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Abstract—Multiprocessor systems-on-chip (MPSoCs) are emerging
as a popular SoC design platform. However, major challenges arise
from nonscaling global wire delay and from the reuse of intellectual
properties (IPs) from different vendors to meet tight time-to-market
constraints. Designing the appropriate communication fabrics for such
heterogeneous systems becomes a challenging task. In this paper, we
present accurate delay, power, and area models for bus-based and packet-
switched communication architectures. We also integrate our models into
the COSI-OCC system-level communication synthesis tool [19] and show
that the more accurate modeling significantly affects optimal/achievable
architectures that are synthesized by the system-level tool. Finally, this
paper reviews our relevant contributions in [16], [17], [18].

I. INTRODUCTION
Increase in system and design complexity has led to chip multipro-

cessor (CMP) [8], [4] and multiprocessor system-on-chip (MPSoC)
[29], [21] designs. Such systems rely not only on appropriate design
and process technologies, but also on the ability to interconnect cores
– processors, memory arrays, etc. – reliably and efficiently. The
International Technology Roadmap for Semiconductors (ITRS) [30]
predicts that future generations of high-end IC designs will operate
in the 10-20 GHz range, with multi-Gbit/s communication between
cores. A major challenge designers face is to provide a reliable and
functional interconnection between the components of the design [1].
As device sizes shrink to keep up with Moore’s Law, major

challenges arise from non-scalable global wire delays. Recently,
designers have moved from a computation-centric view of chip
design to a communication-centric view, largely due to the increas-
ing significance of interconnect delay versus gate delay in current
and future technologies. Based on the premise that interconnection
technology will be a limiting factor for achieving SoC operational
goals, we propose a characterization framework for the two most
dominant interconnection architectures in today’s designs: (1) bus-
based architecture (i.e., shared medium) and (2) packet-switched
architecture (i.e., as employed in current NoC designs). We review
each of these architectures and then propose accurate and fast system-
level models for performance, power, and area to aid fast and efficient
design space exploration. For bus-based designs, we develop models
for AMBA (Advanced Microcontroller Bus Architecture) [29], a
popular on-chip bus for ARM processors. For NoC-based designs,
we integrate our proposed models into the COSI-OCC communication
synthesis tool [19] and show they substantially change the NoC
outcome of system-level design exploration. Because state-of-the-art
communication architectures are quite complex, with multiple com-
ponents, there has been little research on modeling and early-design-
stage prediction. In this context, we have developed an integrated
communication modeling library that:

• models popular low- and high-level communication structures,
• predicts delay, power, and area at early design stage with as
much accuracy as feasible,

• is usable by system-level designer, and
• allows technology extrapolation.
In this invited paper, we have integrated content from our previous

works [16], [17], [18]. Section II describes the current state-of-the-
art bus-based communication architectures and proposes accurate
delay, power, and area models for such architectures. Section III
describes network-on-chip communication architectures and presents
our modeling approach through two examples of physical link and
router power modeling. Section IV shows the impact of increased
accuracy of our models on system-level design choices and also

presents a case study in which we compare common NoC and bus-
based architectures. Finally, Section V concludes and gives directions
for future work.

II. BUS-BASED ARCHITECTURE
Most current systems-on-chip (SoCs) use a shared-medium archi-

tecture to communicate among different IPs. In this architecture, all
communicating devices share the same transmission medium and only
one device can drive the network at a given time. Inherent support
for asymmetric communication allows the flow of information from
a few transmitters to many receivers. This convenient, low-overhead
interconnection scheme can handle a few bus masters and many
bus slaves that only respond to bus masters. However, an arbitration
mechanism is required when several devices attempt to use the bus
simultaneously, i.e., to ensure that only one bus master at a time is
allowed to initiate data transfer. Even though the arbitration scheme is
fixed, any arbitration algorithm, such as highest priority or fair access,
can be implemented depending on the application requirements.
Power consumption is another challenge with these architectures, as
every data transfer is broadcast. With the emergence of many-core
designs, bus-based architectures can present critical performance and
power bottlenecks [1].

