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ABSTRACT
We present a novel detailed placement technique that accounts for
systematic through-pitch variations to reduce leakage. Leakage de-
pends nearly exponentially on linewidth (gate length), and even small
variations in linewidth introduce large variability in leakage. A sub-
stantial fraction of linewidth variation is systematic with respect to
the device layout context. Detailed placement changes context of the
devices that are near the cell boundaries and can be used to reduce
leakage. Our approach modifies the placement of cells in small win-
dows such that contexts that reduce leakage are created. During this
optimization, cells are partitioned into rows and then placed in rows
using a traveling salesman problem formulation.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—layout, placement and
routing

General Terms
Design, Power, Variability

Keywords
Lithography, ACLV, Through-pitch, Leakage, Detailed Placement

1. INTRODUCTION
Power, composed of dynamic and leakage power, is a primary de-

sign concern in modern designs. Leakage power has scaled worse
than dynamic power with technology scaling, and its share of total
power continues to increase. While gate-tunneling leakage can be
large at low temperatures, subthreshold leakage is the dominant leak-
age component at operating temperatures. For 45nm and beyond, the
use of high-K dielectrics is projected to significantly reduce gate-
tunneling leakage. So, subthreshold leakage is likely to remain the
dominant contributor to total leakage in foreseeable technologies. In
this paper we focus on subthreshold leakage and refer to it as leakage.
Leakage variability, the difference in leakage of different chips of the
same design, is very significant and together with performance vari-
ation limits the yield. For 180nm technology, Intel reported a 20×
leakage variation [4].
Device leakage depends nearly exponentially on polysilicon (poly)

linewidth (gate length), and even small variations in linewidth cause
large leakage variation. Across-chip linewidth variation (ACLV) has
a substantial systematic component [17] which is predictable once
the pitch and defocus of a device (line) are known [7, 9]. Pitch of
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a device captures the context of the gate of the device and in sim-
ple terms is the spacing of the gate from neighboring gates. Once
placement has been performed, pitches of all devices in the design
are known. Defocus is the variation in focus; it arises due to wafer
topography variations, lens aberrations, tilt of the wafer stage, etc.
and is difficult to predict. Recent works have used systematic ACLV
for accurate timing analysis [9], design robustness [10], and leakage
analysis and optimization [14]. Design rule manuals now present
ACLV data to enable ACLV-driven optimizations and analyses.
Through-pitch variation is the linewidth variation that occurs over
different permissible pitches. Reticle enhancement techniques (RETs),
such as optical proximity correction (OPC) and scattering bar in-
sertion, reduce but do not completely eliminate through-pitch vari-
ation especially at non-ideal defocus and exposure conditions. For
the 65nm technology that we study, the through-pitch variation, after
RET application, is 5nm at zero defocus (ideal focus condition) and
12nm at the maximum defocus value of 100nm. Such variations in
linewidth translate to 100% and 527% variations in NMOS device
leakage respectively. Fortunately, most devices have pitches that are
less sensitive to defocus and the expected defocus value is smaller
than the maximum.
In this work, we propose a novel detailed placement technique that
changes the placement of cells to change the pitches of devices and
consequently reduce their leakage. Cells can be composed of several
devices; pitches of the devices that are closest to the cell boundaries
(henceforth referred to as boundary devices) change with placement.
Placement has negligible impact on the pitches of devices other than
the boundary devices; this is due to their large distance from the
boundary and shielding from boundary devices in the cell. How-
ever, most commonly used cells such as small- to moderately-sized
buffers, inverters, NANDs, and NORs have all of their devices near
boundaries. For such cells, device pitches and consequently leak-
age is affected by detailed placement. For example, the leakage of
a NAND gate (NAND2X1) changes by 18% when it is sandwiched
between two other NAND2X1 gates versus when it has no neighbors.
Our methodology involves two steps. First, a matrix is constructed
to capture the leakage when two cells are placed next to each other.
This matrix is used to drive our optimization and to evaluate a given
placement for leakage. Second, we divide the design into small win-
dows and optimize the windows individually. During the optimiza-
tion cells are redistributed in rows, and within each row their order-
ing, spacing, and orientation is optimized using a traveling salesman
formulation. We ensure that the timing-critical cells remain unaf-
fected during optimization to minimize the impact on their delays
and the delays of their interconnects.
A recent work by Hu et al. [13] proposed a pattern-sensitive place-
ment approach for minimizing linewidth variation. The work by [13]
was published in the period between the submission and acceptance
of our work. The objective of [13] is to minimize total edge place-

ment error (EPE)1 by modifying detailed placement subject to wire-
length constraints. Although the approach of our work and that pre-
sented by Hu et al. appear similar, they differ in several aspects. Hu

