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ABSTRACT
Placement is a critical component of today's physical synthesis
flow with tremendous impact on the final performance of VLSI
designs. However, it accounts for a significant portion of the over-
all physical synthesis runtime. With complexity and netlist size of
today's VLSI design growing rapidly, clustering for placement can
provide an attractive solution to manage affordable placement
runtime. Such clustering, however, has to be carefully devised to
avoid any adverse impact on the final placement solution quality.
In this paper we present a new bottom-up clustering technique,
called best-choice, targeted for large-scale placement problems.
Our best-choice clustering technique operates directly on a circuit
hypergraph and repeatedly clusters the globally best pair of
objects. Clustering score manipulation using a priority-queue data
structure enables us to identify the best pair of objects whenever
clustering is performed. To improve the runtime of priority-queue-
based best-choice clustering, we propose a lazy-update technique
for faster updates of clustering score with almost no loss of solu-
tion quality. We also discuss a number of effective methods for
clustering score calculation, balancing cluster sizes, and handling
of fixed blocks. The effectiveness of our best-choice clustering
methodology is demonstrated by extensive comparisons against
other standard clustering techniques such as Edge-Coarsening [12]
and First-Choice [13]. All clustering methods are implemented
within an industrial placer CPLACE [1] and tested on several
industrial benchmarks in a semi-persistent clustering context. 

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS – Design Aids;
J.6 [Computer Applications]: COMPUTER-AIDED ENGI-
NEERING – Computer-Aided Design.
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1. INTRODUCTION
The task of VLSI placement is to assign exact locations to var-
ious circuit components within chip area. It typically involves
optimizing a number of objectives such as wirelength, timing
and power. The solution of placement has significant impact
on the final performance of design, thus being considered as
one of most critical processes in physical layout synthesis.
However, the placement itself is an extremely computational
intensive process which accounts for a significant portion of
the overall physical synthesis runtime. With today's multi-mil-
lion component designs, one iteration of physical synthesis
flow can easily take a few days. This kind of turn-around time
represents a serious obstacle to the productive development
cycle in today's competitive market. The objective of this work
is to speed up today's placement process via an effective clus-
tering technique, particularly on large-scale designs, with
almost no loss of solution quality. 

A circuit netlist (or hypergraph) is composed of a set of objects
and a set of hyperedges. An object represents a circuit compo-
nent while a hyperedge represents electrical connection among
objects. To speed up the placement, we reduce the netlist size
by repetitively clustering objects together into larger artificial
objects and adjusting the circuit netlist accordingly. This sim-
plified circuit netlist is then used to drive the subsequent place-
ment process. Clustering can effectively reduce the placement
problem size allowing for faster placement turn-around time.
The result of clustering, however, can directly affect place-
ment solutions so that an intelligent clustering strategy is abso-
lutely necessary to produce acceptable placement results.

In this paper we present a new bottom-up clustering algorithm
called best-choice, which is targeted towards large scale reduc-
tion of a given circuit netlist. Such reduction is achieved by
repeatedly identifying and clustering the best pair of objects
among all object pairs, until the required target netlist size is
attained. In essence, our clustering algorithm always selects
the globally best clustering choice possible with a given clus-
tering objective function. To rapidly identify the sequence of
best-choice pairs of objects, an efficient priority-queue-based
clustering score manipulation algorithm is proposed. Further-
more, additional technique called lazy-updating is proposed to
dramatically reduce the runtime of best-choice clustering. The
idea of lazy-updating is to defer clustering score updates as
late as possible with almost no loss of clustering quality. We
implement our methodology within a leading industrial place-
ment tool CPLACE [1] and demonstrate its effectiveness on a
number of large-scale industrial designs. 

The rest of the paper is organized as follows. In Section 2 we
present a brief overview of related works on clustering in
placement and the motivation for this work. In Section 3, the
best-choice clustering algorithm is described in addition to



lazy-update speed-up technique. Also, we discuss additional
techniques to control cluster sizes leading to more balanced
clustering. Our experimental results are presented in Section 4,
and finally conclusions and future work are presented in
Section 5.