A. Bus Protocol Encapsulation
1) Master/Slave Communication: In bus-based architecture, mas-

ter/slave communication is the basic protocol between two active IPs.
In this configuration, masters send orders to slaves, which then send
results as answers [10]. Typically, masters are processing elements
and slaves are memory banks; hence, the orders are read or write
operations to/from a specific address or block of addresses. Results
are typically data or blocks of data, along with the order status (no
errors, not ready, etc.) Let core1 be a processing element performing
an operation O on two integers, and let slave S be a memory
unit containing the required integers. To perform the operation O,
core1 first reads the memory to obtain the values of the operands,
say x and y. It then performs the operation and finally writes the
result, say z, in the memory. We observe, as was introduced in
[12], that the communication transactions (i.e., read and write) are
orthogonal to the computation operation (i.e., operation O). Hence,
they are separated into two different components: (1) interface, and
(2) core. To distinguish between interface-core and interface-interface
communications we represent the former by (orders, results) and the
latter by (request, responses) as shown in Figure 1. The following is
an example of this denotation [10]:

• order ≈ (operation, location, data)
• result ≈ (status or the status of data)

Requests and responses are simply the translation of the orders and
results into bit switches.

• request ≈ (R/W, addr, data) (e.g., R/W = 1 means a read
operation at address “addr” is requested)

• response ≈ (status or the status of data)
@x and @y are the memory locations of operands x and y, respec-
tively. The master core performs the following operations to fulfil
operation O:
1) x = (read @x) then wait for a result
2) y = (read @y) then wait for a result
3) write @x the result of operation O
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In the next subsection we further break down the (orders, results)
and (requests, responses) pairs into specific communication events.
2) Communication Events: All communication transactions be-

tween different devices in a bus-based architecture can be broken
down into sequences of events, which are essentially orders and
requests that go back and forth between the communicating devices
as well as their interfaces (Figure 1). The operation O mentioned
above, can be viewed as the following sequence of communication
events:

• master interface receives the read order and produces the request
(1 @x);

• slave interface receives this request and transmits the order (read
@x) to the slave core;
– slave core reads its database and comes back with the value
of x stored at the address @x along with the result (OK
x); this is transmitted back to the master interface, and
eventually to the master core

– master core is now able to issue the second order
• for the write operation the master interface receives the write
order and produces the request (0 @x z);

• the slave interface receives this request and translates it to the
order (write @x c); and

• the result (OK) is sent back to master core in the same way as
in the read operation.

In our modeling, we consider the AMBA AHB bus and will simply
use the (orders, results) and (requests, responses) described in the
AMBA specification [32].

Master Core

Slave InterfaceMaster Interface

Slave Core

resultsorders

responses

requests

resultsorders

Fig. 1. Communication events [10].

B. Signal Bus Modeling
AMBA contains many signal, address and data buses. The AMBA

bus protocol is designed to be used with a central multiplexer
interconnection scheme. Using this scheme, all bus masters drive out
the address and control signals indicating the transfer they wish to
perform, and the arbiter determines which master has its address and
control signals routed to all of the slaves. A central decoder is also
required to control the read data and responses signal multiplexer,
which selects the appropriate signals from the slave that is involved
in the transfer. Figure 3 shows the structure required to implement
an AMBA design with two masters and two slaves. Buses consume a
significant fraction of power and area, and can become performance
bottlenecks. Important bus metrics to model are: (1) delay, (2) area,
and (3) power. Main parameters that define these metrics are: (1)
length, (2) width, and (3) activity factor. For length estimation, we
use the bus connectivity known from the AMBA specification and
assume that buses are routed as minimum Steiner trees to logic blocks
(which their locations are known from floorplan). To estimate the
width, we use the width of the connecting logic (i.e., 32-bit, 64-bit,
etc.) For activity estimation, we break down the transactions into bit
switches as discussed in the previous subsection. Once length, width,
and activity factor are known, we use our interconnect modeling
library (Section III-A below) to obtain predictions. Figure 2 shows
the interface of our AMBA model. The model takes (1) the design
floorplan, (2) specific transaction and its characteristics (e.g., read
operation with its length and address progression), and (3) technology
and design styles which include all the necessary technology and key
circuit parameters.
C. Logic Modeling
AMBA contains several logic blocks: (1) bus multiplexers, (2)