1EPE is a measure of linewidth variation.
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Figure 1: Variation of simulated on-silicon linewidth with defocus for
different pitches. Linewidth increases with defocus for dense (small
pitch) patterns, and decreases for sparse (large pitch) patterns.

et al. seek to minimize the overall EPE variation while we seek to to
minimize leakage power. Hu et al. do not consider placement of filler

cells2 while we explicitly optimize their placement. Consideration of
filler cells in detailed placement is very important. Filler cells in sub-
90nm technology have non-functional poly and their placement can
alter poly pitches and, consequently, device leakage as explained in
Section 2.2.
The remainder of this paper is organized as follows. Section 2

gives background on systematic ACLV and detailed placement. In
Section 3 we present our approach to capture context-dependent leak-
age in the form of a matrix. Section 4 describes our leakage opti-
mization methodology. Section 5 presents experimental validation
and Section 6 concludes.

2. BACKGROUND
ACLV is a significant contributor to leakage variation. In this sec-

tion we briefly describe the role of device pitches in ACLV and the
use of detailed placement to alter pitches.

2.1 Systematic ACLV
Despite the use of RETs, linewidth variation of 10-20% is typi-

cal in modern manufacturing technologies and arises largely due to
lithography variations. Lithography is tuned for a set of process con-
ditions and pitches; existence of non-ideal process conditions and
different pitches causes lithography variation. A large fraction of this
variation is systematic with pitch and defocus as shown in Figure 1.
The figure plots interpolated foundry data after application of RETs
including OPC and scattering bar insertion over a realistic defocus
range. The quadratic dependence of linewidth on defocus has been
reported and used in several previous works [16, 7, 9]. We have
found linewidth for multiple devices with similar pitch and defocus
to be nearly identical in foundry data. Therefore, we use the plot in
Figure 1 to predict linewidth given pitch and defocus.
From the plot we note that dense lines have a larger linewidth than

sparse lines across all defocus values. Also, sparser lines exhibit a
larger linewidth decrease with defocus. This systematic nature of
ACLV has been exploited in recent works for timing analysis [9], de-
sign robustness [10], and leakage analysis and systematic-variation
aware linewidth biasing [14]. Since leakage increases exponentially
as linewidth decreases, devices with dense lines will have signifi-
cantly less leakage than other devices across all defocus values. This
observation is the basis for the proposed optimization. We also ob-
serve that the linewidth change due to pitch saturates (as can also be
seen in Figure 1) as the pitch approaches the optical radius. Optical
radius is the radius of influence due to proximity; features near or
beyond the optical radius due not affect linewidth.
Kahng et al. [14] presented a systematic-ACLV aware leakage

analysis and optimization methodology. Their approach calculates

2Filler cells are placed in the empty space between actual cells to
maintain power and ground rail connectivity.
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Figure 2: Detailed placement affects device pitches. Two placements of
three cells in a row and the device pitches are shown.

the pitches of all cells in the design and finds the susceptibility of
the cells to defocus-induced linewidth variations. The cells that are
more susceptible are preferred for optimization over the others in a
previously proposed leakage optimization [12]. Our approach mod-
ifies the pitches themselves to reduce leakage and is complementary
to theirs. Gupta et al. [11] proposed a placement perturbation ap-
proach to increase the number of scattering bars that can be inserted.
Scattering bars are very thin, non-printing lines that assist printabil-
ity by reducing through-pitch variation. While [11] can increase the
number of scattering bars and reduce through-pitch variations, design
objectives such as delay and leakage are not targeted. The approach
of [11] is also limited to perturbing cells in the neighboring free space
in a single row, which limits the opportunities for optimization. The
use of detailed placement to enhance the printability of cells has also
attracted interest from the industry recently [8].