2. PREVIOUS WORK AND MOTIVATION
Circuit clustering is an attractive solution to manage runtime
and quality of placement results on large-scale VLSI designs.
Naturally it has a long history of research activities [14, 4, 9,
15, 3, 2, 12, 13, 10, 6, 8, 11]. In terms of the interactions
between clustering and placement, the prior work can be clas-
sified into two categories. The first category of clustering in
VLSI placement uses transient clustering as part of the core
placement algorithm [5, 16, 17]. In these approaches, the act of
clustering and unclustering is generally part of the internal
placement algorithm iterations. For example, in MLP (Multi-
Level Partitioning [12])-based placers, a cluster hierarchy is
first generated followed by a sequence of partitioning and
unclustering. Partitioning result of prior clustered netlist is
projected to the next level by unclustering, which becomes the
seed for the subsequent partitioning. Typically, several parti-
tioning attempts are executed, thereby providing for multiple
clustering and unclustering operations as part of the inner loop
of the placement algorithm. Furthermore, concepts such as V-
cycling [12] have been introduced where multiple clusterings
occur at each level of the hierarchy for further optimization. 

The second category of clustering in VLSI placement involves
persistent clusters. In this case, the cluster hierarchy is gener-
ated at the beginning of the placement in order to reduce the
size of the problem. Then, the coarsened netlist is presented to
the placer [11]. Usually, the clustered objects will be dissolved
at or near the end of the placement process, with a “clean-up”
operation applied to the uncoarsened netlist to improve the
results. In some cases, these approaches take the opportunity to
uncluster and/or recreate clusters at strategic points in the
placement flow [7]. In these methods, however, it can be
argued that the clustering algorithm itself is not part of the core
placement algorithm, but rather a preprocessing step which
produces a smaller/simpler netlist structure for the placement
algorithm. For instance, in relatively time consuming simu-
lated annealing placement [15], significant runtime speed-up
can be achieved with persistent clustering.

Semi-Persistent clustering falls into the second category. Per-
sistent clustering offers significant runtime improvements at
the expense of the quality of the final placement solution. This
problem is particularly magnified as more clustering operation
is performed. Another problem associated with persistent-clus-
tering is the control of physical cluster sizes. During the place-
ment flow, the size of clustered objects may be too large
relative to the decision granularity, which results in the degra-
dation of final placement solution quality. Therefore, the goal
of our semi-persistent clustering is to address these two defi-
ciencies. First, we seek to generate high quality clustering
solution so that any potential loss of final placement solution
quality is minimized (or prevented). Secondly, we take advan-
tage of the hierarchical nature of clustering so that clustered
objects are dissolved slowly during the placement flow. In this
way, during the early stage of the placement algorithm, a glo-
bal optimization process is performed on highly coarsened
netlist while local optimization/refinement can be executed on
almost flattened netlist at later stage.

We now review some of the relevant literature on clustering.
In Edge-Coarsening (EC) [12, 2], objects are visited in a ran-
dom order, and for each object u, only a set of unmatched adja-
cent objects (i.e., objects that have never been visited or
clustered before) is considered. Among these objects the one
with the largest weight is matched to u. In EC, a hyperedge of k
pins is assigned a weight of . Karypis and Kumar
[13] modified the EC scheme and proposed the First-Choice
(FC) clustering approach. In FC, similar to EC, objects are vis-
ited in a random order. But for each object u, all objects that
are adjacent to u, regardless of their matching status, are con-
sidered. Again, the object with the largest weight is matched to
u. Thus, a clustered object with multiple layers of clustering
hierarchy can be formed. To limit the cluster size, FC stops
clustering when the coarsened netlist reaches a certain thresh-
old. 

In another approach, Cong and Lim [10] transform a given
hypergraph into a graph by decomposing every k-pin hyper-
edge into a clique, with an edge weight . Then, they
(i) rank edges according to a connectivity-based metric using a
priority-queue data structure, (ii) cluster two objects with high-
est ranking edge if their sizes do not exceed a certain size limit,
and (iii) update circuit netlist and priority-queue structure
accordingly. We note that decomposing a hyperedge into a
clique can cause discrepancy in edge weights once any two
objects of a k-pin hyperedge are clustered. This discrepancy
leads to incorrect edge weights as demonstrated by the follow-
ing example.

