
Revisiting the Layout Decomposition Problem for Double

Patterning Lithography∗

Andrew B. Kahnga,b, Chul-Hong Parkb, Xu Xuc, and Hailong Yaoa

aCSE and bECE Departments, UC San Diego, La Jolla, CA
cMagma Design Automation, San Jose, CA

abk@cs.ucsd.edu, chpark@vlsicad.ucsd.edu, xuxu@magma-da.com, hailong@cs.ucsd.edu

ABSTRACT

In double patterning lithography (DPL) layout decomposition for 45nm and below process nodes, two features
must be assigned opposite colors (corresponding to different exposures) if their spacing is less than the minimum

coloring spacing.5, 11, 14 However, there exist pattern configurations for which pattern features separated by
less than the minimum coloring spacing cannot be assigned different colors. In such cases, DPL requires that
a layout feature be split into two parts. We address this problem using a layout decomposition algorithm that
incorporates integer linear programming (ILP), phase conflict detection (PCD), and node-deletion bipartization
(NDB) methods. We evaluate our approach on both real-world and artificially generated testcases in 45nm
technology. Experimental results show that our proposed layout decomposition method effectively decomposes
given layouts to satisfy the key goals of minimized line-ends and maximized overlap margin. There are no design
rule violations in the final decomposed layout. While we have previously reported other facets of our research
on DPL pattern decomposition,6 the present paper differs from that work in the following key respects: (1)
instead of detecting conflict cycles and splitting nodes in conflict cycles to achieve graph bipartization,6 we split
all nodes of the conflict graph at all feasible dividing points and then formulate a problem of bipartization by
ILP, PCD8 and NDB9 methods; and (2) instead of reporting unresolvable conflict cycles, we report the number
of deleted conflict edges to more accurately capture the needed design changes in the experimental results.

1. INTRODUCTION

Conventional immersion lithography is unlikely to take the industry to 32nm node patterning, while Double

Patterning Lithography (DPL) is a primary lithography candidate for that technology node. DPL involves the
partitioning of dense circuit patterns into two separate exposures, whereby decreased pattern density in each
exposure improves resolution and depth of focus (DOF). When using two litho and two etch steps, DPL increases
manufacturing cost due to its complex process flows, and overlay control between the two patterning exposures
becomes a critical issue.

Two primary approaches to DPL are the LELE (litho-etch-litho-etch) and self-aligned approaches. The first
etch step in LELE14 is necessary to transfer the pattern of the first resist layer into an underlying hardmask15, 19

which is not removed during the second exposure. Photoresist is re-coated on the surface of the first process
for a second exposure. The second mask, having patterns separated from the first mask, is exposed and then
the flow finishes up with the hardmask and resist of second exposure. In self-aligned DPL,17, 20 the patterns
for the first layer are transferred into the hardmask and then nitride spacers are formed on the sidewalls of the
patterns. A spacer is formed by deposition or reaction of the film on the pattern, followed by etching to remove
all the film material except for the material on the sidewalls. Then, film materials between spacers produce the
patterns for the second layer.18, 21 The major concern of DPL is overlay control, which leads to requirements for
more accurate overlay metrology, more representative sampling, reduced model residuals, and improved overlay
correction.12 Regolli et al.13 analyzed overlay margin in double exposure patterning. According to the ITRS,4

DPL requires overlay control of between 9nm and 6nm, which is a major hurdle for production deployment.

A key issue in DPL from the design point of view is the decomposition of the layout for multiple exposure
steps.11 This recalls strong Alt-PSM (Alternating Phase Shift Mask) coloring issues and automatic phase

∗ Research at UCSD was supported in part by the Semiconductor Technology Academic Research Center (STARC).

Invited Paper

Photomask Technology 2008, edited by Hiroichi Kawahira, Larry S. Zurbrick,
Proc. of SPIE Vol. 7122, 71220N · © 2008 SPIE · CCC code: 0277-786X/08/$18 · doi: 10.1117/12.801992

Proc. of SPIE Vol. 7122 71220N-1

conflict detection and resolution methods.8 DPL layout decomposition must satisfy the requirement that
two features are assigned opposite colors (corresponding to mask exposures) if their spacing is less than the
minimum coloring spacing. However, there exist pattern configurations for which features within this minimum
coloring spacing cannot all be assigned different colors.5, 22 In such cases, at least one feature must be split into
two or more parts. The pattern splitting increases manufacturing cost and complexity due to (1) generation
of excessive line-ends, which causes yield loss due to overlay error in double-exposure, as well as line-end
shortening under defocus; and (2) resulting requirements for tight overlay control, possibly beyond currently
envisioned capabilities. Other risks include line edge (CD) errors due to overlay error, and interference mismatch
between different masks. Therefore, a key optimization goal is to reduce the total cost of layout decomposition,
considering the above-mentioned aspects, as well as other concerns such as forbidden-pitch and other design
rule restrictions on each mask, as well as layout density balance across masks.

In this work, we address DPL layout decomposition using integer linear programming (ILP), phase conflict
detection (PCD),8 and node-deletion bipartization (NDB)9 methods. A preprocessing step fractures layout
features into small pieces according to vertex coordinates of neighboring features. From the fractured polygon
pieces, we optimize polygon splitting with a process-aware cost function that avoids small jogging line-ends,
maximizes overlap at dividing points of polygons, and preferentially makes splits at landing pads, junctions and
long runs.11 A layout partitioning heuristic helps achieve scalability for large layouts. We present an overall
layout decomposition method which includes layout fracturing, graph construction, node splitting and graph
updating, and ILP/PCD/NDB based graph bipartization and node coloring processes. Our contributions are
as follows.

