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Abstract— Algorithms and tools used for IC implementation
do not show deterministic and predictable behaviors with input
parameter changes. Due to suboptimality and inaccuracy of
underlying heuristics and models in EDA tools, overdesign using
tighter constraints does not always result in better final design
quality. Moreover, negligibly small input parameter changes can
result in substantially different design outcomes.

In this paper, we assess the nature of ‘chaotic’ behavior
in IC implementation tools via experimental analyses, and we
determine a methodology to exploit such behavior based on
the ‘multi-run’ and ‘multi-start’ sampling concepts proposed
in [2]. We also suggest the number of sampling trials that
yields more predictably good solutions; this allows us to improve
quality of design without any manual analysis or manipulation,
without changing any existing tool flows, and without unnecessary
expenditure of valuable computing resources.

I. INTRODUCTION

With the rapid scaling of design complexity and quality
requirements for system-on-chip products, electronic design
automation (EDA) tools are confronted with ever-increasing
problem difficulty and instance size. Virtually all underlying
problem formulations within the IC implementation flow are
NP-hard, and only heuristics - typically with unknown sub-
optimality - are usable in practice. In addition, due to the
shrinking scale and large variability of nanometer process
technologies, the modeling and analysis of physical problems
are often fraught with accuracy challenges.

Commercial EDA tools and methodologies are used in
production design because they improve turnaround times
and design productivity. However, due to the suboptimality
of underlying heuristics and the inaccuracy of underlying
models and analyses, designers typically expect to spend
significant time and effort after the tool flow is completed,
to analyze remaining problems and fix them manually. To
trade off quality of results versus implementation time and
effort, designers must be able to predict the output quality of
heuristic tools and methodologies. Based on their predictions,
designers may target different objectives (e.g., minimizing area
rather than performance), or different values of objectives (e.g.,
higher clock frequency, or lower leakage power).

With the above in mind, “predictability” is one of the most
important attributes of IC design automation algorithms, tools
and methodologies [1]. However, EDA heuristic approaches do
not always behave according to users’ intentions. Yakowitz
et al. [5] study random search in machine learning under
noise, and Kushner [4] analyzes the effect of noise in machine
learning as stochastic approximation. Hartoog [3] observes the
existence of noise in a VLSI algorithm and proposes exploita-
tion of the noise to produce various benchmark circuits. At the
first Physical Design Symposium in 1997, Ward Vercruysse
of Sun Microsystems referred to the back-end implementation
flow as a “chaos machine”. The implication is that a very small

change in inputs could lead to a very large change in outputs.
In 2001, Kahng and Mantik [2] examined ‘inherent noise’ in
IC implementation tools, i.e., how equivalent inputs could lead
to different outputs.

In the present work, we assess the nature of ‘chaotic’ be-
havior in IC implementation tools, with an aim to establishing
a beneficial methodology from such chaos. To assess the
chaotic behavior, we experimentally determine answers to four
questions:

• How strongly correlated are post-synthesis netlist quality
and post-routing design quality?

• How strongly correlated are design quality as evaluated
by vendor place-and route tools and design quality as
evaluated by signoff tools?

• What chaotic behavior is associated with input parameters
of vendor synthesis tools?

• What chaotic behavior is associated with input parameters
of vendor place-and-route tools?

Our experimental analyses confirm substantial “chaos” in
vendor tools, e.g., worst timing slack can vary by up to
hundreds of picoseconds, and area can vary by up to 16.4%,
in a given (65nm) block implementation. Furthermore, there
is little correlation between major design stages.

Based on our experimental results, we establish a method-
ology to exploit the unavoidable noise and chaos in back-
end optimization tools. Our methodology is based on ‘multi-
run’ and/or ‘multi-start’ execution of the design flow with
small, intentional input parameter perturbations. This recalls
the work of [2], which also proposed the exploitation of
‘inherent tool noise’ to achieve more predictable and stable
tool outcomes. A key difference between [2] and our work
is that the ‘noise’ sources in [2] - renaming cell instances,
perturbing the design hierarchy, etc. - are not practically
usable. On the other hand, our proposed ‘chaos’ levers, such
as changing clock uncertainty by 1 picosecond, are trivially
implemented and transparent to the design flow. With the
increasing availability of multiple and parallel computing plat-
forms - multiple workstations in server farms, multiprocessor
workstations, multicore processors, and multithreaded cores
- our multi-run approach can be deployed with negligible
impact on the overall design cycle time.1 We also provide a
method to find which input parameters are most sensitive to the
perturbation, and optimal number of runs to obtain reasonably
good and predictable solutions.

The remainder of this paper is organized as follows. In Sec-
tion II, we examine our four motivational questions regarding
the unpredictability and ‘chaotic’ nature of commercial tools.

1In fact, since better-quality block implementations typically close faster,
our approach can potentially reduce overall design cycle time.
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We describe our proposed method for exploiting chaotic tool
behavior in Section III. Finally, Section IV gives conclusions.

II. CHAOS IN IMPLEMENTATION TOOLS DUE TO
INTENTIONAL INPUT DISTURBANCE

There are two basic types of knobs that affect the quality
of optimization.

• Tool-specific options - specifically, command options to
turn on/off specific optimization heuristics. (We do not
explore this, but use the same default tool options in all
of our experiments.)

