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Abstract. We discuss methods for improving per3Pormance of 
the Hopfield-Tank quadratic minimization approach to TSP. 
A wide range of geometric (e.g., convex-hull based), topologi- 
cal and cutting-plane heuristics are investigated. We also in- 
vestigate performance on non-Euclidean and non-metrizable 
TSP instances using a new concept of embedding dimension. 
Implications concerning the nature of the Hopjeld energy 
sulface are discussed. We conclude that the Hopfield-Tank 
formulation is not as robust as might be hoped; however, it 
remains well-suited to many important applications. 

1. Introduction. 
The oft-cited papers of Hopfield and Tank [111[231 are 

among the earliest to report successful application of neuro- 
computing to NP-complete [6] optimization problems. In par- 
ticular, their work on the traveling salesman problem (TSP) 
has generated much interest due to the elegance of their for- 
mulation and the status of TSP as a canonical "intractable" 
problem. 

The results in [ 111 have drawn attention for their irrepro- 
ducibility; [25] and others have demonstrated that the 
Hopfield-Tank (H-T) TSP algorithm will often fail to produce 
a valid tour and is highly sensitive to parametrization and ini- 
tial conditions. The obvious problem is that the terms of the 
H-T energy function separately attempt to enforce structure 
(i.e., a valid tour is exactly equivalent to a permutation matrix 
in the output) and cost minimization (i.e.. the tour length 
should be minimum). When structure is enforced, output 
tours are of poorer quality; when we attempt to minimize 
cost, invalid outputs result. A host of papers, notably 
[41[91[191[21], are essentially devoted to scaling heuristics 
which are designed to make the H-T method yield correct 
tours. 

It may be asked whether "fixing" the Hopfield-Tank 
approach to TSP is worthwhile. The fact that the network 

must scale as O ( n 2 )  in problem size does not bode well for 
practical implementation. However, folklore has it that the 
Hopfield network will perform well on non-Euclidean or even 
non-metric (i.e., failing to satisfy the triangle inequality) TSP 
incidence matrices, while alternatives such as the elastic net 
[5] and the adaptive ring and its variants [1][12], despite linear 
scaling with problem size, are not as robust for such problems. 
This is the intuitive consequence of the "physical" and 
geometric heritage of the latter methods: after all, if we can- 
not even embed our cities in the plane, then seemingly there is 
little sense in using, e.g., a planar elastic net. It is well-known 
that the vast majority of practical TSP instances are non- 
planar or non-Euclidean, and so the model's purported robust- 
ness has been a motivating force behind continuing Hopfield- 
Tank TSP research. At the same time, the H-T TSP approach 
has been treated with kid gloves: it has not been judged by the 
same standards as other TSP heuristics. Among the refer- 
ences listed below are several which report only valid TSP 
solutions; others speak of heuristic "percentiles" in assessing 
solution quality (the ability to actually calculate TSP percen- 
tiles would imply the resolution of several open questions in 
combinatorial geometry and optimization). 

With this in mind, the goal of our work is to explore the 
strengths and limitations of the Hopfield-Tank formulation, 
drawing on the rapidly-growing body of Hopfield TSP litera- 
ture and additional intuition derived from the operations 
research, discrete optimization, and computer science theory 
literatures. (This is particularly appropriate as the Hopfield- 
Tank formulation is essentially an instance of classical con- 
strained quadratic minimization.) We experiment with a 
number of heuristic H-T variants which stem from computa- 
tional geometry (convex hull, clustering analysis), combina- 
torial geometry and discrete optimization (forbidden edge, cut- 
ting planes), etc. In contrast to virtually all previous work 
except [9][25], we evaluate performance not by the quality of 
an isolated "best" solution, but rather by the incidence of valid 
tours, the relationship between the average tourlength and the 
expected random tourlength, and so forth. 
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BACKGROUND 

An instance of the traveling salesman problem is given by 
the following: 

Definition: A TSP instance for n cities consists of a sym- 
metric n by n matrix A with non-negative real off-diagonal 
entries aij, where aij denotes the distance between the i t h  and 
j t h  cities. 

The original formulation of Hopfield and Tank [ll] uses n2 
output nodes in the form of a square matrix, where rows 
correspond to the individual cities and columns correspond to 
position in the tour. Thus, a valid tour will be in the form of 
a permutation matrix, i.e., exactly one city is in a given tour 
position, and every city is visited. 