address decoder, (3) arbiter, and (4) master/slave interfaces. We first

technology & design style
• min. width, spacing, …
• dielectric thickness, const.
• device drive res, cap, leakage
• width/spacing, buffering 

scheme
• …

AMBA
Model

Delay

Leakage

Dynamic

Area

floorplan
• location of all masters, 

slaves
• bit widths of all masters, 

slaves
• optionally, locations of 

arbiter, decoder, and 
multiplexers

transaction
• read/write
• length
• address progression

Fig. 2. Our AMBA model interface.

Fig. 3. AMBA signals and logical blocks.

model delay, power and area of these components, and then extend
our model to the entire bus architecture. For example, to estimate
the dynamic power we take into account the specific protocols for
each transaction (i.e., read/write operation). We model a many-to-
one multiplexer as a tree of two-to-one multiplexers and use parallel
multiplexers to model ones with multiple bitwidth. Area and power
estimations for a two-to-one multiplexer are based on standard multi-
plexer design. Equation (1) represents the dynamic power consumed
by a n : 1 multiplexer, where the numbers of NAND2x1 (NNAND2x1),
and INVx1 (NINVx1) gates are computed using Equations (2) and (3),
respectively.

Pdynamic =
1
2
· ((NNAND2x1 · (4Cin+6Cd ))

+(NINVx1 · (3Cin+3Cd))) ·V 2dd · f (1)
NNAND2x1 = 2(h+1) −1 (2)
NINVx1 = h= log2n (3)

where Cin and Cd are input gate capacitance and diffusion capacitance
of NMOS, respectively.
A decoder decodes the address to select a particular slave. We

model a n:2n decoder as a tree of inverters and two-to-one AND
gates. Dynamic power of a n:2n decoder can similarly be estimated
as shown in Equation (4), where the number of AND2x1 (NAND2x1)
is computed using Equation (5) and the number of INVx1 is just the
number of inputs.

Pdynamic =
1
2
· ((NAND2x1 · (7Cin+9Cd))

+(NINVx1 · (3Cin+3Cd))) ·V 2dd · f (4)

NAND2x1 =
n−1
∑
i=1
2i (5)
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All of the above parameters can be extracted from industry Liberty
files [31] or SPICE simulation. To estimate leakage power we obtain
the cell leakage power (from a Liberty file) for each of the building
block gates (i.e., NAND2x1, AND2x1, and INVx1) and sum up all
the values to compute the leakage power of the entire block. Area
can be similarly computed from cell areas of the building block logic
gates, extracted from a Liberty file. For delay computations, we use
our gate delay model [17] described in Section III-A below. Current
literature on bus modeling such as [25], [24], [23] are focused at RTL
or higher level (i.e., transaction level) whereas we propose physical-
level models to estimate delay, power, and area. Our models can be
plugged into any high-level synthesis tool or network simulator to
aid in estimation of metrics.

III. NOC-BASED ARCHITECTURE
Although bus-based communication architecture has simple topol-

ogy, low area cost, and extensibility, technology scaling limits the
practical number of devices that can be connected and hence limits
the architecture’s usability. New structured communication fabrics,
networks-on-chip (NoCs), have emerged for use in SoC designs [1].
In the NoC approach, communication between different devices takes
place in the form of packets. Network routers and wires are the basic
building blocks of such communication architectures. In the next two
subsections we propose accurate delay, power, and area models for
network routers and on-chip interconnects (i.e., point-to-point links).
We later integrate our proposed models in the COSI-OCC tool [19] to
confirm the need for, and value of, accurate physical-level models in
early-stage NoC design space exploration.