Example 1: Assume that two objects  and  were
clustered, where  is a k-pin hyperedge. In Karypis and
Kumar's scheme [13], the clustering score of any other objects
in  becomes to ,  while in Cong and Lim's
scheme [10], the clustering score stays same as . This
edge weight discrepancy occurs because the transformation of
a hyperedge to a clique of edges is performed only once before
clustering starts1. 

Chan el. [6] uses a connectivity-based approach similar to [10].
The difference is that the area of a clustered object is included
in the objective function to produce more balanced clustering.
The inclusion of cluster size in an objective function is origi-
nally proposed in [14]. Another recent approach [11] proposes
fine-grain clustering particularly targeted for improving runt-
ime in mincut-based placement. The approach decomposes
hyperedges into cliques, and uses a connectivity-based net
weighting scheme similar to [14]. A priority queue is used to
rank all the edges according to the calculated net weights.
Clustering proceeds in an iterative fashion. At each iteration,
clustering is allowed only if both target objects have never
been visited before during the same iteration. A cluster is typi-
cally limited to few (2-3) objects; thus, the name fine-grain
clustering. 

We think that the general drawbacks of previous approaches
are: 

• Hypergraph to graph transformation [15, 6, 10, 11] leads
to discrepancy in edge weights and increases the size of
required priority-queue. 

• Pass-based clustering methods (i.e., clustering iterations)
[11, 12, 2] that disallow an object to be revisited during

1 Note however that the clustered object of  will have a
score of  to other objects on the same hyperedge 
[10].
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the same iteration lead to suboptimal choices because an
object might be prevented from getting clustered to its
best neighbor. 

• Non-priority-queue based implementations [13] lead to
suboptimal clustering choices due to the lack of a global
picture of clustering sequences. 

Given this brief overview of related work, we next describe our
clustering method. 

3. BEST-CHOICE BOTTOM-UP 
CLUSTERING FOR PLACEMENT

A high-level outline of the bottom-up best-choice clustering is
given in Figure 1. The key idea of best-choice clustering is to
identify the globally best pair of objects to cluster by managing
a priority-queue data structure with the clustering score as a
key. Priority-queue management naturally provides an ideal
clustering sequence and it is always guaranteed that two
objects with the best clustering score will be clustered. 

The degree of clustering is controlled by target clustering ratio
. The target number of objects is determined by the original

number of objects divided by the target clustering ratio .
The clustering operation is simply repeated until the overall
number of objects becomes the calculated target number of
objects. For example, a target clustering ratio of  indi-
cates that the clustered netlist will have one tenth the number
of movable object in the original netlist. 

The challenges associated with best-choice clustering are as
follows: 

• Using an efficient and effective clustering score function
which leads to higher quality placement solutions. 

• Accurately handling hyperedges.

• Efficient netlist and priority-queue data structure updating
after each clustering is performed.

• Controlling clustered object size for more balanced clus-
tering. 

• Handling fixed blocks and associated movable objects
around these fixed blocks. 

We address these challenges as follows.

3.1 Best-choice Clustering Score Function
The weight  of a hyperedge  is defined as . Thus, the
weight is inversely proportional to the number of objects that
are incident to the hyperedge. Given two objects  and , the
clustering score d(u, v) between u and v is defined as:

(1)

where a(u) and a(v) are the areas of u and v respectively. The
clustering score of two objects is directly proportional to the
total sum of edge weights between them, and inversely propor-

tional to the sum of their areas. Suppose  is the set of neigh-
boring objects to a given object u. We define the closest object
to u, denoted c(u), as the neighbor object with the largest clus-
tering score to u, i.e.,

 such that  for (2)

In order to identify the globally closest pair of objects with the
best clustering score, a priority-queue based implementation is
proposed as given in Figure 2. The best-choice algorithm is
composed of two phases. In phase I, for each object u in the
netlist, the closest object v and its associated clustering score d
are calculated. Then, the tuple (u, v, d) is inserted to the prior-
ity-queue with d as key. For each object u, only one tuple with
the closest object v is inserted. This vertex-oriented priority
queue allows for more efficient data structure managements
than edge-based methods. Phase I is a simply priority queue
PQ initialization step.