The Hopfield network finds a local minimum of the energy 
functional 

The A term constrains each row to have one nonzero element: 
the B term acts similarly to constrain each column: the C term 
is a global scaling factor which ensures that exactly n nodes 
are active: and the D term represents tour distance. Thus, the 
final term is the only one which reflects cost: the remaining 
three terms enforce structure in the solution. It is sometimes 
useful to write down the implicit connection matrix, which is 
defined by 

Txi,yj  = - A  6xy ( l  - 6ij) - B Si j (1  - S,) (2) 

- C  - D dxY(6j,i+l+ 6j . i -1)  

where 6 ,  denotes Kronecker delta. 
Many researchers have noticed that with the parameters 

values suggested in [ll],  tour quality is good when a valid 
tour is found, but unfortunately only a small percentage of 
outputs are valid tours. Our own investigations with these 
parameters indicate that approximately 85 percent of the 
attempts result in invalid output for random 10-city instances 
in the Euclidean square. A method which fails almost all the 
time, even when given relatively trivial tasks, will certainly 
never be very viable, and therefore much effort has been spent 
to increase the incidence of valid H-T tours without sacrificing 
tour quality. 

Various groups have reported methods for forcing the 
Hopfield network to yield a valid permutation matrix output. 

Tagliarini and Page [21][22] describe a normalization 
which enforces "k out of B'' constraints in the output. For 
example, a valid TSP solution must satisfy a "1 out of n" con- 
straint in each row and column of the output. Rewriting (1) as 

1 
2 . .  

E & -  -E Tij vi vj - Vi Zi 
i Z J  

they show the following: 

Fact: Given a subset of S neurons in the Hopfield network, if 
the Tij = -M for all i , j  E S, M an arbitrary positive real, then 
setting l i  = M k  - 1 will guarantee that exactly k neurons in S 
will be active at equilibrium. 0 

This allows normalization of A, B ,  and C in (1) so that only 
the value of D changes ([24] achieves a similar reduction in 
parameterization). Tagliarini and Hanrahan [20] report that 
the incidence of valid tours does not vary strictly inversely 
with D, as might be expected. This implies an unexplained 
sensitivity to initial conditions. Furthermore, in order to 
completely enforce valid tours, they conclude empirically that 
D must scale sublinearly with problem size. In fact, Hegde et 
al. [9] show, again empirically, that the ratio DIC vanishes 
with increasing n if we wish to guarantee valid tours. Our 
own experiments c o n h  these observations. Since D = O  
will yield random tours as output, it seems that there is little 
hope that Hopfield TSP can be made to yield good tours on 
every input. 

Van den Bout and Miller [24] propose a battery of heuris- 
tic fixes to the Hopfield-Tank TSP formulation; they argue 
that the revised energy function 

with B = 4 fl will guarantee that no more than one city can 
occupy any tour position. In addition, [24] proposes heuristic 
seeding of the tour, e.g., by finding a pair of close neighbors 
and assuming that they will be adjacent in the tour. This 
heuristic is a member of the class of symmetry-breaking 
heuristics discussed below. Finally, the authors propose 
renormalizations which essentially eliminate any asymmetry 
in the actual distribution of city locations. This is a subset of 
the class of weight-skewing techniques discussed below. 

Brandt et al. [3] give an alternative energy function 
wherein the first three terms of (1) are modified to 

Again, this ostensibly enforces permutation matrix structure 
for the output. 

In [4], Clement e t  al. propose yet another scaling method 
which uses a heuristic estimate of tourlength to normalize 
parameters. Their claim is that the transformation 

D' = D I hypotenuse 

will allow valid solutions to result, where hypotenuse denotes 
the length of the diagonal of the bounding box of city loca- 
tions. 
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equivalence of norms that such a constant zp must exist for 
any Lp norm (the Euclidean metric corresponds to Lz) .  Held 
and Karp use a one-tree approach which for random distribu- 
tions yields an asymptotically good lower bound on Euclidean 
tour length of 0.708-@X [15]. Upper bounds are provided 
by any TSP heuristic, e.g., Kernighan-Lin k-opts or the 
nearest-neighbor algorithm. Since asymptotics may not be 
close for such small values as n = 10, we evaluate the heuristic 
solution by using an average of Held-Karp and Kemighan-Lin 
results over a large number of instances. This procedure 
yields a value T* that is almost certainly very close to the 
expected length of an optimal tour. A perfectly reasonable 
alternative is to use the expected value of a random tour as a 
benchmark by the theory of matching lower bounds for TSP 
tourlength, this value grows at the same rate as T* and has the 
added advantage of being trivial to calculate. 