• After layout fracturing, we perform node splitting to further split mask features at all possible dividing
points with maximum overlap length after decomposition, so that the pre-specified overlay margin can
be attained. This allows use of ILP/PCD/NDB based graph bipartization and node coloring methods
to determine optimal or near-optimal dividing points with minimum design changes, maximized overlap
lengths, and minimum line-ends.

• Our ILP based node color assignment algorithm determines a coloring solution using the possible dividing
points to maximize overlap length with the required overlap margin, while avoiding design rule violations
and minimizing the number of line-ends. When there is no feasible color assignment solution, our ILP
algorithm obtains a feasible solution with minimal design changes.

• Compared with the ILP based color assignment algorithm, our PCD based method obtains a fairly good
color assignment solution with much faster runtime.

• Our NDB based graph bipartization and node coloring method also runs faster than the ILP based method.
However, the solution quality, after considering the number of design changes needed, the minimum and
average overlap lengths, and the number of line-ends, is worse than both ILP and PCD based methods.

While we have reported other facets of our research on DPL pattern decomposition,6 this paper differs from
that work in two key respects. (1) In this work, instead of detecting conflict cycles and splitting nodes in conflict
cycles for conflict cycle removal (i.e., graph bipartization6), we split all the nodes at all feasible dividing points
and formulate the problem of bipartizing the conflict graph by ILP, PCD and NDB based methods. (2) Instead
of reporting unresolvable conflict cycles, we report the number of deleted conflict edges, which is a more direct
metric of design changes, in our experimental results. The remainder of this paper is organized as follows.
Section II gives the overall flow of our layout decomposition system. Section III formally states the DPL color
assignment problem and gives details of the node splitting and different color assignment methods. Section IV
describes testcases, experimental setup and experimental results. Section V concludes with ongoing research
directions.

Proc. of SPIE Vol. 7122 71220N-2

Graph construction

Node splitting
and graph update

ILP/PCD/NDB based
color assignment

Layout fracturing

Compute projections

Compute overlap lengths

Figure 1: Overall DPL layout decomposition flow.

2. DPL LAYOUT DECOMPOSITION FLOW

Figure 1 shows our flow for DPL layout decomposition. Given a layout, the polygonal layout features are
first fractured into a set of non-overlapping rectangles using a minimum-sliver fracturing algorithm.16 The
minimum-sliver fracturing minimizes the number of small rectangles and helps simplify downstream operations.
Next, a conflict graph is constructed over the rectangular features according to the given minimum coloring
spacing, t. Each node in the graph represents a rectangular feature. There are two types of edges in the graph:
touching edges and conflict edges. A touching edge exists between two nodes if the corresponding features are
touching each other, and a conflict edge exists between two nodes if the corresponding features are not touching
each other, but the distance between the features is less than t.

We cast DPL layout decomposition as a problem of modifying the conflict graph by decomposing selected
layout feature nodes, thus adding new nodes and inducing new edges so that the graph can be properly two-
colored. To find all possible dividing points on the layout feature nodes with maximized overlap length, we
adopt the concept of projections. Details of node splitting are discussed in Section 3.3.

For each node in the graph, we compute its projections from other nodes that are adjacent and connected
with conflict edges. Based on the projections, the dividing points with maximum overlap lengths for each layout
feature can be computed. On one hand, not all layout features have feasible dividing points, i.e., the dividing
points with the resulting overlap lengths greater than the required overlap margin. On the other hand, a given
layout feature may have several dividing points where the feature can be split into several smaller features. The
layout feature will be split whenever there is a feasible dividing point, and the conflict graph will be updated
with the newly generated nodes and edges. In fact, the layout fracturing process can be regarded as a dividing
point selection and node splitting process, where the projections are not computed and the required overlap
margin is not guaranteed.

After node splitting and graph updating, ILP, PCD or NDB based graph bipartization and color assignment
process is performed on the final conflict graph to find the coloring solution that minimizes the number of design
changes†, cuts‡ and design rule violations, while maximizing the overlap lengths. Finally, a post-processing phase
reports the number of design changes needed (i.e., the number of deleted conflict edges), the minimum, average,
and standard deviation of the overlap lengths for all pairs of touching features (= adjacent split parts of an
original layout feature, which have been assigned different mask colors), and any design rule violations in the
final mask solution.

†By increasing the spacing between adjacent features, the conflict edge between the corresponding nodes can be
deleted. In our implementation, we try to preserve the conflict edges between features of the same cell instance, and
preferentially delete conflict edges between features of different cell instances. This is because a spacing perturbation
between cell instances is much easier to accomplish than a spacing perturbation within a cell instance.

‡Where there are two touching nodes with different colors, there is a cut, which corresponds to two new line-ends.

Proc. of SPIE Vol. 7122 71220N-3

(a) (b)

(c) (d)

e1

e2

Figure 2. An example of the conflict graph with conflict edges (green) and touching edges (dark blue), and layout
coloring according to our DPL layout decomposition flow: (a) input layout, (b) fractured layout and conflict graph
before node splitting, (c) node splitting and graph updating, and (d) ILP, PCD, or NDB based graph bipartization and
coloring.