2.2 Detailed Placement
Traditionally, placement is separated into two phases – global place-
ment and detailed placement. Global placement generates a legalized
(i.e., with no overlaps) placement of standard cells in rows. Detailed
placement is a refinement step which performs small-range perturba-
tions to generate a new optimized placement. Several approaches to
detailed placement have been proposed with most focusing on wire-
length minimization (e.g., [6]) or timing [5]. Our approach, to the
best of our knowledge, is the first to consider the impact of detailed
placement on poly gate pitch to reduce leakage which is strongly and
systematically dependent on pitch.
Placement can change the pitches of boundary devices of a cell by
using the following three knobs:

• Neighbor selection. Different cells have different spacings be-
tween the boundary and the boundary devices. So the neighbor
of a cell affects the pitch of its boundary devices.

• Orientation. Within a cell the spacing between the left bound-
ary and the closest boundary devices is different from that be-
tween the right boundary and the boundary devices closest to
the right boundary. So, the orientation of a cell (i.e., “flipped”
or not) affects the pitches of the boundary devices.

• Cell-to-cell spacing. In general introducing space between two
cells causes the pitches of the boundary devices of the cells
to become sparse. However, in current technologies, fillers
(which are always inserted in the space between any two cells)
can have non-functional polys that can increase the pitches of
the boundary devices in the neighboring cells. So, cell-to-cell
spacing affects the pitches of the boundary devices irrespective
of the fillers containing polys.

Figure 2 shows two placements of five cells in a row and how the
pitches of the gates in the cells change.
Fillers are inserted between separated cells in a placement to en-
sure connectivity of the power and ground rails in the space between
the two cells. In 65nm and beyond technologies, fillers may have
non-functional polys to enhance layout uniformity. Such fillers de-
crease the pitch of the devices in neighboring cells (i.e., make the
pitch dense). On the other hand, fillers that do not have polys in-
crease the pitches of the devices in neighboring cells (i.e., make the
pitch sparse). In both cases filler insertion is a powerful knob to con-
trol device pitches and is considered in our approach.
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3. ASSESSING LEAKAGE IMPACT
Potential leakage savings from detailed placement depend on the fol-
lowing factors.

• Pitch range. The minimum pitch attainable by detailed place-
ment depends on the boundary device to boundary spacing of
the cells. When fillers contain polys, the maximum pitch is
attained when two cells with large boundary device to bound-
ary spacing are placed next to each other. If fillers do not have
polys, the maximum pitch is attained when fillers are inserted
between cells. Larger difference between minimum and maxi-
mum attainable pitches affords greater leakage reduction. For
our 65nm library, the spacing between neighboring gates of any
two cells when they abut varies between 210nm and 520nm.

• Linewidth variation due to pitch. This is process dependent.
We expect larger leakage reduction if the linewidth variation
due to pitch is large. For our 65nm process, linewidth is 60nm
for {210nm, 210nm} pitch (where first and second distances in
the tuple are left and right spacings with the immediate neigh-
bors respectively) and 56nm for {520nm, 520nm} pitch at 0nm
defocus. At 100nm defocus, the linewidth is 60nm and 51nm
for the two pitches, respectively.

• Leakage reduction with linewidth. Leakage decreases expo-
nentially with linewidth increase. Larger leakage change with
linewidth change allows more leakage optimization by detailed
placement. For our technology, PMOS and NMOS leakages
increase from 0.383μA/μm and 0.270μA/μm to 1.868μA/μm
and 0.887μA/μm respectively when linewidth decreases from
60nm to 51nm.

We construct a Δleakage matrix L to capture the leakage change
when a cell is placed next to another cell, with respect to when it is
placed without any neighbor. L additionally needs to capture the fact
that the leakage change depends on which of the two sides of the two
cells touch. Thus the matrix has two rows corresponding to the two
sides of each cell. The matrix needs to be constructed only once for a
library; if there are N cells in the library, the matrix has 2N rows and
columns. We use Side 0 and Side 1 to denote the left and right sides
of a cell, respectively.