A. Physical Link Modeling
Figure 4 shows a representation of our proposed interconnect

modeling methodology with its main levels of abstraction [17]. We
have developed a set of tools and Application Programming Interfaces
(APIs) that allow us to abstract the interconnect cost-performance
tradeoffs from detailed SPICE simulations up to a system-level view.
Our modeling methodology can be partitioned into the following
modeling subtasks.
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Fig. 4. Overview of the proposed modeling methodology.

1) Buffered Interconnect Model: Delay, power and area models of
repeaters and wires are used to compute the delay, power, and area
metrics of a bus with flit size F and length l. The total delay of the
buffered interconnect is computed as the sum of the delays of all
repeaters and wire segments into which the length l is partitioned.
The area and power consumption of a point-to-point interconnect is
also computed by summing up the area and power consumption of
the constituent repeaters and wire segments, respectively.1

1All these metrics depend on the way in which the interconnect is
implemented, i.e., the design style.

2) System-Level Model of Buffered Interconnect: System-level
design tools for NoC employ graph-based optimization algorithms.
A node in a graph represents an IP core or a router while an
edge represents a point-to-point on-chip interconnect. Edges are
labeled with properties such as length (typically approximated by
the Manhattan distance between two points on a chip) and flit size
(i.e., the number of parallel bits of the point-to-point link). The way
in which the interconnect is implemented is usually not a concern
of the system-level designer. However, different design styles have
different power-performance tradeoffs that may be of interest at the
system level. Therefore, we export the style parameter that captures
the design style of the interconnect.
The APIs available to the system-level design tools are:
• area(l,F,style) returns the area occupied by repeaters and wiring,
given the length of interconnection, the flit size, and the design
style. This is considered a fixed installation cost in the optimiza-
tion algorithms.

• power(l,F,style) returns the power consumed by the interconnec-
tion, given the length, the flit size and the design style. This is
actually further divided into two APIs for dynamic and leakage
power estimations.

• delay(l,F,style) that, given a length to span, the flit size and
the design style, returns the delay of the interconnect. This
information is used by the optimization algorithm such that,
given a target clock frequency, checks whether a distance can
be spanned by the interconnect.

The system-level design tools are able to explore different solutions
corresponding to different design styles, or the design style can be
fixed a priori by the user. We have validated our models by physically
implementing a buffered interconnect across three technology nodes
(90nm, 65nm, and 45nm), two routing layers (global and interme-
diate) and two design styles (single-width-single-spacing and single-
width-double-spacing). Validation details of our models are discussed
in [17].
B. Router Power and Area Modeling
We have also developed accurate power and area models for

network routers. We model both dynamic and leakage power com-
ponents. We adopt the router models from [18] and the interconnect
models from [17].
1) Router Power Models: Dynamic power consumption in

CMOS circuits is given by P = E· fclk, where energy E = 1
2αCV

2
dd

and fclk is the clock frequency, α the switching activity, C the
switched capacitance, and Vdd the supply voltage. We derive detailed
parameterized equations to estimate switching capacitance of (1)
register-based FIFO buffers, (2) clocking due to routers, and (3)
physical links.

Clock. Clock distribution and generation comprise a major portion
of power consumption in synchronous designs [15], representing up
to 33% of power consumption in a high-performance router [14]. We
estimate the term Cclk as shown in Equation (6).
Cclk =Csram− f i f o+Cpipeline−registers+Cregister− f i f o+Cwiring (6)

Throughout our modeling approach it is assumed that all components
are built using static CMOS gates. Given that the load of the clock
distribution network heavily depends on its topology, we assume
an H-tree distribution style where Csram− f i f o, Cpipeline−registers,
Cregister− f i f o, and Cwiring are capacitive loads due to memory
structures, pipeline registers, FIFO registers, and clock distribution
wiring, respectively.