Further observations, conventions and assumptions 
include the following: 

0 The constants A and B are, symmetric in the formulation, 
so we force them to be equal (we arbitrarily set 
A = B = 500.0; scalings of C and D are thus the only ones 
allowed. It can be seen that for some choices of C, 
invalid tours will result even when D =O. For each 
Hopfield-Tank variant, e found a heuristic operating 
point as follows: with A = B = 500 and D = 0, find the 
integer value of C for which a maximal percentage of 
valid tours results (or take the median of all such values). 
Then, the values of A, B and C define the operating point 
of the algorithm, and we parametrize results by the value 
of D. 
Each data point gives average results for a set of IO00 
randomly generated planar Euclidean TSP instances, con- 
sisting of 10 or 20 cities with locations uniformly distri- 
buted in the unit square. In the figures below, we plot 
percentage of valid tours and a normalized ratio of aver- 
age tourlength and expected random tourlength (the latter 
number differs by a co;stant factor from the ratio of aver- 
age tourlength and T ). The normalizing factor is 6, 
i.e., the rate of growth of expected tourlength. 
There are two basic ways of "skewing" the input: (i) 
modifications of the TSP distance matrix which are then 
propagated to the TQ matrix, and (ii) directly modifying 
the Tij values (note that 2n-fold degeneracy exists for this 
modification). We observe that the latter technique is 
much more successful in general; below we speculate as 
to why this is so. There is a sharp drop in solution quality 
if the magnitude of change in the Tij entries exceeds C .  
Even when A, B and C are held constant, D does not 
necessarily vary with solution quality (average tour- 
length) or inversely with the percentage of valid tours. 
These relationships seem to be highly complicated (see 
Figure 1) and are further evidence of instability. 

0 

0 

0 

Finally, Szu [19] adopts a rather different approach from 
any of the above work. He "repudiates" the work of Wilson 
and Pawley [W] with a Hopfield-Tank variant featuring binary 
output neurons and highly non-standard values for, e.g., global 
inhibition. However, the results presented seem to indicate 
only 9.1% incidence of valid IO-city tours; furthermore, the 
average successful tourlength in the data shown is much worse 
than can be achieved with the H-T parameters in [I 13. 

Overall, it may be argued that the pre-processing analysis 
in, e.g., [24], requires a large amount of non-neural computa- 
tion on a conventional processor. The associated CPU expen- 
diture can very easily exceed the cost of a solution by heuris- 
tics such as nearest-neighbor or minimum spanning tree. 
This is obviously an important objection. However, as argued 
in [14], analog solutions to TSP are potentially useful for 
several reasons. In particular, they can provide fast heuristic 
initial solutions for hybrid neural-serial algorithms; they also 
give immediate lower bounds for problem classes such as 
matching and assignment. Furthermore, they can have small 
constant-factor error bounds, unlike, e.g., nearest-neighbor 
methods. Thus, we move on to discuss several classes of 
Hopfield TSP variants. 

HOPFIELD TSP HEURISTICS 

Initial experiments led to a number of straightforward 
assumptions and observations which constrained the scope of 
our work. We originally examined Hopfield-Tank TSP results 
for groups of IO00 randomly generated Euclidean instances of 
10 and 20 cities with locations uniformly distributed in the 
unit square. 

We noted many symptoms of numerical instability and 
sensitivity to initial conditions. For example, the final tour is 
highly dependent on the vector used for initial perturbation, or 
"symmetry breaking", of the network. We do not believe that 
this is due to the 2n-fold tour degeneracy; rather, the initial 
state seems to lock us into a particular region of configuration 
space. Heuristic fixes to this problem have many side effects, 
e.g., reducing the magnitude of the initial perturbation often 
leads to better-quality tours, but the number of false conver- 
gences increases. 

Early experiments also allowed us to search for a useful 
performance metric. It was clear that the incidence of valid 
tours should be a part of any measure of success. Also, it was 
not necessary to evaluate 181,440 tours in order to find 
optimum IO-city tourlengths; known asymptotics and the law 
of large numbers suffice. If we denote the length of the 
optimal tour by Topt. it is well known that for uniform distri- 
butions of N points in a Euclidean rectangle of area A, the ratio 

Monte 

Carlo simulations and annealing results by Kirkpatrick and 
others give the estimate 22 =0.749 [2][15]. We can show by 

- + 22,22 a constant, as N becomes large [15]. rn 
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The following classes of heuristic variants were 
evaluated. 