Li j = Δleakage�i/2� +Δleakage� j/2�

when Side i%2 of Cell �i/2� touches Side j%2 of Cell � j/2�.
Δleakage�i/2� is the leakage change of Cell �i/2� with respect to
when it has no neighbors.
Calculation of leakage when two cells abut consists of the following
two parts:
1. Linewidth calculation. We use the Bossung plot in Figure 1,
which captures the systematic through-pitch linewidth varia-
tions, to calculate linewidth from pitch and defocus. Device
pitches can computed from device to boundary spacings for
all devices in the two cells as described in [14]. Defocus de-
pends on the process conditions and is difficult to predict; so
we assume it to be a random variable with nominal distribution
(μ= 0nm,σ = 33.3nm). We use the calculated pitch value and
the defocus distribution to find the distribution of linewidth.
Lithography simulation can alternatively be used to generate a
more accurate linewidth distribution albeit at a higher runtime.

2. Cell leakage calculation. To calculate the device leakage distri-
bution from the linewidth distribution, we use a leakage lookup
table which is characterized with SPICE for a variety of gate
width and gate length (linewidth). We then calculate the ex-
pected value of device leakages for all devices in the two cells
and use them to calculate cell leakage. Our cell leakage calcu-
lation method is similar to Rao et al. [18]. Using logic propa-
gation in the cell, we find the fraction of states in which each
device leaks and call it the off-fraction. Leakage of a cell is
the sum of leakages of its devices weighted by their respective
off-fractions. As described in [18] this methodology is easily
extensible to more accurate state-dependent leakage calcula-
tion. Given a set of linewidths for all devices in a cell, our
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leakage calculation methodology has an error under 2% (as
also reported by Rao et al.) with respect to SPICE which may
also be used for greater accuracy.

Our matrix construction methodology is fast and feasible for use
for large libraries. We note that such a matrix needs to be created
for the corner for which leakage analysis and optimization is desired.
In our studies, we use the typical-leakage corner which is typical
process, 1.1v, and 85oC (PVT).
The matrix abstracts the pitch impact on leakage that arises due to
through-pitch ACLV for use in optimization. Such a matrix may be
created by the process engineers and library designers, and can be
used by circuit designers to evaluate and optimize leakage.

4. LEAKAGE OPTIMIZATION
Given the impact of placement on leakage, we now present a de-
tailed placement technique that minimizes leakage. A few factors
make certain cells more favorable for optimization. For example,
low-Vth cells are more favorable than standard-Vth and high-Vth
because they have larger (absolute) leakage reductions; similarly,
standard-Vth are more favorable than high-Vth. Cells that have smaller
number of devices such as small- to moderately-sized inverters, buffers,
NAND’s, and NOR’s are the most affected by proximity and are more
favorable. Our optimizer maximizes leakage savings for such cells.
We dissect the design into small windows and run the optimization
for each window. Such a method is effective in our case because of
the localized nature of proximity which does not hold, for example,
with total wirelength objectives. The optimization relies on getting a
rich enough set of boundary-to-device spacings and whitespace to re-
duce leakage. Even a small window containing 15 cells offers enough
scope for optimization. Smaller windows restrict the movement of
cells within their boundaries and hence the wirelength increase is
bounded. Moreover, smaller windows are faster to optimize and dif-
ferent windows may be simultaneously and independently optimized
on multiple CPUs. Prior to the optimization, all fillers are removed
and are inserted back after optimization in the whitespace.
To simplify the explanation of our optimization, we first assume
that there is only one row in the window and that there is no space for
fillers in the row. Under these assumptions, the problem is to identify
an ordering of the cells, along with the cells that must be flipped
to yield the maximum leakage reduction (i.e., minimize the sum of
Δleakage for all cells in the window). We transform this problem to
the well-known traveling salesman problem (TSP) [15] as follows.

• We create two vertices for every cell – one for the left side and
another for the right side.

• Edge weights or distances between vertices denote the leak-
age reduction when the sides represented by the vertices touch.
These weights are obtained from the Δleakage matrix L.

• Weights of edges between vertices that denote sides of the
same cell are set to −∞ since the two vertices must always
occur consecutively in the TSP tour.
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We can now use a standard symmetric TSP heuristic capable of
handling large negative weights to get a TSP tour. The order of ver-
tices in the tour gives the order in which cells must be arranged in the
row and their orientations for maximum leakage reduction. We solve
the TSP with the multifragment greedy algorithm [3] that considers
edges in order of their weight to be inserted into the tour.