Figure 2 illustrates the ILP, PCD and NDB based graph coloring according to our layout decomposition
flow. Polygonal layout features in (a) are fractured into rectangles, over which the initial conflict graph is
constructed. In the conflict graph, the conflict edges are green and the touching edges are dark blue. For all the
nodes in the conflict graph, we compute their projections, according to which the feasible dividing points are
computed as denoted by the dashed lines in (b). Then the node splitting process is carried out at the dividing
points and the conflict graph is updated with newly generated nodes and updated edges as in (c). Finally, ILP,
PCD, or NDB based color assignment is carried out to obtain the final coloring solution as given in (d), where
some conflict and touching edges (e.g., conflict edge e1 and touching edge e2 in (c)) may be deleted to make the
graph two-colorable.

3. DPL COLOR ASSIGNMENT PROBLEM

3.1. Problem Formulation

We now state the layout fracturing and DPL color assignment problem.6

Fracturing and DPL Color Assignment Problem

Given: Layout L, and maximum distance between two features (i.e., polygons), t, at which the color assignment
is constrained.
Find: A fracturing of L and a color assignment of fractured features to minimize total cost.
Subject to: (i) two non-touching fractured features corresponding to nodes ni and nj with 0 < di,j < t must
be assigned different colors, and (ii) two touching features with di,j = 0, if assigned different colors, incur a cost
ci,j .

d1,2

d1,2 , d1,3 > t d2,4, d3,5 < t

n1

n2 n4
d2,4

n3 n5

d2,5(d1,3)

Figure 3. Example of color assignment problem: feature n3 is assigned a different color from n2 and n5 because d2,4 < t
and d3,5 < t.

Proc. of SPIE Vol. 7122 71220N-4

Figure 3 illustrates the color assignment problem. Feature n2 (respectively, n3) is assigned a different color
from n4 (resp. n5), because d2,4 < t (resp. d3,5 < t). Since d1,2 > t and d1,3 > t, there is no need for the pairs
of features n1 and n2, and n1 and n3, to be assigned different colors. Note that when two touching fractured
features, e.g., n2 and n3 in the figure, are assigned different colors, the two features raise the manufacturing cost
(that is, risk) due to overlay error. Similar to Alt-PSM and SRAF (Sub-Resolution Assist Feature) techniques,
a major barrier to widespread deployment of double patterning in random logic circuits is the lack of design
compliance with layout decomposition and patterning requirements. There exist pattern configurations where
features within the minimum coloring spacing cannot all be assigned different colors. In such cases, we must
split at least one feature into two parts (e.g., n2 and n3 in Figure 3) – but this causes pinching under worst
process conditions of defocus, exposure dose variation and misalignment. Thus, two line-ends at a dividing
point must be sufficiently overlapped. Therefore, we should maximize the overlap between the respective mask
layouts of n2 and n3.

We give details of the conflict graph construction, node splitting, and ILP/PCD/NDB graph bipartization
and minimum cost color assignment steps in the following subsections.

3.2. Fracturing and Conflict Graph Construction

Given a layout L, a rectangular layout LR is obtained by fracturing layout polygons into rectangles. We fracture
the layout polygons into rectangles16 so that distance computation and other feature operations (e.g., feature
splitting) become easier. Our layout decomposition process begins with construction of a conflict graph based
on the fractured layout. As illustrated in Figure 4, given a (post-fracturing) rectangular layout LR, the conflict
graph G = (V, EC ∪ ET) is constructed by: (1) representing each feature (i.e., rectangle) by a node n; (2) for
any two non-touching features within distance t, connecting the two corresponding nodes with a conflict edge

ec; and (3) for any two touching features, connecting the two corresponding nodes with touching edge et.

If two non-touching features are connected by conflict edges in the graph, either they belong to different
original polygonal layout features, or there do not exist any other features between them (i.e., no features
entirely block the two non-touching features). In Figure 4, we see conflict edge set EC = {ec

1,3, ec
3,5, ec

5,6} and

touching edge set ET = {et
1,2, et

2,3, et
3,4, et

4,5}. There is no conflict edge between n2 and n4 since node n3 blocks
these two nodes.

n1 n2 n3 n4 n5 n6

ec1,3 ec3,5 ec5,6

et1,2
et2,3
et3,4
et4,5

Figure 4. Example of conflict graph construction: every (rectangle) feature is represented by a node, and no feature
entirely blocks two non-touching features that are connected by conflict edges in the graph.

3.3. Node Splitting

Node splitting is applied to all the nodes with feasible dividing points in the conflict graph, so that we may
eventually obtain a graph which becomes two-colorable after removing the minimum number of conflict edges.
We perform node splitting with a similar flow as the rule-based node splitting.6 The difference is that we
perform node splitting for each node with feasible dividing points instead of only for those nodes in conflict
cycles, i.e., cycles in the conflict graph which contain an odd number of conflict edges.6 To compute the feasible
dividing points, projections are calculated for each node from its adjacent nodes connected by conflict edges in
the conflict graph. According to the projections of a given node, the overlap length for each feasible dividing
point will be computed. For each dividing point with achievable overlap length greater than the required overlap
margin, the node splitting process is carried out to split the node into two nodes at the dividing point. After
node splitting at all feasible dividing points, the conflict graph will be updated. Then we apply an ILP, PCD or
NDB based graph bipartization and coloring methods to decide which nodes to split (i.e., the corresponding pair

Proc. of SPIE Vol. 7122 71220N-5

of touching nodes are assigned different colors) in the final decomposition result having a maximized overlap
lengths and minimized number of cuts. Note that the conflict graph may not be two-colorable after the node
splitting process. In that case a minimized number of conflict edges will be deleted by either ILP, PCD or
NDB based method. The deleted conflict edges will be reported and marked for layout optimization process
to eliminate by design change. To reduce the cost of the design change, we preferentially delete conflict edges
between features of different cell instances, so that by shifting the cell instances, the desired design changes can
be obtained.