• Design-specific constraints - notably timing-related con-
straints (clock cycle time, clock uncertainty, input/output
minimum/maximum delay, etc.) and floorplan-related
constraints (utilization, aspect ratio, primary pin loca-
tions, etc.).

In our study, we only examine the impact of intentional
perturbation of design-specific constraints. For synthesis, we
explore impact of timing-related constraints, and for placement
and routing (P&R), we explore the impact of both timing- and
floorplan-related constraints. We vary design-specific parame-
ters by small amounts, and measure design quality metrics
such as worst negative slack (WNS), total negative slack
(TNS), and total standard-cell area.

We implement four testcases using a T SMC 65nm GPLUS
library: two open-source cores, AES and JPEG, obtained as
RTL from opencores.org [6], and two subblocks LSU (load
and store unit) and EXU (execution unit) of the OpenSparcT 1
design, obtained from the Sun OpenSPARC Projects site [7].
We use a traditional timing-driven synthesis, placement and
routing flow, and analyze final timing quality using a signoff
RC extraction (Synopsys STAR-RCXT [13]) and a signoff static
timing analyzer (Synopsys PrimeTime [10]). All specific tool
versions are given in the references section below. Table I
shows one of the implementation results for each of our
testcases at the signoff stage. The remainder of this section
describes our experimental investigation of the four motivating
questions above - on the correlation between design stages, and
on the chaotic behavior of implementation tools.

TABLE I
TESTCASE INFORMATION AT SIGNOFF WITH NOMINAL PARAMETER

VALUES. IMPLEMENTATION USES Synopsys Design Compiler AND Synopsys
Astro. ‘SKEW’ IS THE CLOCK UNCERTAINTY CONSTRAINT GIVEN AT

SYNTHESIS STAGE TO ACCOUNT FOR CLOCK SKEW OCCURRING AT

PLACEMENT AND ROUTING STAGES.

Design Cycle Skew IO WNS TNS #Cells Area
time (ns) Delay (ns) (ns) (µm2)
(ns) (ns)

AES 1.7 0 0 -0.095 -0.210 22438 48957
JPEG 2.2 0 0 -0.224 -10.937 69845 178696
LSU 1.2 0 0 -0.327 -170.835 24945 113479
EXU 1.2 0 0 -0.760 -423.869 20382 69780

A. Correlation of Quality between Design Stages

Motivating Question 1: How strongly correlated are post-
synthesis netlist quality and post-routing design quality?

It is by no means certain that a better-quality synthesized
netlist will eventually lead to a better-quality design after
placement and routing (P&R). Our first experiments examine

the impact of the quality of input netlists on final P&R out-
comes. We synthesize the AES core with various clock cycle
times to have different timing quality at a target clock cycle
time in synthesis. For each synthesized netlist, we perform
placement and routing at the given target clock cycle time.
We use Cadence RTL Compiler for synthesis and Cadence
SOC Encounter for P&R.

Table II summarizes the worst negative slack values after
synthesis and after P&R, respectively. The first column shows
the clock cycle time applied at synthesis stage, and the second
column shows the worst negative slack (WNS) with the target
clock cycle time, i.e., 2ns. The third and fourth columns show
the WNS values after placement and routing, obtained from
Cadence SOC Encounter (SOCE) [9] and Synopsys PrimeTime
(PT ) [10], respectively.

TABLE II
TIMING QUALITY OF SYNTHESIZED NETLISTS VERSUS TIMING QUALITY

AFTER PLACEMENT AND ROUTING, AND SIGNOFF.

Clock WNS (ns) Clock WNS (ns) WNS (ns)
used with 2.0ns used from from

synthesis clock after P&R SOCE PT
(ns) synthesis (ns)
1.60 0.400 2.0 0.171 -0.249
1.80 0.200 2.0 0.088 -0.196
1.90 0.101 2.0 0.112 -0.195
1.95 0.051 2.0 0.074 -0.449
2.00 0.001 2.0 0.088 -0.252
2.10 -0.097 2.0 0.088 -0.214
2.20 -0.196 2.0 0.120 -0.281
2.40 -0.395 2.0 0.162 -0.081

From the data, we observe that an input netlist with better
timing slack netlist does not always result in better timing
slack after placement and routing. Furthermore, due to the
timing miscorrelation between P&R and signoff tools, the
worst-slack netlist from synthesis stage, obtained using largest
clock cycle time (i.e., 2.4ns), actually results in the best timing
at signoff. How this can occur is suggested by Figure 1, which
gives a rank-correlation plot of endpoint slack values of timing
paths in the AES netlist, between post-synthesis and post-
placement stages. The correlation coefficient is only 0.421.
Due to this miscorrelation between synthesis and P&R stages,
the eventual benefit from maximizing the quality of the post-
synthesis netlist is unclear. This gives us some intuition that
any incremental tool runs should be directed to the P&R stage
rather than the synthesis stage.
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Fig. 1. Rank correlation of timing slack at all endpoints, i.e., input pins of
all registers, between post-synthesis and post-placement stages for the AES
designs.



Motivating Question 2: How strongly correlated are design
quality as evaluated by vendor place-and route tools and
design quality as evaluated by signoff tools?