Space Allocation for Fillers. We now lift the assumption that no
space is available for filler cells. So the optimization must addition-
ally space the cells and insert fillers to minimize leakage. Towards
this, we calculate the leakage reduction of all cells in the library when
a filler cell of the minimum width (FILLX1) touches an edge of the
cell. The matrix L is expanded by one row and one column for the
FILLX1. We assume that proximity effects do not surpass the filler
of minimum width and therefore the leakage of cell does not depend
on the size of the filler. This assumption is valid when fillers con-
tain dummy polys as well as when they do not. When fillers contain
polys, the separation between a boundary poly and the boundary is
identical for all fillers. This is generally true because fillers other
than the smallest filler are essentially abutting copies of the smallest
filler. So the pitch of a neighboring cell is same irrespective of the
filler size. When fillers do not contain polys, the width of the small-
est filler is typically sufficient to keep the devices of the next cell
outside the optical radius. Larger fillers push the device further but
devices beyond the optical radius have negligible proximity impact
so all fillers have nearly identical pitch impact.
Our graph for TSP requires the following changes:

• We add vertices corresponding to FILLX1’s; the number of
added vertices is equal to the number of FILLX1’s insertable
in the row.

• The weight of the edges between fillers is set to zero and the
weight of the edges between fillers and cells are obtained from
the Δleakage matrix L.

For example, if space is available for 20 FILLX1’s, we add 20 new
vertices to the graph, set the weight of the edges between them to
zero, and set the weights of the edges between a vertex representing
an side of a cell and all vertices representing fillers from the matrix L
to reflect the leakage reduction when the cell’s side touches a filler.
As before, we solve a symmetric TSPwith the multifragment greedy

heuristic. If two fillers are consecutive in the tour, two FILLX1’s
must be placed next to each other. Two abutting FILLX1’s are iden-
tical to a FILLX2; so we replace multiple consecutive fillers with
larger fillers. We evaluate the quality of our TSP-based single-row
placement solution against an optimal solution found by enumerating
all possible single-row placement solutions for two arbitrary cells.
Table 1 compares the leakage results normalized against the maxi-
mum leakage (which is also found by enumeration). Our approach
is consistently able to attain near-optimal solutions with significantly
less runtime for other configurations as well.

Multiple Rows. We now eliminate the assumption that there is only
one row in the window. We exhaustively partition the set of cells

Table 1: Leakage comparison of TSP-based placement against opti-
mal found by enumerating all placements. Leakage normalized against
maximum leakage. Cell set 1 is {INVX1, INVX1, INVX1, NAND2X1,
NAND2X1, AOI22X1, AOI22X1} and cell set 2 is {INVX2, INVX2,
NOR2X0, NOR2X0, NOR2X0, MUX2X0, MUX2X0, MUX2X0}
Cell Set, Max. Optimal TSP-based
#Fillers Leakage Leakage CPU (s) Leakage CPU (s)

1, 0 1 0.928 0.22 0.932 0.030
1, 5 1 0.804 270.18 0.806 0.034
2, 0 1 0.976 1.08 0.976 0.033
2, 3 1 0.922 221.09 0.922 0.034

into the rows and optimize these partitions using the single-row op-
timization. The number of partitions can be computed as a sum of
Stirling numbers of the second kind and is nearly exponential with
the number of cells in the window. However, in reality a large num-
ber of these partitions can be pruned due to row capacity constraints
and because of multiple instances of the same cell master (which are
alike) in the window. Further, best single-row results for some rows
can be cached during the partitioning. With these runtime improve-
ments, our approach handles up to two rows with ease, and three rows
with feasible runtime assuming 20 cells in the window.

Minimizing Timing Impact. The perturbation of detailed place-
ment from the original placement results in wirelength change, which
can impact wire parasitics and consequently timing. Even though our
localized placement perturbations do not significantly affect timing,
small changes in the timing of critical paths can affect the minimum
clock cycle time. To minimize the timing change of critical paths, we
fix the cells and nets in the critical paths: fixed cells are not moved
during optimization and fixed nets are not changed during engineer-
ing change order (ECO) routing that is performed after optimization.
Since the nets in the critical path are fixed, all cells connected to
these nets should also be marked as fixed and not moved during opti-
mization. We note that the delay of such nets can marginally change
due to the coupling capacitance with neighboring nets, the routing
for which may change. We also fix all flip-flops, clock buffers, and
clock nets to avoid any impact on the clock tree.
During optimization, for each cell marked as fixed, we break the
row in which the cell is placed into two parts: left of the cell and right
of the cell. The two parts are optimized individually; this ensures that
the fixed cells do not move and no other cells overlap with the fixed
cells. Although we do not move fixed cells during optimization, our
approach considers their location during the placement of other cells.
The overall algorithm of our optimization is presented in Figure 5.
Given an original placement, list of critical cells, Δleakage matrix L,
and a window size, the optimization outputs a final placement with
lower leakage.

