursive ratio cut approach, they are noticeably infe-
rior to the SPC results. However, SPC is expensive in
comparison with our method.

Test RR SPC KC
Case cut(k) RC cut(k) RC cut(k) RC

19ks 11(2) 5.43 127(3) 4.72 32(5) 4.86
Prim1 11(2) 16.29 14(3) 12.81 14(2) 13.53
Prim2 83(2) 4.93 77(2) 4.61 88(2) 5.88
Test02 152(6) 16.62 9(3) 8.32 10(3) 8.72
Test03 48(2) 11.62 69(2) 10.71 52(3) 11.85
Test04 51(2) 11.54 6(2) 5.69 6(3) 5.85
Test05 48(2) 7.24 8(2) 3.11 15(4) 4.78
Test06 91(7) 7.23 81(9) 6.22 63(6) 9.34

Table 4: Results for KC, compared against those re-
ported for Shortest-Path Clustering [23] according to
the Cluster Ratio objective RC (reported as a multi-
ple of 10�5).

5This seems to con�rm the ideas of Chan et al., who also
use k-dimensional embeddings to obtain k-way partitions; alter-
natively, this may also be an artifact of the objective function
proposed in [4]. The \diagonal e�ect" implies that for any given
value of k, only a few embeddings corresponding to d � k need
to be examined, and for k small, only a few eigenvectors need
to be computed.

4.2 Results for the LKP Problem

Recall from the discussion of Section 1.2 that LKP
solutions are typically evaluated by the improvement
a�orded to Fiduccia-Mattheyses bipartitioning, via
the two-phase compaction approach. Here, we use the
O(n2) AGG algorithm, since it is bottom-up and can
be made fairly e�cient for large values of k = �(n).
Our motivation for this choice also stems from sep-
arate studies showing that AGG yields very high-
quality solutions for Formulation 2 (min-diameter),
especially when k is large.

In Table 5, we compare two-phase FM results us-
ing AGG clustering of the geometrically embedded
netlist against the results for (i) standard F-M (on at
netlists), (ii) random matching-based clusterings, and
(iii) RW-ST clusterings, all of which are quoted from
[11]. For each benchmark, we use the same number
of clusters k as was used in [11]; we report the best
two-phase F-M result using agglomerative clustering
in each of ten embedding dimensions (1 � d � 10) and
20 runs for each clustering (results of 200 F-M runs in
parentheses). Our clusterings give an average of 26.9%
improvement over the \at" F-M partitioning results,
in contrast to the 17.4% improvement given by RW-
ST clusterings [11] using the same k values. Further,
our best F-M value always occurred for d � 3. That
low-dimensional embeddings are superior for LKP is
interesting; recall that for SKP, the best embedding
dimension grew with k.

Test Standard FM MBC RW-ST AGG
Case k Cuts Cuts Cuts Cuts
19ks 737 151 (140) 156 146 124
bm1 216 65 (61) 54 58 48

PrimGA1 191 66 (66) 48 47 49
PrimSC1 191 59 (59) 61 58 49
PrimGA2 702 242 (234) 187 165 146
PrimSC2 702 235 (235) 175 159 144
Test02 445 42 (42) 42 42 42
Test03 327 84 (84) 59 71 50
Test04 317 12 (12) 20 14 12
Test05 423 24 (24) 4 5 9
Test06 477 87 (65) 83 82 63

Table 5: Utility of AGG results within two-phase
Fiduccia-Mattheyses partitioning.



5 Conclusion and Future Directions

We have introduced fast and e�ective k-way parti-
tioning solutions for the two regimes k � n and k =
�(n). Our contributions include a new \partitioning-
speci�c" net model used in constructing the Laplacian
of the netlist, the use of fast Lanczos implementations
to compute the d-dimensional geometric embedding
e�ciently, and a careful choice of geometric clustering
objectives and algorithms. We believe that the spec-
tral geometric embedding preserves important graph
properties with respect to partitioning and clustering;
moreover, the e�ciency of geometric clustering opens
the door for new heuristics.

We are pursuing several directions for future re-
search. Since eigenvectors of the smaller eigenval-
ues correspond to better placements, scaling heuris-
tics may be useful for perturbing the eigenvector-based
embedding, e.g., we may compute the ratio of the ith-
smallest eigenvalue �i to the smallest eigenvalue �2,
then reduce the components of the ith eigenvector by
this ratio. We believe that our studies of di�erent net
models and clustering algorithms represent promising
directions. For example, the recent thesis of Zien [23]
reports work of Chan, Schlag, and Zien which achieves
excellent Scaled Cost results by combining a net model
due to Frankle, a \partial KC" approach, and use
of netlist information. This latest method of Chan
et al. uses a variant of KC to make \easy" assign-
ments to clusters; netlist connectivity information is
then used to resolve more di�cult points. By con-
trast, our present method relies only on the geometric
embedding.

Finally, we hope to improve the running time of
AGG since this method gives results uniformly supe-
rior to those of KC. Currently, the O(n2) method of
[1] for general graphs is also the most e�cient method
known for geometric instances.
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