Aside from the suboptimal nature of underlying optimiza-
tion algorithms, there is another source of noise in the tra-
ditional implementation flow. Timing optimization is always
based on (incremental) timing analysis. As is well known, such
timing analysis requires models for gates and interconnect:
timing and power models for gates are precharacterized in
lookup tables using SPICE, and interconnect RC models
are extracted from layout with precharacterized capacitance
tables. Using the gate and interconnect models, effective
load capacitance, slew degradation, interconnect delay are
calculated using, e.g., asymptotic waveform estimation. The
effective load capacitance and slew values thus obtained are
then used as table indices to find corresponding gate delay
values from delay tables. However, optimization tools use
simplified models and embedded calculators to evaluate timing
with the least possible computational expense. As a result,
timing results seen by optimization tools can differ from those
seen by signoff timing analysis tools.
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Fig. 2. Worst negative slack correlation between a signoff timing analysis
tool Synopsys PrimeTime on the y-axis, and implementation tools Synopsys
ASTRO (rectangles) and Cadence SOC Encounter (diamonds) on the x-axis.

Figure 2 shows the timing correlation between a signoff
timing analyzer Synopsys PrimeTime, equipped with a signoff
RC extractor Synopsys Star-RCXT, and two place-and-route
tools, Synopsys Astro (AST RO) [11] and Cadence SOC En-
counter (SOCE) [9], for 29 different implementations of the
AES core. We observe that more than 200ps of timing slack
difference can occur.

To understand methodology implications of P&R vs. signoff
discrepancies, we make a brief excursion into root causes of
such discrepancies. Typical root causes are as follows.

• RC-extraction. We extract RC values from a signoff
extractor Synopsys Star-RCXT (STAR) and a place-and-
route tool Cadence SOC Encounter (SOCE). We com-
pare the extracted capacitance values using the Cadence
Ostrich program. Figure 3 compares the extracted capac-
itances from STAR with those from SOCE. We observe
that SOCE underestimates capacitance by 18.6%.2 This
significant difference may explain why SOCE so consis-

2These data do not speak to the accuracy of extraction within a place-
and-route tool. E.g., such a discrepancy may arise from a simplified two-
dimensional capacitance table given to the place-and-route tool.

tently sees optimistic timing slacks when compared to the
signoff tool (Figure 2).
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Fig. 3. Normalized capacitance correlation between a signoff RC extractor
Synopsys Star-RCXT (STAR) on the x-axis, and a place-and-route tool Cadence
SOC Encounter (SOCE) on the y-axis.

• Delay calculation. We compare timing between SOCE
and PT with the same RC parasitic file from SOCE, to
eliminate the impact of the discrepancy in RC extraction.
Table IV shows the WNS and TNS calculated from both
tools for our four testcases with default input parameters.
The data suggests that delay calculation in SOCE and PT
is well-correlated, as is usually the case. (N.B.: Viable
implementation and signoff tools will calculate delay on
a given extracted path to within at most a couple of tens
of picoseconds difference from the ‘golden’ tool.)

TABLE III
WNS AND TNS FROM SIGNOFF TIMING ANALYZER Synopsys PrimeTime

(PT ) AND P&R TOOL Cadence SOC Encounter (SOCE), USING THE SAME

RC PARASITICS FROM SOCE .

Design PT SOCE
WNS (ns) TNS (ns) WNS (ns) TNS (ns)

AES 0.144 0 0.146 0
JPEG 0.129 0 0.095 0
LSU -0.002 -0.004 -0.005 -0.040
EXU -0.171 -11.483 -0.183 -12.669

• Other: Path-tracing and signal integrity in timing
analysis. (1) Endpoint slack differences greater than
several hundred picoseconds are typically due to discrep-
ancies in path-tracing - i.e., the interpretation of timing
constraints, timing exceptions, generated clocks, cycle-
breaking in the timing graph, etc. - in the static timer.
However, the testcases we use have only simple timing
constraints consisting of one clock definition along with
input/output delay constraints. Thus, path-tracing is not
a factor in the timing miscorrelation between P&R and
signoff in our experiments. (2) Endpoint slack differences
on the order of 100ps are often due to discrepancies in
signal integrity (e.g., crosstalk-induced delay variation)
analyses. However, all timing analyses in our experiments
are performed with signal integrity options turned off.
Thus, signal integrity is not a factor in observed timing
miscorrelations, either.

Although there is a discrepancy between place-and-route
tools and signoff tools, we believe that this discrepancy (in all
experimental data we report here) is systematic and attributable
to internal RC extraction and path delay calculation. As
shown in Figure 2, SOCE consistently underestimates the



timing slack. This correlated discrepancy can be predicted and
compensated. We may infer that design quality at the P&R
stage is a stronger lever on final signoff timing than design
quality at the synthesis stage.

B. Chaotic Behavior in Optimization Tools

In this subsection, we assess the impact of intentional
perturbations applied to input parameters of synthesis and
place-and-route tools. (As noted above, the perturbations that
we study differ from the netlist manipulations studied in [2],
and are transparently applied without changing the design
flow.)

Motivating Question 3: What chaotic behavior is associated
with input parameters of vendor synthesis tools?

We analyze the impact of perturbation of timing-related
parameters, such as clock cycle time, input/output delay, and
clock uncertainty, at the synthesis stage. We use two com-
mercial gate-level synthesis tools, Synopsys Design Compiler
(DC) [12] and Cadence RTL Compiler (RC) [8]. We vary each
parameter by an amount ranging from -3ps to 3ps with 1ps
increments, and measure the changes in netlist quality metrics.
Table II-B summarizes WNS and total standard-cell area of the
resulting synthesized netlists.