Not all layout configurations can be made two-colorable by the node splitting method. DPL layout decompo-
sition fails when pattern features within the color spacing lower bound cannot be assigned different colors. Such
a failure, where we require a layout change to delete some conflict edges, has two cases: (a) there is no dividing
point to make the graph two-colorable among all of rectangles which have nonzero overlap length, and (b) the
overlap length is less than the overlap margin, even if there is a dividing point to make the graph two-colorable.
By construction, our node splitting process does not cause any violation of design rules or overlap margin for
the newly generated nodes. On the other hand, since the layout features are split at all feasible dividing points,
there is no solution other than conflict edge deletion to make the conflict graph two-colorable after the node
splitting process. I.e., after the node splitting process, if the updated conflict graph is not two-colorable, the
following ILP, PCD or NDB based method will delete some conflict edges, which corresponds to design changes,
to make the graph two-colorable.

3.4. Layout Partitioning

In most placements, the conflict graph between cells is sparse, i.e., due to the required poly-to-cell boundary and
whitespace between cells, there are not many edges between the cells. As a result, many “islands” can be found
in the conflict graph. To improve both runtime and memory consumption, we also perform layout partitioning6

to partition the conflict graph into connected components according to the connectivity information, with no
edges or nodes of a given polygon occurring in multiple components. Each component has its separate conflict
graph, and the coloring algorithms are carried out on each component in sequence. Because there are no edges
between components, and no polygon has nodes in more than one component, the overall solution is obtained
as the union of the solutions for all the small connected components.

3.5. ILP Based Min-Cost Color Assignment

After the node splitting process, the minimum-cost color assignment problem on the updated conflict graph is
formulated as an integer linear programming problem. To formally state the ILP based problem formulation,
we first introduce the following variables: (1) xi: binary variable (0/1) for the color of rectangle ri; (2) yi,j :
binary variable for touching edge et

i,j ∈ ET . yi,j = 0 when xi = xj , while yi,j = 1 when xi �= xj ; and (3) zi,j :

binary variable for conflict edge ec
i,j ∈ EC . zi,j = 0 when xi �= xj , while zi,j = 1 when xi = xj . Then the ILP

problem is formulated as

• Objective: minimize
∑

yi,j × (α + β/OLi,j) +
∑

γ × zi,j

• Subject to: {
2xi − xj − xk ≤ 1
xj + xk − 2xi ≤ 1 ∀ et

i,j , e
t
i,k and li,j < FSmin

(1)

xi = xj ∀ et
i,j and li,j < FSmin (2)

xi = xj ∀ et
i,j and OLi,j < OM (3){

xi − xj ≤ yi,j

xj − xi ≤ yi,j ∀ et
i,j and OLi,j ≥ OM

(4)

{
xi + xj − 1 ≤ zi,j

1 − xi − xj ≤ zi,j ∀ ec
i,j

(5)

where li,j is the length of the rectangle edge of ri which is opposite to the touching edge between ri and rj ,
FSmin is minimum feature size, i.e., the threshold on the features, below which a design rule violation will occur,
OLi,j is the overlap length between touching rectangles ri and rj , and OM is the required overlap margin.

Proc. of SPIE Vol. 7122 71220N-6

Constraints (1) and (2) avoid design rule violations. In Constraint (1), if the size of rectangle ri is less than
the minimum feature size and ri touches rectangles rj and rk on two sides, then ri should be assigned the same
color as one or both of rj and rk. In Constraint (2), the size of rectangle ri is less than the minimum feature
size and ri only touches rectangle rj , then ri should be assigned the same color as rj to avoid a design rule
violation.

Constraint (3) enforces the required overlap margin. In Constraint (3), if the overlap length between touching
rectangles ri and rj is less than the required overlap margin, then ri and rj should be assigned the same color.
Constraint (4) is related to the objective of maximizing the final overlap length. When the overlap length OLi,j

between a pair of touching rectangles ri and rj is greater than the required overlap margin OM , a cost β/OLi,j

is introduced in the objective function if ri and rj are assigned different colors (xi �= xj), i.e., yi,j = 1.

Constraint (5) is related to the objective of minimizing the number of design changes, i.e., the conflict edge
removal process, which removes the conflict edges between rectangles by changing the design. A cost γ is
introduced in the objective function for a conflict edge ec

i,j if ri and rj are assigned the same color (xi = xj),
i.e., zi,j = 1. α, β and γ are user-specified parameters for balancing the different objectives, e.g., a larger
α corresponds to more emphasis on the minimization of the number of line-ends, a larger β relates to more
improvement of overlap length, and a larger γ indicates that the number of design changes should be minimized.
The results reported below are obtained with α = 1, β = the value of the maximum possible overlap length
OLmax, and γ = 1e6§.

3.6. PCD and NDB Based Min-Cost Color Assignment

Phase conflict detection based graph coloring method. For the phase conflict detection problem, a
gadget based approach8 is employed to produce an optimal edge-deletion bipartization solution for the planar
graph. The algorithm consists of two main steps, as follows.

• Planar graph embedding. The phase conflict graph G is not necessarily an embedded planar graph, which
is required by the optimal algorithm. Hence, G is converted to an embedded planar graph G′ by greedily
removing minimum weight conflict edges that cross other edges. These conflict edges are added to a
potential set of conflicts P .