Nearest-Neighbor Skewing. We can see empirically 
that in an optimum TSP tour, a given city is usually connected 
to one of its close neighbors. It is therefore natural to use a 
sparse incidence matrix, where only elements which are 
among the k lowest in their respective rows and columns are 
retained. Hopfield and Tank in their original paper proposed 
exactly this heuristic enhancement with k = 4. Heuristic NN 1 
gives a smooth implementation of Ti, skewing, i.e., a pair of 
nearby cities will have greater encouragement to be adjacent 
in the tour than would two cities which are further apart. NN2 
perturbs all Ti, values by a constant. 

Cutting-Plane Skewing. The dual of nearest-neighbor 
skewing consists of forbidding those edges that are unlikely to 
occur in the optimal tour. For example, it is improbable that a 
city will be connected to its most distant neighbor, and so we 
can arbitrarily inhibit the formation of such a link. In heuris- 
tic CP 1 ,  we simply inhibit all links corresponding to the four 
most expensive adjacencies of each city. Heuristic C P 2  is 
considerably more sophisticated, and uses what are essentially 
cutting-plane techniques [ 131 to determine forbidden edges. 
Both CP 1 and CP2 are "discontinuous"; there is no variation 
of the incremental inhibition with distance or other parame- 
ters. 

Convex Hull Analysis. In tracking the convergence of 
the H-T output nodes, one may observe that the first n - 1 
cities are usually fixed in a sensible manner; the last city is 
then interpolated into the tour at the remaining feasible posi- 
tion. An analysis of lo00 runs yielded 998 cases where the 
last city to converge (call it C) was part of the convex hull of 
tour locations. Furthermore, we have found that C is almost 
always either the city furthest from the remaining cities (i.e., 
maximal sum of distances to two nearest neighbors) or the one 
for which the remaining cities subtended the greatest angle 
(because it is an extreme point of the set of locations, there is a 
line 1 passing through C such that the remaining cities lie on 
one side of I ) .  Heuristic CH 1 reduces the inhibitions for Ti, 
entries corresponding to the greatest subtended angle of any 
extreme point; heuristic CH 2 reduces the inhibitions for 
entries corresponding to the nearest neighbors of the most iso- 
lated city. Note that CH2 is analogous to the renormalization 
technique proposed in [24].  

Symmetry Breaking. Several researchers claim that the 
Hopfield-Tank TSP formulation is hampered by a high 
"degeneracy" of (good) solutions. Under such a paradigm, the 
network fails because it cannot decide on any one of several 
equivalent good tours; partially satisfying each of these good 
solutions results in an invalid output. Though there is no real 
evidence for the notion of such symmetric local minima, we 
tried two heuristics: (i) SB 1 simply forces City 1 to be in Ps i -  
tion 1 ,  and (ii) SB2 forces city 1 to be in position 1 and its 
nearest neighbor to be in position 2. 

The eight heuristics were all (with the possible exception 
of CH 1 )  relatively plausible at the start of experimentation; 
they were all motivated by accepted results in the optimization 
and neural network literatures. But, as seen in the results 
below, some of them significantly worsen the performance of 
H-T TSP. There is little in the literature to explain such a 
phenomenon, and so we find it necessary to introduce a new 
characterization of "difficult" input TSP matrices for the 
Hopfield network. 

Non-A TSP INSTANCES and EMBEDDING DIMENSION 

As noted above, the bulk of neural network TSP literature 
deals with planar Euclidean TSP instances, and some heuris- 
tics are dependent on this aspect of the input data. However, 
suppose we have an instance where 

d(a,c) > d(a,b) + d(b,c) 

for some choice of cities a, b and c. We say that such an 
input is non-metrizable, and we note that such inputs can be 
created from Euclidean instances by executing heuristics 
listed above. Non-metrizable instances comprise the vast 
majority of those encountered in real-world situations; in such 
cases, geometric concepts such as convex hull or area maximi- 
zation become nearly meaningless. Sometimes, though, a 
middle ground exists. 

Consider the following example. Imagine that travel 
costs are 100 dollars from A to B ,  200 dollars from B to C, and 
800 dollars from A to C. Clearly the triangle inequality does 
not hold, but this does not mean that al l  is lost: in real life, a 
poor salesman who must travel from A to C will take the 
detour through B even if he has already visited B. 