Ideally, small perturbations of, e.g., a few picoseconds in
input parameters should not change output quality, or should
have predictable consequences. For example, a reduction of
clock cycle time by 1 picosecond can be reasonably expected
to result in a reduction of timing slack by the same 1 picosec-
ond, since the difficulty of design optimization is virtually
unchanged. However, due to the unpredictability of optimiza-
tion tools, the resulting design quality appears to be random.
We observe up to 53ps and 34ps of WNS variations in DC
and in RC, respectively. Among the results, we observe that
some input perturbations result in better timing quality than
the original (without perturbations) design optimization. This
improvement can be regarded as a benefit from ‘chaotic behav-
ior’ of the design optimization tools. However, as discussed in
Section II-A, input parameter perturbations at synthesis may
not have a great effect on final signoff design quality, due to
the unpredictable miscorrelation between synthesis and place-
and-route tools.

Motivating Question 4: What chaotic behavior is associated
with input parameters of vendor place-and-route tools?

We also analyze the impact of perturbations of both timing-
related parameters and floorplan-related parameters, in place-
and-route tools. Since our second experiment above suggested
that the quality of an input netlist is not preserved during
placement and routing, we take one synthesized netlist ar-
bitrarily from the synthesis results in the Table IV results,
and perform traditional timing-driven placement and routing.
We use two place-and-route tools, Synopsys Astro (AST RO)
and Cadence SOC Encounter (SOCE). The nominal clock
cycle time, input/output delay, and clock uncertainty values
are shown in Table I, and nominal utilization and aspect ratio
are 70% and 1.0, respectively.

Table V summarizes worst negative slack (WNS) and total
negative slack (TNS) calculated using a signoff RC extraction
and static timing analysis. We do not include the final area
of placed and routed designs due to space limitations in the

table, but the variation of area is observed to be as high as
16.4% in the AES core when utilization is increased by just
1%.3

From the table, we again observe that small input parameter
perturbations give rise to large timing slack changes, e.g.,
WNS varies by up to 190ps (from -96ps to -287ps) in EXU ,
and TNS varies by more than 69ns (from -152ns to -83ns) in
JPEG.

C. Summary of observations

Our experimental study provides the following evidence for
‘chaotic behavior’.

• Input parameter perturbation in synthesis results in up
to 53ps of WNS variation, and sometimes produces
better-quality netlists than the original design constraints.
However, because there is little correlation between post-
synthesis netlist quality and post-routing design quality,
improved synthesis results will not necessarily improve
results after placement and routing.

• There is a large discrepancy in timing slack between
optimization tools and signoff tools, which in our
studies arises mainly from (i) the difference between
optimization-internal and signoff RC extractors, and (ii)
small discrepancies in delay calculation between opti-
mization and signoff tools. Timing slack with the same
RC parasitics can vary up to 34ps solely due to delay
calculation discrepancies. However, the discrepancy may
be predictable and hence compensatable.

• Input parameter perturbation in place-and-route tools re-
sults in up to 190ps of WNS variation, up to 46ns of TNS
variation, and up to 16.4% variation in total standard-cell
area. In contrast to chaos in synthesis outcomes, the chaos
in place-and-route outcomes appears more exploitable to
improve final signoff quality.

• This chaotic behavior is unpredictable. In particular, for
different design types or domains, it may not be possible
to assess differences in nature of the chaotic behavior.
However, from Table V, we can observe that more timing-
critical designs (e.g., designs with more negative timing
slack, more violating paths, or smaller clock cycle time)
tend to show more sensitivity to the input parameter
perturbation.

III. PREDICTABILITY FROM CHAOS

In the previous section, we observed ‘chaos’: large variation
in final implementation quality arising from small (negligible)
input parameter changes. Frequently, results after small input
perturbations are better than those obtained using nominal
input parameter values. From the results, we expect that we
can achieve better design quality (and, potentially, improved
design cycle time) without additional human effort or flow
modifications. The key idea: run multiple times with small
input perturbations, and return the best-quality solution.

If only one CPU or tool license is available, then we can
run multiple times on one CPU (‘multi-run’), trading design
quality for runtime. But when there are idle CPUs and licenses

3Because area and power are correlated, as the area changes, the design
power is also affected by the input parameter perturbation. However, the
degree of “chaos” for power will be less: WNS is a “max” attribute of the
design, while power (as well as TNS) is a “sum” or “average” attribute.



TABLE IV
IMPACT OF INTENTIONAL PERTURBATIONS OF INPUT PARAMETERS FOR SYNTHESIS TOOLS. RC AND DC INDICATE RESULTS FROM Cadence RTL

Compiler AND Synopsys Design Compiler, RESPECTIVELY. BOLD ENTRIES INDICATE MIN/MAX IN EACH EXPERIMENT.