• Optimal conflict removal for planar graph. An optimal minimum-weight conflict cycle removal algorithm,
Bipartize, is applied to G′ for choosing the minimum set of conflicts that, when corrected, will produce
a phase-assignable layout, i.e., a two-colorable layout. The list of edges deleted by the algorithm is added
to D, a minimal set of conflicts whose removal ensures that G′ is two-colorable.

In our phase conflict detection based problem formulation, the conflict edges in our conflict graph correspond
to feature edges and our touching edges correspond to conflict edges in the conflict cycle graph in the gadget
based approach.8 Cost γ is assigned to each conflict edge to ensure that a minimum number of conflict edges
will be deleted¶. For a touching edge between touching features, a cost is assigned considering two factors: the
design rule violation, and the overlap length of the two features. When the size of the feature violates the design
rule or the overlap length is less than the required overlap margin, a cost of 2γ is assigned to the touching edge.
Otherwise, the cost on the touching edge is assigned as α + β/OLi,j , where OLi,j is the possible overlap length
between the two features ri and rj . The values of the parameters α, β and γ are set as in Section 3.5. The
phase conflict detection process outputs the deletions of conflict edges and touching edges that make the conflict
graph two-colorable. A deleted conflict edge corresponds to a design change, whereas a deleted touching edge
corresponds to a cutting on the layout feature, i.e., the two corresponding touching features generated by the
layout fracturing or node splitting process will be assigned different colors.

Node-deletion bipartization based graph coloring method. For node-deletion bipartization, we revise
our conflict graph and build a conflict cycle graph8 as follows: (1) for each conflict edge ei,j, create a new node
nk to substitute edge ei,j with two new edges ei,k and ek,j , where ei,k is a feature edge and ek,j is a conflict edge,
and (2) for each touching edge ei,j, create a new node nk to substitute edge ei,j with two new edges ei,k and

§To preferentially delete conflict edges between features of different cell instances, the edge deletion cost for those
edges is set to γ/2.

¶Again, γ/2 will be assigned to those edges between features of different cell instances.

Proc. of SPIE Vol. 7122 71220N-7

ek,j , where both ei,k and ek,j are feature edges. In the resulting conflict cycle graph, only the newly inserted
nodes are deletable during the node deletion bipartization process, and the original nodes are fixed. The weights
of the newly inserted nodes are set to be the same as those of the original conflict edges and touching edges,
which are computed in the same way as in the phase conflict detection based method discussed above. After
the conflict cycle graph is constructed, the node-deletion bipartization method9 is executed; it outputs deleted
nodes to generate a two-colorable graph, where the nodes can be mapped back to conflict edges and touching
edges in the original conflict graph. As with the phase conflict detection based method, a deleted conflict edge
corresponds to a design change, while a deleted touching edge corresponds to cutting of a layout feature.

(a) (b) (c)

e1

e2

e1
e2

n1

n2

Figure 5. Example of the conflict cycle graphs constructed for PCD and NDB based graph coloring methods: (a) conflict
graph with conflict edges (green) and touching edges (dark blue), (b) conflict cycle graph with feature edges (red) and
conflict edges (black) for PCD based method, and (c) conflict cycle graph with new nodes (blue), feature edges (red) and
conflict edges (black) for NDB based method.

Figure 5 shows an example of the constructed conflict cycle graphs from the conflict graph in Figure 2 for
PCD and NDB based graph coloring methods. From the conflict graph in (a), the conflict cycle graph with
feature edges (red) and conflict edges (black) for PCD based method is constructed in (b), and the conflict cycle

graph with new nodes (blue), feature edges (red) and conflict edges (black) for NDB based method is constructed
in (c). In the conflict cycle graphs of (b) and (c), the conflict cycles, i.e., the cycles with odd number of feature

edges, need to be broken for graph bipartization, where possible solutions are the deletion of edges e1 and e2 in
(b) and nodes n1 and n2 in (c). Therefore, to make the conflict graph in (a) two-colorable, the corresponding
edges e1 and e2 in (a) need to be deleted to break all the conflict cycles.

After deleted conflict and touching edges are computed in our conflict graph using either the PCD or NDB
based method, a heuristic breadth first search (BFS) based node coloring is performed on the two-colorable
graph, and the number of deleted conflict edges, the number of cuts on features, and statistics (i.e., minimum,
mean and standard deviation) of the final overlap lengths are extracted from the coloring solution.

4. EXPERIMENTAL RESULTS

Table 1. Parameters of the testcases: The minimum spacing between features and the minimum line width are 140nm
and 100nm, which are scaled down by 0.4× to be 56nm and 40nm, respectively.

Min. Spacing Min. Width
Design #Cells #Polygons #Rectangles

Before ×0.4 Scaling Before ×0.4 Scaling

AES 17304 90394 362380 140 56 100 40

TOP-B 60800 545000 2066800 140 56 100 40

TOP-C 305000 2725000 10334000 140 56 100 40

TOP-D 121600 1090000 4133600 140 56 100 40

Our layout decomposition system integrating ILP, PCD and NDB based node coloring methods is imple-
mented in C++. We use one real-world design (AES from opencores.org) implemented with Artisan 90nm
libraries using Synopsys Design Compiler v2003.06-SP1.2 Because real-world synthesized netlists do not use
all of the available standard-cell masters, we also run experiments with three artificial designs (TOP-B, TOP-

C and TOP-D) with artificial netlists that instantiate more than 600 different types of cell masters from the
same library. The testcases are placed with row utilizations of 70% and 90% using Cadence First Encounter

v3.3.3 Table 1 shows the parameters of the testcases. The minimum spacing between features in the 90nm
library-based layout is 140nm, with minimum feature size of 100nm. To obtain experimental results that reflect

Proc. of SPIE Vol. 7122 71220N-8

Table 2. Experimental results of ILP based layout decomposition system (four testcases, 70% and 90% utilization). t:
minimum coloring spacing (nm). CEs: number of conflict edges between features. DEs: number of deleted conflict
edges between features. Cuts: number of touching rectangle pairs with different colors. (min., mean, σ): statistics of
overlap lengths (nm) over all chosen splitting points. CPU: total runtime (s).