Memory structures. We adopt the original ORION model [20]
for SRAM buffers to determine the precharge circuitry capacitive
load on the clock network. The pre-charging circuit is just the pre-
charging transistor, Tc, which commonly is two PMOS transistors per
bitcell. Hence, its capacitance, Cchg, is due to its gate and drain end
capacitances, Cg(Tc) and Cd(Tc) respectively as shown in Equation
(7) (Figure 5). In an SRAM FIFO with B buffers and flit size F , the
total capacitance due to pre-charging circuitry can be derived using
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Equation (8), with Pr and Pw being the number of read and write
ports, respectively.

Cchg =Cg(Tc)+Cd(Tc) (7)
Csram− f i f o = (Pr+Pw) ·F ·B ·Cchg (8)

Pipeline registers. Typical interconnection network routers have
different pipeline stages. To advance, each flit must proceed through
the steps of: (1) routing computation, (2) virtual-channel allocation,
(3) switch allocation, and (4) switch traversal.2 We assume DFF as
the building block of the pipeline registers. In a router with flit size of
F bits and Npipeline pipeline stages, the capacitive load on the clock
due to pipeline registers can be computed as:

Cpipeline−registers = Npipeline ·F ·Cf f (9)

where Cf f is the flip-flop capacitance and is extracted from 65nm
HP (high-performance) and LP (low-power) libraries.

Register-based FIFOs. FIFO buffers can be implemented as a series
of flip-flops. We assume simple DFF to construct the FIFO. In a B-
entry register-based FIFO with flit size of F bits, the capacitive load
on the clock can be computed as:

Cregister− f i f o = F ·B ·Cf f (10)

For the registers we assume D flip-flop (DFF) is used as the
building block. We obtain the capacitance value across different
drive strengths from TSMC 65G and 65LP standard cell library
data sheets.3 Architectural parameters change the effective loading
of each gate in the design. Hence, to use the appropriate drive
strength for the registers we use their load capacitance and timing
requirements. In this work, we assume minimum-size DFFs are used
in all the registers.

Wiring load. For an H-tree clock distribution with a clock level
of 5, then total wire capacitance is given in Equation (11), where
Cint is the per-unit-length wire capacitance and D represents the chip
dimension.
Cwiring = (

16
2
D+

1×8
2
D+

2×4
2
D+

4×2
2
D+

8×1
2
D) ·Cint (11)

Register-based FIFO buffers. FIFO buffers consume up to 22% of
the total router power in [14]. As mentioned earlier, FIFO buffers
can be implemented as either SRAM or shift registers. The ORION
1.0 model supports only the use of SRAM-based FIFOs. We use
flip-flops as the building block of the shift registers. Hence, a B-
entry FIFO buffer can be implemented as a series of B flip-flops (FF).

Write operation. The write operation occurs at the tail of the shift
register. Assuming the new flit is fn and the old flit is fo, the
number of switched flip-flops is the Hamming distance between them.
Therefore, the write energy is:

Ewrite =H( fn, fo)E f fswitch (12)

where E f fswitch is the energy to switch one bit. To simplify the analysis,
let H denote the average switching activity; then, the average write
energy is:

Ewrite = H ·E f fswitch (13)

Read operation. The read operation has two steps:
1) The flit stored at the header of the buffer is read into the
crossbar. Since the header of the buffer is directly connected to
the input port of the crossbar, this step does not consume any
energy in the buffer.

2) Subsequent flits in the buffer are shifted one position towards
the header. If the buffer holds n flits before the read operation,
n-1 flip-flop writes are performed to shift the data.

Hence, the average read energy is:

2The number of pipeline stages can be different for various applications
and is a function of clock frequency. We assume this is input by the user.
3TSMC represents the high-performance domain with G library.

Eread = (n−1) ·Ewrite (14)

We obtain the capacitance value across different drive strengths from
TSMC 65G and 65LP standard cell library data sheets.