Minimizing Wirelength Increase. Wirelength increase is undesir-
able because it can cause congestion and degrade routability. Also,
wires act as capacitive elements and longer wires can increase dy-
namic power. We expect a smaller window size to cause smaller
wirelength increase because the movement of cells during optimiza-
tion is restricted to within the windows. To reduce wirelength we run
the optimization in phases with each phase successively increasing
the window size until a final window size, which is a user input, is
attained. The result of a phase is only accepted if it improves upon
the result of the previous phase by more than a threshold (set to zero
in our experiments). This policy has the effect that cells are moved
farther only if the leakage reduction is greater than the threshold.

5. EXPERIMENTAL STUDY
In this section, we discuss the details of our experimental setup for
optimization followed by detailed routing, and present results.

5.1 Experimental Setup
A high-level overview of our experimental setup is show in Fig-
ure 6. For setting up optimization flow, we first perform synthesis
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Input: Placed design, timing critical cells, δleakage matrix L (of Figure 1)
that denotes leakage change when any two cells touch, window size
Output: New placement with lower leakage and small/no delay impact

1 D←{critical cells} ∪ {cells connected to output nets of critical cells}
2 forall windows w in the design
2.1 C←{All cells in w}
2.2 PartitionAndPlace(C −D, w)
PartitionAndPlace(C, w)
1 r = firstRowOf(w)
2 bestCost = ∞
3 forall S ∈ Subsets(C)
3.1 if (rowCapacity(r) < ∑c∈Swidth(c)) // row capacity not exceeded
3.1.1 <tour, Costr> = TSPPlace(S, r) // Place cells S in row r
3.1.2 Costw−r = PartitionAndPlace(C −S, w− r) // Place remaining

cells in remaining rows
3.1.3 if (bestCost >Costr +Costw−r )
3.1.3.1 bestCost = Costr +Costw−r
3.1.3.2 bestTour = tour
4 save(r, bestTour)
5 return bestCost
TSPPlace(C, r)
1 F = width(r) - ∑c∈Cwidth(c) // Number of fillers
2 G = (V , E); V = C ∪F1 {“FILL”}; Construct E from L // Insert cells in C

and F fillers into V
3 Solve TSP on G
4 return <tour from TSP, cost of tour>

Figure 5: Detailed placement flow for leakage optimization.

Place &
Route

Extraction &
Timing Analysis

Fixed cells
/nets

Leakage
 Matrix Optimizer ECO Route

Compare timing/ wirelength

Figure 6: Our experimental flow.

of testcases using multiple threshold voltage libraries (high-Vth and
normal-Vth) in 65nm technology. We then perform placement, de-
tailed routing followed by extraction and timing analysis. From the
timing analysis result, we identify all timing critical cells for feed-
ing the optimizer. We also create a set of nets corresponding to the
critical cells that should not be touched during ECO routing of the
optimized detailed placement.
The optimizer reads in the placed and routed design, fixed cells

list, leakage matrix L and performs placement optimization. The
optimizer outputs a legal layout (in which the cell orientations are
correct and no cell overlaps with any other cell). We then perform
ECO routing on the optimized result along with fixed net objective
and then perform parasitic extraction and timing analysis.
The most important steps in our experimental setup are leakage

matrix construction and interfacing the optimizer to the router. These
steps are discussed in greater detail in the following.

Leakage Matrix Construction. Bossung LUT provides linewidth
of devices in different layout contexts. To construct the Bossung
LUT, we take as input a standard cell layout in 65nm technology
and compute poly pitch for all the devices in the layout. This is per-
formed by analysis of neighborhood of each device in the layout. We
use a device layout analysis tool (built on the OpenAccess API [1])
to search the neighborhood of every device and compute the spacing
to other devices. To obtain the printed linewidths for devices at dif-
ferent pitches, we take as input their litho-simulated device contours
(generated after application of scattering bars and OPC) at specific
defocus values. We interpolate between defocus values using a 2nd-
degree polynomial [16]. We use the procedure outlined in the steps
above to obtain linewidths of devices in different cell layout contexts
for construction of the leakage matrix. We assume a normal distribu-
tion for defocus with a mean of 0nm and σ of 33.3nm.