Design t CEs DEs Cuts min. mean σ CPU

58 19117 0 29 56 301.45 117.20 17.0

AES (70%) 59 20888 0 38 56 157.89 100.26 17.4

60 21209 0 38 56 156.92 100.56 17.3

61 85733 1 133 18 68.77 78.72 22.3

58 402045 0 10701 13 150.49 75.63 404.0

TOP-B (70%) 59 454272 300 13919 9 149.92 75.99 473.0

60 461568 800 14075 11 153.04 73.88 440.0

61 827517 9400 49863 11 123.57 92.24 747.9

58 2010351 0 53460 13 150.20 75.10 5252.8

TOP-C (70%) 59 2271470 1500 69762 9 149.54 75.91 6412.4

60 2307901 4000 69597 11 152.78 72.84 5336.2

61 4138598 46820 244734 11 122.69 90.97 7625.6

58 804031 0 21389 13 150.24 75.26 1018.4

TOP-D (70%) 59 908416 600 27845 9 149.69 75.97 1181.3

60 923032 1600 27878 11 153.07 73.27 1183.6

61 1655312 18812 98836 11 122.50 91.44 1763.9

58 18972 0 29 56 297.48 114.45 17.0

AES (90%) 59 20721 0 35 56 149.63 74.97 17.6

60 21043 0 35 56 148.66 75.12 17.2

61 85636 1 129 18 63.67 65.15 22.4

58 402099 0 10696 13 150.39 75.48 354.7

TOP-B (90%) 59 454343 300 13941 9 149.73 76.31 423.0

60 461661 800 14027 11 152.83 73.62 448.1

61 827675 9408 49634 11 122.94 91.62 735.6

58 2010400 0 53470 13 150.25 75.33 5597.0

TOP-C (90%) 59 2271458 1500 69669 9 149.55 76.05 5873.4

60 2307944 4000 69490 11 152.65 72.99 6629.0

61 4138551 47001 243439 8 122.59 91.07 7026.7

58 803893 0 21456 13 150.85 73.93 1044.8

TOP-D (90%) 59 907959 600 27898 9 149.83 74.98 1130.3

60 922546 1600 27908 11 153.10 71.98 1228.0

61 1655530 18887 98944 11 122.75 91.15 1748.6

future designs with smaller feature sizes, we scale down the GDS layout by a factor of 0.4, which results in
56nm minimum spacing and 40nm minimum feature size.

We sweep the color spacing lower bound t as well as placement utilization, and evaluate solution quality
according to various metrics, including number of deleted conflict edges (design changes), overlap length and
number of cuts. Table 2, Table 3 and Table 4 show the experimental results of our layout decomposition system
based on our ILP, PCD and NDB based methods, respectively. In the tables, “t” gives the minimum coloring
spacing; “CEs” gives the number of conflict edges in the conflict graph; “DEs” gives the number of deleted
conflict edges; “Cuts” gives the number of touching feature pairs with different colors; the columns under
“min.”, “mean” and “σ” respectively give minimum, average and standard deviation of the overlap lengths, and
“CPU” gives the total runtime in seconds.

We cannot directly compare our new results with the previous work6 in all metrics because different methods
and objectives are used in the two works. E.g., in previous work, the number of unresolvable conflict cycles
(uCCs) is used for recording the layout pattern configurations which are not two-colorable; whereas in this
work, the number of deleted conflict edges (preferentially on edges between different cell instances) are used
for recording the necessary design changes. Deleted conflict edges more accurately reflect the complexity of
design changes than do uCCs. The two ILP based formulations have similar runtimes; in the new ILP problem
formulation of this work, though there is no conflict cycle detection process, the number of constraints is larger
than with the previous ILP based problem formulation.6 Our heuristic PCD and NDB based methods obtain

Proc. of SPIE Vol. 7122 71220N-9

Table 3. Experimental results of phase conflict detection based layout decomposition system (four testcases, 70% and
90% utilization). t: minimum coloring spacing (nm). CEs: number of conflict edges between features. DEs: number of
deleted conflict edges between features. Cuts: number of touching rectangle pairs with different colors. (min., mean, σ):
statistics of overlap lengths (nm) over all chosen splitting points. CPU: total runtime (s).