Leakage power modeling. As technology scales to deep submicron
processes, leakage power becomes increasingly important as com-
pared to dynamic power. There is thus a growing need to characterize
and optimize network leakage power as well. Chen et al. [7] proposed
an architectural methodology for estimating leakage power. However,
[7] only considered subthreshold leakage whereas from 65nm and
beyond gate leakage gains importance and becomes a significant
portion of the leakage power. This is even more visible for high-
performance applications where gate oxides are much thinner (i.e.,
∼1.5nm in 65nm HP library). We follow the same methodology
proposed in [7] with addition of gate leakage in our leakage analysis.
We also use different Vth flavors to better represent leakage power
consumption for different applications (i.e., high-performance vs.
low-power).
To derive an architectural leakage model, we can separate the

technology-independent variables such as transistor width from those
that stay invariant for a specific process technology:

Ileak(i,s) =W (i,s) · (I′sub(i,s)+ I′gate(i,s)) (15)

where Ileak is total leakage current. I′sub and I
′
gate are subthreshold

and gate leakage currents per unit transistor width for a specific
technology, respectively. W (i,s) refers to the effective transistor
width of component i at state s. We measure I′sub and I

′
gate for a

variety of circuit components, input states, operating conditions (i.e.,
voltage and temperature), and different Vth flavors. The modeling
methodology is as follows.
1) Identify the fundamental circuit components, and derive
I′sub(i,s) and I

′
gate(i,s) for each at different input states, op-

erating condition, and Vth flavors. Examples are single NMOS
and PMOS transistors, 2-input NAND gates, etc.

2) Define major architectural building blocks. For interconnection
networks, typical building blocks will be buffers, crossbar,
arbiters and links [6].

3) Compose architectural leakage power model in a bottom-up
fashion for each building block.

Derivation of Ileak. For each circuit component i and input state s,
we simulate I′sub and I

′
gate using HSPICE and 65nm foundry SPICE

model. Circuit structures can then be hierarchically composed from
the fundamental circuit components.

Input state probabilistic analysis. We analyze the probability
distribution of each input state of a circuit component by examining
how architectural units function. Given the I′sub and I

′
gate, and the

probabilities of each input state Prob(i,s), the leakage current for a
building block is:
Ileak(Block) =∑

i
∑
s
Prob(i,s) ·W (i,s) · (I′sub(i,s)+ I′gate(i,s)) (16)

Ileak(Block,t) =∑
i
W (i,s(t)) · (I′sub(i,s(t))+ I′gate(i,s(t))) (17)

where Ileak(Block,t) is the leakage current at time t, and s(t) is the
state of circuit type i at time t within this circuit block.
2) Router Area Model: We use a recent model by [9] and the

analysis in [11] to estimate the areas of transistors and gates such as
inverters, NAND, and NOR gates. This is a fast technique to estimate
standard cell characteristics before the cells are laid out. Using this
model and for every router building block (i.e., FIFO buffer, crossbar
switch and arbiter) our area modeling methodology is as follows.

• Decompose the block into its fundamental circuit components
(i.e., gate-level netlist)

• Compose the area model in a bottom-up fashion for every block
• Sum the area of individual blocks as well as global whitespace

FIFO buffers. Designers typically implement buffers as SRAM
arrays. Some on-chip networks, such as the Raw microprocessor [4],
use shift registers due to less demanding buffer space. We model
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TABLE I
COMPARISON OF DYNAMIC POWER (Pdyn), STATIC POWER (Pleak), DEVICE AREA (Ad ) AND TOTAL AREA (Atot ) METRICS RELATIVE TO WIRES, AND

NUMBER OF HOPS, BETWEEN THE ORIGINAL AND PROPOSED MODELS.

SoC Pdyn (mW) Pleak (mW) Ad (mm2) Atot (mm2) ave. # hops max. # hops
Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

VPROC 65nm 51.1 179.9 69.9 86.7 0.036 0.007 0.217 0.223 3.10 3.42 4 6
dVOPD 65nm 27.3 73.2 25.7 33.2 0.013 0.003 0.082 0.085 1.76 1.91 3 4

TABLE II
COMPARISON OF NETWORK POWER (P), AREA (A), TOTAL NUMBER OF ROUTERS, AND HOP COUNT, USING ORION 1.0 AND ORION 2.0 MODELS.