In the second phase, the top tuple (u, v, d) in PQ is picked up
(Step 2), and the pair of objects (u, v) are clustered creating a
new object u' (Step 3). The netlist is updated (Step 4), the clos-
est object v' of the new object u' and its associated clustering
score d' are calculated, and a new tuple (u', v', d') is inserted to
PQ (Steps 5-6). Since clustering changes the netlist connectiv-
ity, some of previously calculated clustering scores might be
rendered invalid. Thus, the clustering scores of the neighbors
of the new object u', (equivalently all neighbors of u and v)
need to be re-calculated (Step 7), and PQ is adjusted accord-
ingly. The following example illustrates clustering score calcu-
lation and updating.

Example  2 :  Assu me the  i npu t  ne t l i s t  wi th  5  ob jec t s
 a n d  8  h y p e r - e d g e s  ,  ,

,  ,  ,  a n o t h e r  ,   a n d
 as in Figure 3 (a). By calculating the clustering

score of A to its neighbors, we find that d(C, B) = 1/2, d(A,B) =
1/2, d(A, C) = 4/3, d(A, D) = 1/2, d(A,E) = 1/2, and d(A, F) =
5/6. d(A, C) has the highest score, and C is declared as the
closest object to A. If we assume that d(A, C) is the highest
score in the priority queue, A will be clustered with C and the
circuit netlist will be updated as shown in Figure 3 (b). With a
new object AC introduced, corresponding cluster scores will be
d(AC, F)= 1, d(AC, E) = 1/2, d(AC, D) = 1/2, and d(AC, B) = 1.

We can summarize the main advantages of our best-choice
clustering methodology as follows. 

α
α

α 10=

Input: Flat Netlist
Output: Clustered Netlist

1. Until target object number is reached:
2. Find closest pair of objects
3. Cluster them
4. Update netlist

Figure 1. Bottom-up best-choice clustering.
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Input: Flat Netlist
Output: Clustered Netlist

Phase I. Priority-queue PQ Initialization:
1. For each object u:
2. Find closest object v, and its associated clustering score d 
3. Insert tuple (u, v, d) into PQ with d as key

Phase II. Clustering:
1. While target object number is not reached and top tuple’s
score d > 0:

2. Pick top tuple (u, v, d) of PQ
3. Cluster u and v into new object u'
4. Update netlist
5. Find closest object v' to u' with its clustering score d'
6. Insert tuple (u', v', d') into PQ with d' as key
7. Update clustering scores of all neighbors of u'

Figure 2. Best-choice clustering algorithm.
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• Clustering will always be performed on the overall best
choice.

• Direct hyperedge handling without converting hyperedges
into clique or star models [10, 11]. 

• Object-based priority queue manipulation. Thus, the size
of priority queue is equal to the number of objects (rather
than edges [10]) in netlist by recording only the closest
neighbor per object, leading to more efficient priority
queue management.

As will be demonstrated in Section 4, the best-choice scheme
can produce high quality clustering results for subsequent
placement. However, the overall clustering runtime is not yet
competitive to other faster clustering algorithms such as edge-
coarsening (EC) [12] or first-choice (FC) [13]. To improve the
runtime of best-choice, we propose to update the priority queue
in a lazy fashion.

3.2 Speed-up Technique for Best-Choice 
Clustering: Lazy-Update

Analyzing the runtime characteristic of the best-choice cluster-
ing algorithm of Figure 2, we find that (Step 7) is the most
time consuming task. To update the score priority queue after
each clustering, each neighbor object of a newly created object
needs to be visited to find its new closest object and its cluster-
ing score. The closest object of a given target object u can only
be found by visiting all the neighbor objects of u. Therefore,
updating the clustering scores after a clustering operation (Step
7) typically involves two levels of netlist exploration.

Statistical analysis of clustering score priority queue manage-
ment, however, reveals the following facts: 

1. An object in the priority queue might be updated a number
of times before making to the top (if ever). Effectively, all
the updates but the last one are useless since only the final
update determines the final location within the priority
queue. 