Table 2: Testcases used in experimental validation.
Circuit #cells Max.

Speed
(MHz)

Leakage
(mW)

Dynamic
(mW)

Wirelength
(mm)

AES (80% util.) 18665 413 0.6211 0.4002 330.87
AES (85% util.) 18726 419 0.6323 0.4127 320.65

DES 79419 417 6.3083 3.6754 1146.14

Optimizer – ECO Route Interface. To optimize a given detailed
placement for minimum leakage, we start from an existing placed
and detailed routed design. We perform timing analysis on the design
to identify all timing critical paths. We then choose all cells from
critical paths that have a slack value ranging from the minimum value
to 5% of the clock cycle time and mark them as fixed. Since the
nets connected to these fixed cells also cannot move, we create a
dont_touch list of nets connected to all fixed cells. All route segments
corresponding to fixed nets are not moved during ECO routing. To
prevent disruptions to the routing of these nets, we update the existing
fixed cells list to include all cells connected to fixed nets.
We use Cadence RTL Compiler (v5.1) for multi-Vth synthesis of
our testcases. For our experiments, we use the 50 most-frequently
used cells from high-Vth and nominal-Vth libraries. To run place-
ment, clock tree synthesis, routing and timing analysis, we use Ca-
dence SOC Encounter (v5.2). The details of our testcases are shown
in Figure 2. The standard cell row utilization for our testcases: aes
and des (available from opencores.org [2]) are 80% and 73% respec-
tively. To demonstrate leakage reduction at higher utilizations, we
implemented aes at 85% row utilization. Row utilizations > 80%
are not common because of routing congestion concerns. We built
our optimizer on top of OpenAccess API (v2.2.4).
The inputs to our optimizer are routed design and a list of fixed
cells. The output from the optimizer is the design with modified
placement with “dangling” wires for some cells (since locations of
cells are perturbed during optimization). We feed the output from
the optimizer to SOC Encounter and invoke the router in ECO mode

along with dont_touch net router directives3. After ECO routing, we
perform parasitic extraction and timing analysis to evaluate change
in wirelength and timing. We use the worst-case corner for timing
analysis in our flow.

5.2 Results
We evaluate the proposed approach for leakage reduction and change
in wirelength, delay and dynamic power. Table 3 presents our results
for the two testcases and multiple window sizes. The leakage reduc-
tion upperbound indicates the maximum leakage savings possible if
the lowest-leakage context for all cells could be created by choos-
ing their neighbors. The upperbound may not be attainable because
only the cells available in the window can be used as neighbors and
because of limited availability of free space. The leakage reduction,
wirelength change, and delay change are with respect to the original
placed and routed design. Wirelength is the actual routed wire length
after detailed routing; in all cases detailed routing finished without
any violations.
From the results, window sizes of 6μ× 2 rows and 4μ×3 rows of-
fer good solution quality with feasible runtime. We observe that the
affect of the optimization on maximum frequency is marginal. For
the testcases AES and DES, 10.97% and 23.57% cells were marked
to be fixed during optimization. Without marking these cells as fixed,
the maximum frequency dropped by 5.62% for AES while the leak-
age reduction only increased from 6.41% to 7.45%. While the af-
fect of the optimization on wirelength is not negligible, without our
wirelength reduction policies the wirelength increase was 12.33% for
AES in comparison to 8.14% with the policies. The leakage reduc-
tion is smaller at higher utilization because of lower availability of
whitespace (which is favorable to leakage reduction without experi-

3To direct SOC Encounter to honor existing routing of fixed nets, we
use “setAttribute -net < NET_NAME > -skip_routing true” com-
mand prior to invoking ECO route
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Table 3: Assessment of impact on leakage, wirelength, and delay with the proposed technique. The row annotated with † symbol corresponds to results
without the use of delay and wirelength reduction policies.