Parameter Noise (∆) AES JPEG
DC RC DC RC

WNS (ns) Area (µm2) WNS (ns) Area (µm2) WNS (ns) Area (µm2) WNS (ns) Area (µm2)
-3ps -0.243 42261 -0.051 50947 -0.154 300731 -0.120 220030
-2ps -0.222 43986 -0.050 51036 -0.159 294333 -0.117 223779
-1ps -0.218 44058 -0.047 50752 -0.169 299315 -0.122 220312

Clock 0ps -0.245 41735 -0.046 50673 -0.165 299270 -0.110 224222
Cycle 1ps -0.229 42985 -0.048 50216 -0.177 298607 -0.118 219223

2ps -0.232 42645 -0.041 51154 -0.174 298420 -0.112 216779
3ps -0.216 44168 -0.041 51033 -0.148 299912 -0.110 222282
-3ps -0.245 41735 -0.046 50673 -0.165 299270 -0.111 223544
-2ps -0.245 41735 -0.046 50673 -0.165 299270 -0.110 222552
-1ps -0.245 41735 -0.046 50673 -0.165 299270 -0.109 223065

Clock 0ps -0.245 41735 -0.046 50673 -0.165 299270 -0.110 224222
Uncertainty 1ps -0.227 43286 -0.046 50673 -0.165 299270 -0.108 223945

2ps -0.245 41735 -0.046 50673 -0.165 299270 -0.107 222697
3ps -0.245 41735 -0.046 50673 -0.165 299270 -0.112 221580
-3ps -0.216 44168 -0.041 51033 -0.174 298123 -0.110 222282
-2ps -0.252 41892 -0.041 51154 -0.155 299840 -0.116 216878
-1ps -0.234 42482 -0.048 50216 -0.177 298607 -0.118 219360

IO Delay 0ps -0.245 41735 -0.046 50673 -0.165 299270 -0.110 224222
1ps -0.233 42860 -0.047 50752 -0.164 299244 -0.121 220106
2ps -0.222 43986 -0.050 51036 -0.164 299725 -0.115 223658
3ps -0.216 44314 -0.051 50947 -0.169 299461 -0.123 221147

Best - -0.216 - -0.041 - -0.148 - -0.107 -
Worst - -0.252 - -0.051 - -0.177 - -0.123 -
Delta - 0.036 - 0.010 - 0.029 - 0.016 -

Parameter Noise (∆) LSU EXU
DC RC DC RC

WNS (ns) Area (µm2) WNS (ns) Area (µm2) WNS (ns) Area (µm2) WNS (ns) Area (µm2)
-3ps -0.110 84943 -0.042 94275 -0.133 50685 -0.040 58481
-2ps -0.110 84983 -0.047 93995 -0.095 51661 -0.052 58315
-1ps -0.102 85166 -0.042 94450 -0.098 51571 -0.049 58215

Clock 0ps -0.104 85052 -0.044 94119 -0.128 50442 -0.042 58287
Cycle 1ps -0.105 84747 -0.046 93509 -0.108 50858 -0.057 58330

2ps -0.101 84915 -0.044 92629 -0.145 50314 -0.036 58217
3ps -0.108 84904 -0.046 92028 -0.099 51221 -0.032 58044
-3ps -0.104 85086 -0.048 93000 -0.115 50763 -0.026 58264
-2ps -0.108 84928 -0.045 93594 -0.124 50638 -0.046 58463
-1ps -0.105 85007 -0.048 94350 -0.147 49995 -0.031 58508

Clock 0ps -0.104 85052 -0.044 94119 -0.128 50442 -0.042 58287
Uncertainty 1ps -0.109 84840 -0.045 93983 -0.117 50575 -0.029 58458

2ps -0.111 84744 -0.044 93729 -0.105 50804 -0.023 58543
3ps -0.105 85097 -0.042 93743 -0.134 50329 -0.035 58659
-3ps -0.106 84834 -0.054 92105 -0.099 51221 -0.042 57967
-2ps -0.107 84757 -0.040 93817 -0.118 50995 -0.036 58217
-1ps -0.110 84699 -0.042 94372 -0.125 50483 -0.040 58434

IO Delay 0ps -0.104 85052 -0.044 94119 -0.128 50442 -0.042 58287
1ps -0.109 84863 -0.047 94218 -0.098 51571 -0.049 58215
2ps -0.110 85101 -0.042 94128 -0.095 51661 -0.049 58249
3ps -0.112 84833 -0.044 94010 -0.133 50685 -0.040 58481

Best - -0.101 - -0.040 - -0.095 - -0.023 -
Worst - -0.112 - -0.054 - -0.147 - -0.057 -
Delta - 0.011 - 0.014 - 0.052 - 0.034 -

in a large computing farm, we may be able to use as many
CPUs as possible in parallel (‘multi-start’) without affecting
the design cycle time. In either scenario, we obtain a “best-
of-k” methodology: (i) run k times on a CPU while varying
input parameter values, or (ii) start k runs with different input
parameter values, and take the best results out of the k different
runs.

If we wish to experimentally determine the best number k
of runs - in a statistically meaningful manner - it at first seems
necessary to execute many trials for each possible value of k.
For example, we could conduct N trials each with a set of k
runs, then record the best solution out of each set of k runs,
and then find the average (‘expected’) best solution for the
given value of k. If we know the average best-of-k solution
value for each value of k, then we can determine which k gives
reasonably good solutions compared to the cost of resources.
The challenge is that the above-described procedure requires
far too many runs. Naively, if we run N trials of “best-of-k”
runs, we may require N× k separate runs. And if we test six

different values of k numbers - e.g., 1, 2, 3, 4, 5, and 10 -
through 100 trials, we would have to perform 100 × (1 + 2 +
3 + 4 + 5 + 10) = 2500 separate runs.

To reduce the number of test runs needed to determine the
best k value, we use the following sampling approach, which
was originally presented in [2].