2. In 96% of clustering score updates, a new score decreases,
i.e., most of time, objects are moving downward the
priority queue rather than popping up.

Motivated by these observations, we propose Lazy-Update
technique which delays updates of clustering scores as late as
possible, thus reducing the actual number of score update oper-
ations on the priority queue. More specifically, lazy updating

waits until an object reaches the top of the priority queue and
only then updates the object's score if necessary. The modifica-
tion to the clustering phase (Phase II) is shown in Figure 4. In
Step 9 of the modified algorithm, we only mark neighbor
objects as invalid instead of re-calculating their scores. When
an object is picked up from the top of priority queue, we check
whether it is marked or not. If it is marked (invalid), its new
closest object and its score are re-calculated and re-inserted
into the priority queue (Step 3); otherwise (valid), it is clus-
tered with its pre-calculated closest object. In the experimental
section, we demonstrate that Lazy-Update technique can dra-
matically reduce the clustering runtime at almost no adverse
impact on clustering quality.

3.3 Cluster Size Growth Control
The presence of the area function in the denominator of EQ (1)
provides an indirect way to automatically control the sizes of
clustered objects, potentially leading to more balanced cluster-
ing results. Without such an area control, gigantic clustered
objects might be formed by absorbing small objects and/or
clusters around it. In this section, two classes of cluster size
control methods are discussed; indirect vs. direct control. 

3.3.1 Indirect Size Control
The cluster size is controlled automatically via a clustering
score function as in EQ (1) which is inversely proportional to
the size of cluster object. A more generic form of this approach
will be as follows. Given a target object u and its neighbor v, a
clustering score between u and v is defined as: 

(3)

where .  can be either fixed number or it can be dynam-
ically adjusted by setting it to , where

 is the average cell area multiplied by the clustering ratio .
 represents the expected average size of clustered objects.

Another possibility is to use the total number of pins instead of
object area, because in general, the number of pins in a cluster
is well-correlated with its cluster size.

3.3.2 Direct Size Control
The clustering algorithm can take a more direct approach by
imposing a bound constraint on the size of clusters. Given two
objects u and v, two methods are proposed:

Figure 3. Clustering a pair of objects A and C.

B

C

A
D

F E

B

AC D

F E

(a) (b)

Input: Flat Netlist
Output: Clustered Netlist

Phase II. Clustering:
1. While target object number is not reached and top tuple’s
score d > 0:

2. Pick top tuple (u, v, d) of PQ
3. If u is marked as invalid, re-calculate closest object v'

6. Update netlist
7. Find closest object v' to u' with its clustering score d'
8. Insert tuple (u', v', d') into PQ with d' as key
9. Mark all neighbors of u' as invalid

and score d' and insert tuple (u, v', d') to PQ
4. else

5. Cluster u and v into new object u' 

Figure 4. Lazy-Update speed-up technique for best-choice 
clustering. 
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• Hard Bound: If the total area , then
accept clustering, else reject it.

• Soft Bound: If the total area , then
accept clustering, else accept it with probability equal to

 where . 

With hard bound, an upper bound on the cluster size is strictly
enforced while with soft bound, the upper bound is slightly
relaxed, where the probability of clustering two objects
declines as the sum of their areas increases. The parameter k
controls the amount of relaxation. The plot of Figure 5 demon-
strates the probability of clustering two objects for various val-
ues of k. The x-axis is  (we assume here that

, and the y-axis shows the corresponding probability of
clustering occurrence. The cluster bounds, whether hard or
soft, can be incorporated in two ways during the calculation of
the closest objects:

• Method A: Pick the closest object among all neighbors
and check if the chosen object satisfies the area con-
straints.

• Method B: Pick the closest object only from the set of
neighbor objects that satisfy the are constraints.

Basically, method A ensures to choose the object with the
highest clustering score despite that it might get rejected due to
the area constraint violation later, while method B ensures that
the chosen object meets the area constraints, despite that its
clustering score might not be the highest among all neighbor
objects. Empirically, we have found that using method A pro-
duces better results than method B. The empirical comparison
of different methods of cluster size control will be given in
Section 4.