Design t CEs DEs Cuts min. mean σ CPU

58 19117 0 29 56 300.72 118.10 7.7

AES (70%) 59 20888 0 38 56 157.89 100.26 7.7

60 21209 0 38 56 156.92 100.56 7.8

61 85733 1 133 18 68.60 78.81 10.2

58 402045 250 10403 13 153.53 73.29 64.5

TOP-B (70%) 59 454272 550 13435 9 152.32 73.81 70.1

60 461568 801 13616 38 153.21 71.88 68.3

61 827517 9845 46980 11 121.58 88.51 86.9

58 2010351 1232 51991 13 152.97 72.70 585.0

TOP-C (70%) 59 2271470 2732 67064 9 151.68 73.45 603.0

60 2307901 4006 68208 38 152.82 71.25 658.1

61 4138598 48411 235968 11 121.69 88.19 589.3

58 804031 499 20774 13 153.34 73.26 159.6

TOP-D (70%) 59 908416 1099 26782 9 151.71 73.56 168.5

60 923032 1602 27224 38 152.83 71.53 159.8

61 1655312 19584 94018 11 121.39 88.31 185.9

58 18972 0 29 56 295.07 117.51 7.6

AES (90%) 59 20721 0 35 56 149.40 75.03 7.7

60 21043 0 35 56 148.43 75.18 7.8

61 85636 1 130 18 63.64 65.02 10.1

58 402099 254 10390 13 153.41 73.36 65.3

TOP-B (90%) 59 454343 554 13400 9 151.81 73.68 67.9

60 461661 801 13596 38 152.83 71.73 67.3

61 827675 9812 47024 11 121.57 88.49 87.3

58 2010400 1244 51988 13 153.12 73.01 631.7

TOP-C (90%) 59 2271458 2744 67024 9 151.76 73.64 607.7

60 2307944 4000 68217 38 152.92 71.47 608.8

61 4138551 48545 235745 11 121.59 88.21 562.2

58 803893 509 20810 13 153.84 71.69 160.7

TOP-D (90%) 59 907959 1109 26798 9 151.76 72.36 177.0

60 922546 1601 27250 38 152.84 70.23 168.1

61 1655530 19653 93947 11 121.31 88.21 190.7

feasible solutions with much less runtime than the previous methods.

From the experimental results, the ILP based method deletes a smaller number of conflict edges to make
the conflict graph two-colorable, i.e., a smaller number of design changes are needed using the ILP based layout
decomposition method. Besides, since the overlap length is given higher priority by setting α and β to be 1 and
the maximum possible overlap length OLmax, the minimum and mean overlap lengths obtained by the ILP based
method are better than that of the other two methods when the number of deleted conflict edges are the same.
Since the PCD and NDB based methods either delete more conflict edges or obtain smaller minimum/mean
overlap lengths, the results confirm that the ILP based method can always obtain better solution quality than
the other two methods. However, the PCD based method runs much faster than the ILP based method. The
NDB based method obtains the worst solution quality with runtime between the PCD and ILP based methods.

We have verified DPL layouts generated by our layout decomposition system using Mentor Calibre DRCv2.6.9-

11.1 Specifically, we set up three key design rule checks (DRCs) as follows: (1) the minimum spacing check
rule in the DPL mask layouts is increased to 2×t + min. line width; (2) the minimum linewidth checks for DPL
are the same as those in single-exposure lithography; and (3) overlap length checks are performed by use of the
AND boolean shape operation, i.e., intersections of features in the two mask layouts correspond to overlaps
at node splitting points, and must be larger than the prescribed overlap margin (e.g., 8nm). The DRCs are
performed on layouts having extended features at the splitting points. Per the three design rule checks, we have
confirmed that there is no design rule violation in all testcases.

Proc. of SPIE Vol. 7122 71220N-10

Table 4. Experimental results of node-deletion bipartization-based layout decomposition system (four testcases, 70% and
90% utilization). t: minimum coloring spacing (nm). CEs: number of conflict edges between features. DEs: number of
deleted conflict edges between features. Cuts: number of touching rectangle pairs with different colors. (min., mean, σ):
statistics of overlap lengths (nm) over all chosen splitting points. CPU: total runtime (s).

Design t CEs DEs Cuts min. mean σ CPU

58 19117 0 29 43 101.55 38.25 15.9

AES (70%) 59 20888 0 33 41 93.82 40.04 16.1

60 21209 0 33 40 92.82 40.04 16.1

61 85733 4 121 18 49.88 38.28 23.0

58 402045 649 9054 11 102.55 64.22 143.9

TOP-B (70%) 59 454272 1646 10709 9 104.87 62.83 154.3

60 461568 1899 10927 9 106.27 63.18 158.9

61 827517 14969 36624 8 87.79 71.27 222.3

58 2010351 3218 45283 11 103.79 64.91 1164.9

TOP-C (70%) 59 2271470 8227 53522 9 106.13 63.57 1130.8

60 2307901 9502 54632 9 107.73 63.79 1188.9

61 4138598 80940 194955 8 86.54 72.48 1263.7

58 804031 1298 18105 11 102.91 64.48 342.5

TOP-D (70%) 59 908416 3305 21388 9 104.87 62.89 354.7

60 923032 3810 21841 9 106.26 63.19 350.9

61 1655312 29845 73272 8 87.83 71.25 482.3

58 18972 0 29 43 112.03 41.35 15.9

AES (90%) 59 20721 0 33 41 124.45 49.81 16.0

60 21043 0 33 40 123.45 49.81 16.1

61 85636 6 118 18 57.19 49.85 23.0

58 402099 654 9044 11 102.46 64.43 145.1

TOP-B (90%) 59 454343 1645 10712 9 104.39 62.85 152.2

60 461661 1894 10947 9 105.78 63.19 163.1

61 827675 15000 36593 8 87.65 71.20 217.8

58 2010400 3229 45297 11 104.25 64.67 1109.1

TOP-C (90%) 59 2271458 8248 53498 9 106.71 63.46 1181.0

60 2307944 9504 54546 9 108.31 63.79 1164.8

61 4138551 81080 194774 8 86.42 72.34 1272.0

58 803893 1367 17965 11 102.91 64.82 326.3

TOP-D (90%) 59 907959 3358 21295 9 104.38 62.95 343.5

60 922546 3850 21805 9 105.81 63.19 346.1

61 1655530 29934 73161 8 87.40 71.16 469.0

5. CONCLUSIONS AND ONGOING WORK

We have proposed three layout decomposition approaches based on ILP, phase conflict detection and node-
deletion bipartization methods to address design needs for double exposure patterning at 45nm and below.
Our approaches practically and effectively improve overlap length and hence lithography yield. Experimental
results with real-world and artificial testcases show that the overlap lengths in the final layout are not less than
the pre-specified overlap margin (e.g., 8nm margin in 45nm node) with all necessary design changes reported,
confirming the effectiveness of our approaches.