Thus in this situation, as with certain practical applica- 
tions, one can smooth the TSP incidence matrix, e.g., by 
applying Floyd's shortest-path ("triple operation") algorithm: 

fori  = l ,n  { 
fo r i  = l , n  { 

fork = 1,n { 
d( i , j )  = max [ d ( i , j )  , d( i , k )  + d(k, j ) l  

1 
1 

1 

The resulting distance matrix will satisfy the mangle inequal- 
ity. For TSP instances that satisfy the triangle inequality (i.e., 
the class of A-TSP instances, in the terminology of [6]), we 
have investigated a new hierarchy defined by the embedding 
dimension. (These results are the subject of current study.) 
We digress briefly to characterize embedding dimension. 

Consider a symmetric n by n TSP distance matrix A. 
There are 

n (n - 1) $1 = 2 
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inter-city distances Aij that are of interest. If each city's 
location in Rk is given by a k-tuple of reals, then we have kn 
unknowns. (Alternatively, there are k(n - 1) unknowns, if 
we assume one city to be at the origin.) Because there are 
only - equations, we have an underspecified system 

when the dimension k is greater than nl2, and thus a solution 
(i.e.. an embedding in Rk) exists. 

[A simple inductive argument can also be used. Con- 
sider the distance a12: it can be realized by placing the fist 
and second cities a12 units apart on the line. Now, we can 
solve for the location of city 3 using distances a13 and ~ 2 3 ,  
and so forth. In general, the first k cities will define a hyper- 
plane in Rk, and the (k + 1)" city can therefore be embedded 
in Rk. This is obviously a poorer bound on k than that 
derived above.] 

It is NP-hard to find the minimum embedding dimension 
of a given symmetric TSP incidence matrix, and the concept is 
little-studied. (Graph-theoretic variants of this problem have 
been studied, e.g., by Graham and Winkler [8] and Sherlekar 
and J d a  [18].) 

As embedding dimension increases, no clear trend in 
solution quality or frequency is discernible; this is perhaps 
due to the limited problem sizes we are studying. (We conjec- 
ture that the probability of H-T TSP finding a valid tour will in 
general decrease as embedding dimension increases.) 

As it is sometimes impossible to "smooth" an incidence 
matrix, we must examine how Hopfield TSP performs for ran- 
dom or other non-metrizable input. Preliminary results for 
non-metrizable distance matrices are very interesting, and are 
reported below. As there is no established measure of 
"nonmetric-ness" for an incidence matrix A, we use the value 
P (A )  as a parameter, where P ( A )  denotes the probability that 
three given cities (a "triple") determine distances which 
violate the triangle inequality. In particular, it seems that 
Hopfield-Tank TSP is not as robust as previously believed. 

n (n - 1) 
2 

RESULTS AND CONCLUSIONS 

Sample results for the four classes of TSP variants are 
presented in Figures 2-5. Figure 6 shows some results for the 
standard Hopfield-Tank implementation. As noted earlier, we 
are interested in (i) the percentage of final configurations 
which correspond to valid tours; and (ii) the average valid 
tourlength as a percentage of expected random tourlength. 
Figure 7 gives an example of how the frequency of valid tours 
varies inversely with P (A )  for non-metrizable instances. 

The Hopfield-Tank TSP algorithm is extremely sensitive 
to initial perturbative values, scaling of parameters, and even 
convergence criteria. Such characteristics have been noted by 
previous workers and ascribed to frustration of the energy 
configuration. Heuristic fixes proposed in the literature are 
disappointing: the sparse matrix and forbidden-edge methods 
proposed by Hopfield and Tank are unsuccessful unless they 
are "smoothed", and symmetry-breaking also fails to improve 

performance. Of course, our work is by no means unsuccess- 
ful. For example, the NN1 heuristic was able to obtain 
better-quality solutions than those reported by Hopfield and 
Tank, while at the same time succeeding on almost 92% of its 
inputs. The NN 1 heuristic was also by construction the least 
disruptive of a smooth energy configuration. 

The most interesting aspect of our results concerns 
embedding dimension and metrization of the TSP incidence 
matrix. In implementing the various heuristics, we observe 
that as the distance matrix accumulates a large number of 
non-A triples, the incidence of invalid tours rises dramatically. 
The same good solutions are still feasible in the revised dis- 
tance matrix (and they remain in the same "percentile" of all 
solutions), but somehow they become harder, not easier, to 
find. We conclude that although Hopfield-Tank remains a 
pioneering vehicle for TSP solution, its robustness for random 
or non-metric inputs may not be as great as previously sup- 
posed. 