3.4 Handling Fixed Blocks during Clustering
The presence of fixed blocks in netlist might alter how cluster-
ing is performed. We observe that sometimes, particularly
when significant degree of clustering is performed, movable
cells directly connected to fixed blocks are being clustered to
objects located far away from them. This might cause adverse
impact on timing results as well as placement wirelengths. Ide-
ally, movable objects around fixed blocks need to be placed
around those directly connected fixed blocks after placement,
regardless of the degree of clustering performed. To our

knowledge, there has been no prior clustering work that explic-
itly considers fixed blocks and their neighbor movable objects.
We have attempted the following techniques to address this
issue:

• Ignoring all nets connected to fixed objects since such
nets cannot be eliminated by clustering.

• Ignoring all pins connected to fixed objects thus altering
the weight of nets connecting movable objects and fixed
blocks. 

• Incorporating fixed blocks during clustering, only to
remove them from the clusters after the clustering is done
and before placement process starts.

• Chaining all movable cells attached to a fixed by a set of
additional artificial nets to control their affinity to fixed
blocks during placement.

However, none of above techniques made distinguishable
improvements to the final placement results, and we leave this
topic as future work to further explore effective handling of
fixed blocks during clustering.

4. EXPERIMENTAL RESULTS
We implement the proposed clustering methodology within the
industrial placement tool CPLACE [1]. The placer uses a qua-
dratic solver in a top-down partitioning framework, where
clustering is executed at the beginning as a pre-processing step
to condense the netlist. The main placement algorithm is then
invoked on the clustered netlist. Clustered objects get dis-
solved when their sizes exceed a pre-determined percentage of
their assigned bin's size. Typically, most of the unclustering
typically occurs towards the end of global placement and
before the start of detailed placement.

The effectiveness of our clustering approach is tested on a
number of large-scale industrial benchmarks ranging from
250K to one million objects. The benchmarks’ detailed charac-
teristics are given in Table 1. Column “Cells” gives the num-
ber of movable cells in the design, column “Blks” gives the
number of fixed blocks, column “IOs” gives the total number
of IO-related objects, column “Nets” gives the total number of
nets, column “Density” gives the design density defined as
total object area divided by total placement are, and column
“Util” gives the design utilization (or density) where it is
defined as the area sum of only movable cells divided by the
available free space. We have two sets of benchmarks. The
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Figure 5. Probabilistic cluster size control curves.

a u( ) a v( )+( ) µ⁄
µ 1=

Bench Cells Blks IOs Nets Density Util

AL 270163 4235 14100 292425 44.74% 22.54%

BL 276194 14461 17380 327102 69.37% 20.37%

CL 351056 26713 6360 395918 82.32% 37.59%

DL 425610 14665 17960 465927 56.25% 34.91%

EL 457516 3460 7094 478842 72.12% 51.90%

FL 880410 53481 23255 1010392 74.77% 48.19%

AD 389226 0 35944 401463 87.65% 83.55%

BD 285085 0 13286 309050 87.76% 85.87%

CD 56436 2 1968 57595 57.43% 57.32%

Table 1. Benchmark characteristics.
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benchmarks whose name ends with ‘L’ are low utilization
designs whereas those ending with ‘D’ have high design utili-
zation. 

To speed up the placement process significantly, a rather high
clustering ratio  is used reducing the number of objects
in benchmark by an order of magnitude. In all experiments, a
workstation with 4 Intel Xeon 2.40 GHz CPUs, 512KB cache
and 6GB of memory is used.

In the first series of experiments, we demonstrate that with the
best-choice approach, placement produces better solutions than
with other standard clustering approaches. For comparison
purposes, we implement two approaches: 

• Edge-Coarsening (EC) [12]: The objects are visited in a
random order. For each object u, all unmatched neighbor
objects, (i.e., objects that have never been visited or clus-
tered before), are considered. Among those, the one with
the highest weight score is matched to u. 

• First-Choice (FC) [13]: This is an improvement over EC.
Again, objects are visited in a random order, but each vis-
ited object is clustered to its closest neighbor whether it
has been visited before or not. To limit the cluster size,
clustering stops when the hypergraph after clustering
reaches a certain threshold.