SoC P (mW) A (mm2) # routers max. # router ports max. # hops
v1.0 v2.0 v1.0 v2.0 v1.0 v2.0 v1.0 v2.0 v1.0 v2.0

VPROC 65nm 0.857 0.924 2.043 2.329 33 25 8 12 6 5
dVOPD 65nm 0.412 0.486 1.217 1.343 18 16 6 6 11 10

Fig. 5. SRAM-based FIFO buffer with one read and one write port. Tc is
the pre-charging transistor, Twd the wordline driver, Tbd the write bitline
driver, Tm the memory cell inverter, and Tpr and Tpw the pass transistors
connecting read and write ports to memory cells respectively [6].

the area of both implementations, but explain only the SRAM-based
model here. Figure 5 shows the structure of a SRAM-based FIFO
buffer. Equations (18) and (19) compute the wordline and bitline
lengths of the FIFO, respectively.

Lword−line = F · (wcell+2(Pr+Pw)dw) (18)
Lbit−line = B · (hcell+(Pr+Pw)dw) (19)

where F , B, wcell , hcell , dw, Pr, and Pw are flit size in bits, buffer
size in flits, memory cell width, memory cell height, wire spacing,
number of read ports and number of write ports, respectively. Hence,
the total area for a B entry buffer with flit size of F is calculated as
follows. In this model, hcell and wcell are computed using the gate
area model described earlier.

Crossbar switches. We consider two common crossbar implementa-
tions – multiplexer-tree and matrix. Here, we explain just the matrix
crossbar model. The area of a matrix crossbar with I input ports, O
output ports and flit size of F can be estimated as follows.

Areacrossbar = (O ·F ·wt)× (I ·F ·ht) (20)

where wt and ht are track width and height, respectively.

Arbiters. We model three types of arbiters: matrix, round-robin, and
queuing. Here, we explain just the matrix arbiter model. For a matrix
arbiter with R requesters, its priorities can be represented by an R×R
matrix, with a 1 at the intersection of row i and column j if requester
i has higher priority than requester j, and a 0 otherwise. Let reqi be
the ith request, gntn the nth grant, and mi j the ith row and jth column
element in the matrix. Using these variables [6],

gntn = reqn×∏
i<n

(reqi+min)×∏
i>n

(reqi+mni) (21)

In this arbiter there are 2(R− 1)R 2-input NOR gates, R inverters
and R(R−1)

2 registers. We assume that D flip-flops (DFF) are used for
registers. Hence, the area of a matrix arbiter with R requests is
Areaarbiter = (AreaNOR2X1 ·2(R−1)R)+(AreaINVX1 ·R)+

(AreaDFF · R(R−1)
2

) (22)

3) System-Level Router Power and Area Models: The way in
which the router is implemented is usually not a concern of the
system-level designer. However, different architectural parameters
and circuit implementations have different power tradeoffs that
may be of interest at the system level. Therefore, we export the
architectural and circuit parameters that capture all the
architectural parameters and circuit implementations, respectively.
For each of the router building blocks, the APIs available to the

system-level design tools are:
• area(architectural,circuit) returns the area occupied by repeaters
and wiring, given the length of interconnection, the flit size, and
the design style. This is considered a fixed installation cost in
the optimization algorithms.

• power(architectural,circuit) returns the power consumed by the
interconnection, given the length, the flit size, and the design
style. This is actually further divided into two APIs for dynamic
and leakage power estimations.