Circuit Leakage Final Proposed Technique
Reduction Window Leakage Wirelength Max. Frequency Dynamic Power Runtime
Upperbound Size Reduction (%) Impact (%) Impact (%) Impact (%) (s)

AES 8.95% 4μ×1 row 2.91 +0.72 +0.33 +0.13 5.18
6μ×1 row 4.16 +2.39 -0.41 +0.31 8.72

80% 8μ×1 row 5.08 +4.94 -1.18 +0.45 14.64
utilization 4μ×2 rows 5.21 +3.86 +0.50 +0.36 37.90

6μ×2 rows 6.41 +8.14 -0.49 +0.61 301.35
2μ×3 rows 4.02 +2.08 +0.46 +0.25 23.83
4μ×3 rows 6.44 +7.12 -0.41 +0.67 1964.09

6μ×2 rows† 7.45† +12.33† -5.62† +0.92† 284.34†

AES 9.50% 4μ×1 row 1.81 +0.93 +0.21 +0.12 5.23
6μ×1 row 2.77 +2.65 -0.33 +0.22 9.57

85% 8μ×1 row 3.57 +5.08 -0.91 0.41 18.01
utilization 4μ×2 rows 3.64 +4.03 +0.63 +0.33 50.99

6μ×2 rows 4.82 +8.15 -0.52 0.60 533.19
2μ×3 rows 2.56 +2.51 -0.11 0.21 24.13
4μ×3 rows 4.76 +7.22 -0.56 0.51 2983.56

DES 8.30% 4μ×1 row 4.85 +3.53 -0.62 0.05 15.00
6μ×1 row 6.04 +5.83 -0.87 0.06 22.25

73% 8μ×1 row 6.48 +7.49 -0.58 0.07 28.64
utilization 4μ×2 rows 6.28 +6.06 -0.37 0.06 51.32

6μ×2 rows 6.76 +8.42 -0.50 0.07 180.98
2μ×3 rows 5.70 +5.37 -0.54 0.05 51.71
4μ×3 rows 6.79 +7.76 -0.62 0.07 1764.35

mental setup) and because of fewer opportunities to move cells across
rows. The wirelength increase did not affect dynamic power signif-
icantly because wire capacitance is a small fraction of total capaci-
tance. Furthermore, wires do not contribute to short-circuit power.
We expect the dynamic power impact to be even smaller when exten-
sive clock gating is used.
We consider the leakage reduction results encouraging. Unfortu-

nately, the leakage reduction upperbound is small in our experiments.
This is because the placement tool used by us inserts fillers next to
most cells in the design and fillers, which have dummy polys that in-
crease pitch, are leakage favorable in our process. We expect much
larger leakage reduction if: (1) fillers do not contain dummy polys
such as in 90nm technologies, (2) process has an opposite linewidth
change as ours, i.e., dense lines print narrower, or (3) placer does not
abut fillers to most cells in the design.

6. CONCLUSIONS
Through-pitch ACLV causes significant variation in leakage and

consequently the leakage of cell is substantially affected by the neigh-
bors of the cell. Fortunately, these variations have a large systematic
component and the leakage of a cell can be predicted more accu-
rately once its neighbors are known. We presented a methodology to
construct a matrix that captures the leakage of a cell under various
placement contexts.
We have proposed a detailed placement approach that arranges

cells in standard cell rows and redistributes whitespaces such that
the leakage of the cells is minimized. In doing so, the optimization
attempts to minimize the leakage for the cells that offer the most
leakage savings such as lower Vth cells and smaller cells since their
leakage is most affected by context. We fix the timing critical cells
and their interconnects to minimize timing impact and run the op-
timization over progressively increasing window sizes to minimize
wirelength increase. The optimization considers all feasible ways to
distribute the cells in the available rows and a TSP-based optimizer
places the cells in each row. We have assessed the TSP-based opti-
mizer to be of near-optimal quality and because all feasible ways to
distribute the cells in rows are considered, our final placement in the
window is near-optimal.
We evaluated our technique for three testcases with industry tools

and process information. Our results indicate leakage reduction to be
in the range of 5%-7% for 7%-8%wirelength increase, and negligible
delay and dynamic power impact. We hypothesize that in technolo-
gies in which fillers do not contain dummy polys or in which the pro-

cess response to pitch variations is opposite to ours, higher leakage
reductions would be attained. Our ongoing work is in two directions:
(1) evaluation of the technique for other technologies, and (2) use of
detailed placement to improve timing robustness.
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