1) Run a smaller number of different runs, e.g., 50 times
with different inputs, instead of 2500 runs as in the
previous example.

2) Record a quality metric, e.g., WNS, for each run. Then,
assume that the set of solutions for the 50 runs is the
‘virtual’ solution space.

3) Randomly sample k solutions out of the ‘virtual’ solution
space N=100 times, and record the best results for each
choice of k solutions. This process replaces the actual
N trials of k runs each.

4) Find minimum, maximum, and average values of the
best results recorded from the N sampling trials.

For our experiments, we use this “best-of-k” method out of



TABLE V
IMPACT OF INTENTIONAL PERTURBATION OF INPUT PARAMETERS IN PLACEMENT AND ROUTING TOOLS. AST RO AND SOCE REPRESENT THE RESULTS

FROM Synopsys Astro AND Cadence SOC Encounter, RESPECTIVELY. BOLD ENTRIES INDICATE MIN/MAX IN EACH EXPERIMENT.

Parameter Noise (∆) AES JPEG
AST RO SOCE AST RO SOCE

WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns)
-3ps -0.105 -1.388 -0.039 -0.183 -0.170 -40.785 -0.188 -127.129
-2ps -0.105 -1.398 -0.033 -0.117 -0.160 -29.732 -0.205 -91.147
-1ps -0.097 -1.135 -0.035 -0.189 -0.183 -28.936 -0.186 -147.223

Clock 0ps -0.102 -1.109 -0.084 -0.287 -0.234 -58.009 -0.198 -140.570
Cycle 1ps -0.107 -1.500 -0.061 -0.375 -0.209 -42.422 -0.193 -105.972

2ps -0.106 -1.511 -0.058 -0.435 -0.248 -53.286 -0.180 -138.579
3ps -0.106 -1.503 -0.053 -0.220 -0.196 -34.022 -0.183 -135.538
-3ps -0.107 -1.500 -0.084 -0.287 -0.136 -32.186 -0.192 -119.593
-2ps -0.107 -1.500 -0.084 -0.287 -0.204 -34.042 -0.191 -104.662
-1ps -0.107 -1.500 -0.084 -0.287 -0.187 -52.320 -0.208 -129.670

Clock 0ps -0.102 -1.109 -0.084 -0.287 -0.234 -58.009 -0.198 -140.570
Uncertainty 1ps -0.114 -1.119 -0.084 -0.287 -0.172 -32.838 -0.177 -99.811

2ps -0.114 -1.119 -0.084 -0.287 -0.141 -28.878 -0.188 -140.688
3ps -0.114 -1.119 -0.084 -0.287 -0.157 -25.764 -0.197 -103.762
-3ps -0.106 -1.503 -0.053 -0.220 -0.159 -29.123 -0.183 -135.538
-2ps -0.106 -1.511 -0.058 -0.435 -0.227 -54.296 -0.180 -138.579
-1ps -0.107 -1.500 -0.061 -0.375 -0.207 -43.397 -0.193 -105.972

IO 0ps -0.102 -1.109 -0.084 -0.287 -0.234 -58.009 -0.198 -140.570
Delay 1ps -0.097 -1.135 -0.035 -0.189 -0.249 -65.507 -0.186 -147.223

2ps -0.105 -1.398 -0.033 -0.117 -0.157 -31.410 -0.205 -91.147
3ps -0.105 -1.388 -0.039 -0.183 -0.198 -42.760 -0.188 -127.129

-0.03 -0.104 -1.480 -0.036 -0.214 -0.132 -20.743 -0.200 -152.493
-0.02 -0.114 -1.312 -0.036 -0.214 -0.183 -42.322 -0.177 -115.859
-0.01 -0.120 -1.543 -0.090 -0.507 -0.199 -34.466 -0.183 -139.986

Aspect 0.00 -0.102 -1.109 -0.084 -0.287 -0.234 -58.009 -0.198 -140.570
Ratio 0.01 -0.112 -1.520 -0.041 -0.269 -0.145 -38.358 -0.195 -123.821

0.02 -0.136 -1.974 -0.041 -0.269 -0.193 -44.742 -0.203 -120.917
0.03 -0.120 -1.868 -0.061 -0.439 -0.166 -20.162 -0.222 -102.049
-3% -0.149 -3.106 -0.046 -0.339 -0.186 -42.323 -0.173 -82.535
-2% -0.127 -1.602 -0.062 -0.274 -0.190 -44.052 -0.209 -102.873
-1% -0.121 -2.057 -0.047 -0.113 -0.209 -60.275 -0.187 -133.042

Placement 0% -0.102 -1.109 -0.084 -0.287 -0.234 -58.009 -0.198 -140.570
Utilization 1% -0.133 -1.235 -0.112 -5.392 -0.133 -27.029 -0.187 -107.559

2% -0.132 -2.126 -0.046 -0.543 -0.139 -24.120 -0.179 -96.438
3% -0.129 -1.390 -0.046 -0.679 -0.140 -19.303 -0.190 -105.871

Best - -0.097 -1.109 -0.033 -0.113 -0.132 -19.303 -0.173 -82.535
Worst - -0.149 -3.106 -0.112 -5.392 -0.249 -65.507 -0.222 -152.493
Delta - 0.051 1.997 0.080 5.279 0.117 46.204 0.049 69.958