We first construct clustering score plots for a typical bench-
mark, AD, as shown in Figure 6, 7, 8 and 9, where the x-axis
gives the sequence of clustering operations, and the y-axis
gives the corresponding clustering score. For example, a 10 on
the x-axis represent the 10th clustering execution. We also
compute the total clustering score value of each clustering
method. From the figures, the total clustering score of edge-
coarsening, first-choice and best-choice are 5301, 5612 and
6671, respectively. Clearly, best-choice achieves the highest
total clustering score among these three methods. Also, the fig-
ure shows that using lazy update reduces the clustering runtime
by around 50% with almost no loss in the total clustering score
-a negligible drop from 6671 to 6658. 

We now investigate how different clustering algorithms affect
the final placement results. Table 2 presents the final place-
ment wirelength of the EC (Edge-Coarsening), FC (First-
Choice) and BC (Best-Choice) clustering algorithms on the
benchmarks of Table 1. All results are normalized with respect
to EC. We compare BC and BC+Lazy Update versus FC and
EC. In the table, “CPU” shows clustering CPU times with
respect to that of EC. “WL(%)” presents the percentage
improvement in Half-Perimeter wirelength (HPWL) over EC’s
HPWL. We make the following observations:

α 10=
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Figure 6. Edge-Coarsening clustering score plot. Total 
clustering score = 5301.05. Clustering runtime = 9.23 sec.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50000  100000  150000  200000  250000

C
lu

st
er

in
g 

S
co

re

Clustering Move

Figure 7. First-Choice clustering score plot. Total clustering 
score = 5612.83. Clustering runtime = 9.03 sec.
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Figure 8. Best-Choice clustering score plot. Total clustering 
score = 6671.53. Clustering runtime = 97.35 sec.
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Figure 9. BC clustering with Lazy Update score plot. Total 
clustering score=6658.23. Clustering runtime=49.84 sec.
205



• Best-Choice clustering dominates other standard cluster-
ings on all benchmarks with an average improvement of
4.3%.

• Lazy Update significantly improves Best-Choice cluster-
ing runtime for all benchmarks with an average runtime
reduction of 57% without almost no impact to quality of
results, only a 0.11% change in HPWL. 

Figure 10 shows the runtime breakdown of best-choice cluster-
ing on the largest benchmark FL. From the plot, we immedi-

ately notice that the runtime reduction with Lazy-Update
increases as cluster progresses, i.e., as more clusterings are
performed, Lazy-Update becomes more effective. 

In the second experiment, we examine how cluster size control
affects the quality of placement results. We have found that
cluster size control is particularly critical to dense designs with
no or few fixed blocks (AD, BD, and CD). For sparse bench-
marks, the ones ending with “L”, no distinguishable impact has
been found with different size control methods. Three addi-
tional area control methods are implemented and compared to
the standard area control method with EQ (1). In Table 3,
“Automatic” refers to the method using EQ (3) with .
“Hard”  and  “Sof t”  re fe r  t o  t he  b ounding  method s  o f
Section 3.3.2. Both hard and soft bounds are executed with

. All size control methods are implemented within our
best-choice clustering framework. The quality of solution is
measured by the final placement wirelength. We also report the
maximum and average cluster sizes after clustering is done.
From the table, we observe that careful control of the cluster
size can improve the placement wirelength by up to 13%. The
results also indicate that probabilistic control of cluster size,
“Soft”, produces the best results. We think that soft probabilis-
tic control occasionally provide a way to form a high quality
but slightly larger clusters leading to better results.

The comparisons between flat (i.e., no clustering) and semi-
consistent clustering CPLACE runs are demonstrated in
Table 4. The CPLACE run with best-choice-lazy-update clus-
tering speeds up the overall placement on the average by x2.1.
More interestingly, with best-choice clustering, CPLACE was
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Figure 10. Runtime breakdown of best-choice clustering 
with/without lazy update on benchmark FL.