IV. VALIDATIONS

A. Experimental Results and Significance Assessment

To assess the impact of improved accuracy on system-level design-
space exploration, we integrate our models in the COSI-OCC tool
[19]. We use two representative SoC designs as test cases. The first
design (VPROC) is a video processor with 42 cores and 128-bit
datawidths. The second design is based on a dual video object plane
decoder (dVOPD), where two video streams are decoded in parallel
by utilizing 26 cores and 128-bit datawidths. The clock frequency
used is 2.25 GHz for 65nm technology node. The main differences
between NoC obtained using original models with the one using the
improved models are in the area and hop count. The original models
are relatively optimistic in that they allow excessively long wires.
Table I compares the interconnect power, delay, and area when the
original [13] and proposed models [17] are used. The original model
uses the Bakoglu delay model [26] and does not consider any of
the improvements (i.e., hybrid buffering scheme, design styles, etc.)
It also takes its technology inputs from PTM models, which are
relatively inaccurate compared with industry technology files. We
have shown that inaccurate models lead to design solutions that are
actually not implementable.
Table II compares network power, area, total number of routers,

and hop count when previous models [20] and our proposed models
are used. The clock frequency used is 2.25 GHz for 65nm technology
node. We can observe that with our models, fewer routers with more
ports are used. Since previous models were missing a number of
important power components (i.e., clock power, link power, etc.) they
tend to underestimate the power. Also, we observe that relative power
due to an additional port (i.e., buffers and crossbar port) is not as high
in our models as opposed to previous models. Finally, more accurate
models lead to a better-performing NoC that satisfies requirements
at a lower hop count.

2008 International SoC Design ConferenceI-142



B. Bus vs. NoC Case Study
We apply our proposed physical models to predict power and

area of three different communication architectures. We use star and
mesh architectures for our NoC-based communication designs. Figure
6(c) shows our testcase in which we have five communicating cores
connected in a bus-based fashion. Figures 6(a) and (b) show star and
mesh architectures, respectively.

(a) Star topology (b) Mesh topology

core

mem0

3 mm

dmac

mem2mem1

3 mm

core

mem0

3 mm

dmac

mem2mem1

Core

mem0

3 mm

dmac

mem2mem1

(c) Bus topology

Fig. 6. Communication architectures: (a) Star topology, (b) Mesh topology,
and (c) Bus topology.

In our experiments, data width and address width are 32 bits each
for the bus-based architecture. For the NoC-based architectures the
flit size, F , is 32 bits and we use 5×5 routers with fifo depth of 2. We
use TSMC 65GP library and a clock frequency of 2.25GHz. Figure
7(a) shows the area occupied by each of the three configurations. We
observe that the bus-based architecture takes up more area largely
due to its substantial wiring for different buses. The mesh topology
requires more area than the star topology due to the larger number of
routers needed. However, we notice dynamic power consumption of
the bus-based architecture is less than that of either NoC-based archi-
tecture. Since bus-based architecture uses a relatively larger amount
of wiring, and since every masters broadcasts its communications to
all the slaves, we anticipate that dynamic power consumption in bus
architecture should be larger than in NoC architectures. We attribute
the observed outcome to two causes: (1) in our NoC simulation all
the routers are on, and (2) mismatch in real switching activity. The
former arises because we do not have flow control; this effectively
assumes that all routers are active and consuming power. The latter
arises because the ORION model uses one external activity factor
which does not correspond to an individual transaction (i.e., write
transaction in our case). Figures 7(b) and (c) show the dynamic and
leakage power for a write transaction between “dmac” and “mem0”
cores. We observe that in NoC-based architectures, routers are the
main contributors to the dynamic power.

(a) Area (b) Dynamic Power (c) Leakage Power 

Fig. 7. Area, dynamic power, and leakage power of our three communication
architectures. Dynamic and leakage power values are for a write transaction
between “dmac” and “mem0” cores.

V. CONCLUSIONS AND FUTURE DIRECTIONS
Accurate estimation of delay, power, and area of interconnection

fabrics (i.e., point-to-point links, routers, and logical blocks) early
in the design process can be enabling to effective system-level
exploration. In this work, we have proposed accurate delay, power and
area models used in bus-based and NoC-based communication archi-
tectures. Our results suggest that – depending on design objectives
and constraints – both the bus-based and NoC-based architectures
can be effective. Our models can be used in any system-level design
tool that seeks a hybrid solution to next generation heterogenous
interconnection fabrics.
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