Parameter Noise (∆) LSU EXU
AST RO SOCE AST RO SOCE

WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns)
-3ps -0.104 -2.061 -0.146 -26.218 -0.307 -1.945 -0.174 -2.828
-2ps -0.082 -1.298 -0.164 -27.249 -0.262 -2.472 -0.161 -2.940
-1ps -0.142 -3.539 -0.171 -27.489 -0.271 -3.869 -0.287 -8.692

Clock 0ps -0.127 -5.096 -0.140 -21.140 -0.160 -2.740 -0.164 -3.314
Cycle 1ps -0.116 -1.735 -0.130 -20.008 -0.237 -2.084 -0.177 -2.403

2ps -0.144 -3.611 -0.167 -28.938 -0.267 -3.992 -0.178 -2.693
3ps -0.090 -1.508 -0.178 -25.584 -0.274 -7.430 -0.096 -1.191
-3ps -0.125 -4.246 -0.182 -27.546 -0.267 -1.510 -0.176 -2.681
-2ps -0.108 -0.507 -0.159 -28.859 -0.186 -1.424 -0.157 -2.554
-1ps -0.209 -1.674 -0.158 -21.579 -0.257 -4.424 -0.133 -2.086

Clock 0ps -0.127 -5.096 -0.140 -21.140 -0.160 -2.740 -0.164 -3.314
Uncertainty 1ps -0.140 -3.462 -0.156 -24.432 -0.300 -3.832 -0.159 -2.354

2ps -0.120 -2.813 -0.130 -23.977 -0.200 -2.292 -0.163 -2.817
3ps -0.153 -6.908 -0.137 -18.991 -0.241 -6.533 -0.168 -2.256
-3ps -0.113 -2.114 -0.150 -26.238 -0.245 -6.694 -0.096 -1.191
-2ps -0.160 -1.401 -0.156 -30.726 -0.277 -4.769 -0.178 -2.693
-1ps -0.136 -0.728 -0.223 -48.136 -0.169 -2.905 -0.177 -2.403

IO 0ps -0.127 -5.096 -0.140 -21.140 -0.160 -2.740 -0.164 -3.314
Delay 1ps -0.125 -2.970 -0.143 -25.409 -0.173 -3.459 -0.287 -8.692

2ps -0.135 -1.177 -0.158 -18.943 -0.207 -5.755 -0.161 -2.940
3ps -0.114 -2.006 -0.152 -23.232 -0.302 -1.595 -0.174 -2.828

-0.03 -0.139 -1.721 -0.146 -20.466 -0.299 -3.425 -0.233 -4.862
-0.02 -0.142 -0.625 -0.160 -27.070 -0.220 -6.548 -0.174 -3.066
-0.01 -0.230 -3.382 -0.174 -19.188 -0.152 -2.934 -0.195 -5.307

Aspect 0.00 -0.127 -5.096 -0.140 -21.140 -0.160 -2.740 -0.164 -3.314
Ratio 0.01 -0.065 -0.304 -0.128 -22.411 -0.306 -2.845 -0.129 -1.549

0.02 -0.167 -4.990 -0.144 -22.588 -0.217 -5.895 -0.129 -1.549
0.03 -0.129 -3.994 -0.144 -23.951 -0.216 -6.801 -0.228 -5.932
-3% -0.149 -1.817 -0.136 -19.187 -0.185 -2.172 -0.200 -3.432
-2% -0.139 -2.908 -0.184 -31.209 -0.261 -3.382 -0.239 -5.484
-1% -0.083 -0.965 -0.133 -16.787 -0.243 -2.361 -0.201 -4.398

Placement 0% -0.127 -5.096 -0.140 -21.140 -0.160 -2.740 -0.164 -3.314
Utilization 1% -0.096 -3.213 -0.139 -20.818 -0.189 -1.091 -0.188 -2.106

2% -0.123 -4.113 -0.164 -27.267 -0.218 -6.299 -0.209 -6.203
3% -0.100 -0.897 -0.134 -25.518 -0.221 -5.300 -0.240 -6.156

Best - -0.065 2.813 -0.128 -16.787 -0.152 -1.091 -0.096 -1.191
Worst - -0.230 -6.908 -0.223 -48.136 -0.307 -7.430 -0.287 -8.692
Delta - 0.165 9.721 0.095 31.349 0.154 6.339 0.190 7.501



TABLE VI
RANK ORDER (WITH RESPECT TO EXPECTED BEST-OF-k SOLUTION

QUALITY FROM 100 TRIALS, FOR FIVE INPUT PARAMETERS OF

PERTURBATIONS, FOR k = 1,..., 10 RUNS. THIS TABLE IS DERIVED FROM

AES RESULTS IMPLEMENTED USING AST RO.