Our ongoing research is in the following directions.

• The two mask exposures in DPL can result in distinct CD populations with different statistical distribu-
tions, which may increase guardbanding compared to the guardband of a single-exposure process. We are
investigating optimal timing/power model guardbanding under the bimodal CD distribution in DPL.

• We seek variability-awareness in the DPL layout decomposition cost function. Examples are (i) minimizing
the difference between the pitch distributions of two masks, and (ii) minimizing the number of distinct DPL
layout solutions across all instances of a given master cell (to reduce variability between the instances).

• Besides, we are also working on the DPL layout decomposition problem with balanced mask layout density
and forbidden pitch intervals.

Proc. of SPIE Vol. 7122 71220N-11

REFERENCES

1. Calibre User’s Manual. http://www.mentor.com/.

2. Design Compiler User’s Manual. http://www.synopsys.com/.

3. SOC Encounter User’s Manual. http://www.cadence.com/.

4. International Technology Roadmap for Semiconductors. http://public.itrs.net/.

5. G. E. Bailey et al., “Double Pattern EDA Solutions for 32nm HP and Beyond”, Proc. SPIE Conf. on Design for

Manufacturability Through Design-Process Integration, 2007, pp. 65211K-1 - 65211K-12.

6. A. B. Kahng, C.-H. Park, X. Xu and H. Yao, “Layout Decomposition for Double Patterning Lithography”, Proc.

IEEE Intl. Conf. on Computer-Aided Design, 2008.

7. G. Capetti et al., “Sub k1 = 0.25 Lithography with Double Patterning Technique for 45nm Technology Node Flash
Memory Devices at 193nm”, Proc. SPIE Conf. on Optical Microlithography, 2007, pp. 65202K-1 - 65202K-12.

8. C. Chiang, A. B. Kahng, S. Sinha, X. Xu, and A. Zelikovsky, “Fast and Efficient Bright-Field AAPSM Conflict
Detection and Correction”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 26(1)
(2007), pp. 115-126.

9. A. B. Kahng, S. Vaya and A. Zelikovsky, “New Graph Bipartizations for Double-Exposure, Bright Field Alternating
Phase-Shift Mask Layout”, Proc. Asia and South Pacific Design Automation Conference, 2001, pp. 133-138.

10. C. Chiang, A. B. Kahng, S. Sinha and X. Xu, “Fast and Efficient Phase Conflict Detection and Correction in
Standard-Cell Layouts”, Proc. IEEE Intl. Conf. on Computer-Aided Design, 2005, pp. 149-156.

11. M. Drapeau, V. Wiaux, E. Hendrickx, S. Verhaegen and T. Machida, “Double Patterning Design Split Implementa-
tion and Validation for the 32nm Node”, Proc. SPIE Conf. on Design for Manufacturability Through Design-Process

Integration, 2007, 652109-1 - 652109-15.

12. M. Dusa et al., “Pitch Doubling Through Dual-Patterning Lithography Challenges in Integration and Litho Bud-
gets”, Proc. SPIE Conf. on Optical Microlithography, 2007, pp. 65200G-1 - 65200G-10.

13. P. Rigolli et al., “Double Patterning Overlay Budget for 45nm Technology Node Single And Double Mask Approach”,
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 25(6) (2007), pp. 2461-
2465.

14. J. Finders, M. Dusa and S. Hsu, “Double Patterning Lithography: The Bridge Between Low k1 ArF and EUV”,
Microlithography World, Feb. 2008.

15. http://en.wikipedia.org/wiki/Hardmask.

16. A. B. Kahng, X. Xu and A. Zelikovsky, “Fast Yield-Driven Fracture for Variable Shaped-Beam Mask Writing”, Proc.

SPIE Conf. on Photomask and Next-Generation Lithography Mask Technology, 2006, pp. 62832R-1 - 62832R-9.

17. S.-M. Kim et al., “Issues and Challenges of Double Patterning Lithography in DRAM”, Proc. SPIE Conf. on Optical

Microlithography, 2006, pp. 65200H-1 - 65200H-7.

18. C. Lim et al., “Positive and Negative Tone Double Patterning Lithography for 50nm Flash Memory”, Proc. SPIE

Conf. on Optical Microlithography, 2006, pp. 615410-1 - 615410-8.

19. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication, Wiley, 2007.

20. M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning Scheme for Sub-0.25
k1 Single Damascene Structures at NA=0.75, λ=193nm”, Proc. SPIE Conf. on Optical Microlithography, 2005, pp.
1508-1518.

21. W.-Y. Jung et al., “Patterning With Spacer for Expanding the Resolution Limit of Current Lithography Tool”,
Proc. SPIE Conf. on Design and Process Integration for Microelectronic Manufacturing, vol. 6125 pp. 61561J-1 -
61561J-9, 2006.

22. J. Rubinstein and A. R. Neureuther, “Post-Decomposition Assessment of Double Patterning Layout”, Proc. SPIE

Conf. on Optical Microlithography, 2008, pp. 69240O-1 - 69240O-12.

Proc. of SPIE Vol. 7122 71220N-12