Bench
EC FC BC BC+LazyUpdate

WL(%) CPU WL(%) CPU WL(%) CPU WL(%) CPU

AL 0.00 1.00 -0.43% x0.98 3.19% x9.77 2.10% x4.02

BL 0.00 1.00 3.30% x0.94 6.99% x8.69 6.28% x3.61

CL 0.00 1.00 2.14% x0.96 3.43% x4.99 4.23% x3.29

DL 0.00 1.00 0.44% x1.03 2.22% x9.76 2.07% x3.84

EL 0.00 1.00 2.37% x0.98 5.72% x4.92 6.27% x3.37

FL 0.00 1.00 -1.14% x1.04 4.33% x14.48 4.25% x4.50

Avg. 0.00 1.00 1.11% x0.98 4.31% x8.76 4.20% x3.77

Table 2. Clustering results. All results are normalized with respect to Edge-Coarsening (EC). Column “CPU” presents the 
clustering runtime in comparison to EC. Column “WL” shows the improvement in HPWL over EC.

Bench
Stnd Automatic Hard Soft

Max Avg WL(%) Max Avg WL(%) Max Avg WL(%) Max Avg WL(%)

AD 14823 171.4 0.00 1140 160.4 -0.88% 364 169.9 0.47% 1668 169.6 0.56%

BD 28600 150.0 0.00 1140 114.6 3.71% 405 147.9 5.89% 1520 147.9 4.86%

CD 9060 113.5 0.00 610 109.8 30.05% 280 116.1 29.11% 1075 114.9 34.16%

Avg. - - 0.00 - - 10.96% - - 11.82% - - 13.19%

Table 3. Impact of cluster-size control on the total HPWL for dense designs. Column “Automatic” controls cluster sizes via the 
exponent to the area term in the clustering score function. Here, the exponent is 2 in contrast to 1 in “Stnd”. Column “Hard” 

controls cluster sizes by imposing a hard upper bound. Column “Soft” controls cluster sizes with probability. Column “Max” and 
“Avg” are the max and the average cluster size, “WL(%)” is the improvement in HPWL over “Stnd” area control method.

k 2=

k 3=
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able to produce 1.39% better final wirelengths on average.
Column “CL-CPU” shows the portion of clustering CPU time
in overall CPLACE run. Although best-choice-lazy-update
clustering takes 3.77x more CPU time than EC as shown in
Table 2, it takes only 1.14% of overall CPU time.

5. CONCLUSIONS AND FUTURE WORK
We summarize our contributions as follows.

• Globally optimal clustering choices are always identified
and clustered.

• Clustering operates directly on a given hypergraph with-
out any edge transformations that can lead to inaccuracies
in computing clustering scores.

• Object-based priority queue score manipulation with a
priority queue size being equal to the number of objects in
netlist. This contrasts to existing edge-based method [10].
Thus, the best-choice approach is likely to be faster.

• Faster best-choice clustering implementation based on the
idea of Lazy-Update that defers updating clustering scores
as late as possible.

• Exploration of cluster size control methods to produce
more balanced clustering, resulting in higher quality
placement solutions.

The proposed methods are implemented in a leading industrial
top-down quadratic placement engine CPLACE and their
effectiveness are demonstrated though comparisons against
leading clustering algorithms, such as edge-coarsening (EC)
and first-choice (FC), on a number of large-scale industrial
benchmarks. Our results show that placement runtime has been
sped up by a factor of 2.2 with consistent wirelength improve-
ments, on average 4.20% over EC and FC. For the future work,
we believe that higher quality of placement solutions is achiev-
able by better handling of fixed blocks during clustering. 
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Bench WL(%) CPU CL-CPU

AL 2.09% x0.40 1.17%

BL -4.28% x0.52 1.35%

CL 3.27% x0.51 1.14%

DL 0.87% x0.45 1.35%

EL 1.59% x0.33 1.10%

FL 1.41% x0.46 1.68%

AD 8.23% x0.50 0.98%

BD -0.34% x0.47 0.94%

CD -0.36% x0.69 0.51%

Avg. 1.39% x0.48 1.14%

Table 4. Comparison between flat (no clustering) and best-
choice+Lazy Update clustering CPLACE runs.
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