AES JPEG
k T S B A U k T S B A U
1 1 3 2 4 5 1 4 2 5 3 1
2 2 3 1 4 5 2 4 2 5 3 1
3 1 3 2 4 5 3 4 2 5 3 1
4 2 3 1 4 5 4 4 2 5 3 1
5 2 3 1 4 5 5 4 2 5 3 1
6 1 3 2 4 5 6 5 2 4 3 1
7 1 3 2 4 5 7 5 2 4 3 1
8 2 3 1 4 5 8 5 2 4 3 1
9 1 3 2 4 5 9 5 2 4 3 1

10 1 3 2 4 5 10 5 3 4 2 1
LSU EXU

k T S B A U k T S B A U
1 2 4 3 5 1 1 5 4 1 2 3
2 1 3 4 5 2 2 5 4 2 1 3
3 1 4 5 3 2 3 5 3 1 2 4
4 2 4 5 3 1 4 5 4 2 1 3
5 1 4 5 3 2 5 5 3 2 1 4
6 3 4 5 1 2 6 5 3 2 1 4
7 3 4 5 1 2 7 5 4 2 1 3
8 3 4 5 1 2 8 5 4 2 1 3
9 2 4 5 1 3 9 5 4 2 1 3

10 2 4 5 1 3 10 5 3 2 1 4

all simulation results that were summarized in Table V.
First, we find which input parameter is the most useful to

perturb, with respect to k = 1,2,3, ...,10. We randomly choose
k solutions in each of 100 trials, out of our seven different runs
for each perturbed input parameter: clock cycle time (T ), clock
uncertainty (S), input/output delay (B), aspect ratio (A), and
utilization (U). We then find worst, best, and average of the
best WNS from 100 trials for each k value.

Table VI shows the “quality” ranks of each input parameter
for our testcases implemented using AST RO. From the table,
we observe that clock cycle time (T ) or input/output delay (B)
perturbations may be the best for the AES design, utilization
(U) perturbation may be the best for the JPEG design, and
input/output delay (B) or aspect ratio (A) perturbations may
be the best for the EXU design. For LSU , when k is small,
clock cycle time (T ) or utilization (U) perturbations give the
best design quality, but when k is larger than six, aspect ratio
(A) perturbations give the best design quality.

Second, we find the best k value if both the input parameters
and the parameter values are randomly chosen, since the best
knob is not common for different testcases. For each testcase,
we randomly choose k solutions in each of 100 trials, out
of the 35 different solutions available (five different input
parameters times seven different (perturbed) values of each
parameter) for the testcase. Figures 4, 6, 8, and 10 (one figure
per testcase) show the worst, best and average WNS values
out of 100 trials of best-of-k sampling when AST RO is used
for implementation. Figures 5, 7, 9, and 11 show the worst,
best and average WNS values out of 100 trials of best-of-k
sampling when SOCE is used for implementation.

From Figures 4-11, we observe that the average WNS from
100 trials improves rapidly with increasing k. In most cases,
when k = 3, the average expected quality is within 20ps of the
best solution quality. We also observe that the worst-case WNS
from 100 trials can be improved significantly with small k. For

example, when k = 3, multi-run or multi-start using SOCE is
expected to improves WNS of EXU by more than 100ps.4AES ASTRO
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Fig. 4. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: AES implemented using AST RO.
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Fig. 5. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: AES implemented using SOCE.
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Fig. 6. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: JPEG implemented using AST RO.

IV. CONCLUSION

In this work, we have experimentally assessed the na-
ture of ‘chaotic’ behavior in commercial IC implementation
tools. ‘Chaos’ is attributable to miscorrelations of performance
analyses between synthesis and P&R, and between P&R

4With the multi-run scenario, the runtime overhead of k = 3 can be naively
viewed as three times larger than that of the traditional design methodology.
However, if we consider the effort and time required to analyze and manually
improve timing quality by more than 100ps, the overhead from the pure tool
runtime can be substantially compensated. Furthermore, since better quality
of the initial optimization typically results in faster timing closure, the overall
design cycle time can be potentially reduced. With the multi-start scenario, it is
clear that there will be negligible design time overhead, since our methodology
can be trivially implemented and does not require any change to the existing
design flow.
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Fig. 7. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: JPEG implemented using SOCE.
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Fig. 8. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: LSU implemented using AST RO.

LSU SOCE
0 120

-0.130 

-0.120 

-0.140 

s)

-0.160 

-0.150 

N
S 

(n

-0.170 

W

Worst of 100 trials

0 190

-0.180 Average of 100 Trials

Best of 100 trials
-0.190 

1 2 3 4 5 6 7 8 9 10 

k (# of different runs)k (# of different runs)

Fig. 9. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: LSU implemented using SOCE.
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Fig. 10. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: EXU implemented using AST RO.
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Fig. 11. Worst, best and average WNS values out of 100 trials with respect
to expected best-of-k solution quality: EXU implemented using SOCE.

and signoff. We also characterize the effects of intentional,
negligible perturbations of input parameters on output quality
of commercial tools and flows.

Based on our experimental results, we propose a methodol-
ogy to exploit the chaotic tool behavior using ‘multi-run’ (1
license or 1 CPU scenario) or ‘multi-start’ (multiple licenses
and CPUs scenario) with intentional perturbations of the input
parameters. We also describe an efficient method to determine
the best number k of multiple runs that will yield predictably
high-quality solutions without any additional manual analysis
or manipulation, without changing any design flows, and
without wasting valuable computing resources.

The deployment of new implementation and signoff tool
capabilities opens up new directions for ongoing and future
work, including the following. (1) We seek to analyze the
potential advantages of the inherent “chaos” in advanced
physical synthesis tools that exploit physical information at the
synthesis stage to reduce synthesis-placement miscorrelations.
(2) We seek to evaluate the benefits of chaos in conjunc-
tion with more advanced signoff methodologies (e.g., signal
integrity-enabled STA), as well as more advanced signoff
analyses (e.g., path-based analysis), which may exhibit even
more chaotic behavior than today’s standard flows.
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