FUTURE WORK 

The erratic performance of Hopfield-Tank TSP algorithm 
is partly due to the discrete nature of structure terms in the 
energy functional. We are experimenting with a dual method 
of enforcing the permutation matrix structural constraint. 
Essentially, we define a less strict penalty term which will 
theoretically allow trajectories outside the hypercube, but 
which does not do so in practice. Convergence to permuta- 
tion matrix structure is a consequence of the Cauchy-Schwartz 
inequality. 

The discovery that NN 1 is a good heuristic may confirm 
the intuition in [14] concerning space-filling curves and 
Hopfield TSP formulations. It is easy to see that the NNl 
heuristic can be extended to yield a TSP algorithm which 
optimizes by the generalized curvature metric of [14]. But 
will the algorithm fail for non-metrizable inputs? 

With regard to embedding dimension, we ask if 
discrepancy and matching lower bounds on optimal TSP value 
can help us predict performance ratios for Hopfield TSP in 
higher dimensions. In particular, does the error grow with n at 
the same rate for all dimensions 2 3? 

Furthermore, we note that the purely structural constraint 
afforded by such work as [211 is sufficient to allow solution of 
such problems as n-queens or graph k-coloring. In addition, 
important mathematical questions might well be resolved 
through neural computation, particularly those concerning the 
theory of block designs, Ramsey theory, and the characteriza- 
tion of finite projective planes of various orders. We consider 
such mathematical problems to be the realm where Hopfield 
networks excel. We note in passing that the dichotomy 
between structure and cost (similar to that of 
feasibility/optimality in mathematical programming) resem- 
bles the relationship between recognition and enumeration. 
This too is an area for investigation. Finally, we mention 
fixed- or bounded-dimension linear and quadratic program- 
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ming as ideal areas of practical application which have not 
been fully explored in the literature. 

Many problems in CAD or network flows, such as rout- 
ing through congestions, can be formulated as small- 
dimension linear programs with (combinatorially) many 
columns. Is it possible to design a Hopfield network that will 
perform what is essentially column-generation in, e.g., revised 
simplex techniques? Similarities in, e.g., facet structure of 
the associated optimization polytopes suggest that a network 
which solves TSP can be used for a large class of problems. 
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Figure 1. Typical graphs of valid tour frequency and nor- 
malized tour length. Both both values are expressed as per- 
centages. Normalized tour length denotes percentage of 
expected random tourlength for Euclidean 10-city instances. 
All figures plot statistics for groups of lo00 random instances 
with city locations uniformly distributed in the unit square. 
We did not differentiate failure modes as in [9][25]. 
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Figure 2. Performance of NNl (x) and Mv2 (0). [Note: 
Results in Figures 2-6 are for the best variant found in each of 
the respective classes. For example, NN 1 changes the Txzj 
matrix by using a constant inhibitory skewing, while excita- 
tory skewing varies with cume of neighbor rankings, ranging 
from a factor of 1.0 to 1.7. In all classes, convergence cri- 
teria, search for permutation matrix structure at intermediate 
stages of calculation, etc. were exploited to maximize 
incidence of valid tours.] All results are for C code executed 
on a Sun-4 running UNM. 
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Figure 3. Performance of CP 1 (x) and CP2 (0). Results are 
fairly good, but clearly this method is not truly dual to the NN 
approach. 
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Figure 4. Performance of CH 1 (x) and CH2 (0). Convex 
hull requires 0 (n log n) calculation as in [7]. Results may 
be unimpressive because skewing is "discontinuous" and is 
not confined to the distance matrix. Preliminary experiments 
with reducing the relevant distances dij show slightly higher 
valid tour incidence. 
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Figure 6. Performance of Hopfield-Tank TSP. 
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Parameters 
follow [ll]. As with all the heuristic variants, we see that 
even very small values of D make results much better than 
random. 
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Figure 7. Sample graph of valid tour frequency versus P (A) 
for Hopfield-Tank variant. Probability of a triple satisfying 
the triangle inequality was explicitly evaluated for each 
instance and rounded to the nearest percent; data points there- 
fore do not represent thousands of trials. We ask if there is a 
better way to measure non-embeddability of the TSP adja- 
cency matrix. 

Figure 5. Performance of SB 1 (x) and SB 2 (0). Results are 
significantly different from those of [25]; this may be due to 
parametrization of the C value by the method described 
above. 
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