
Evaluation of Placer Suboptimality Via
Zero-Change Netlist Transformations

Andrew B. Kahng
CSE and ECE Departments
University of CA, San Diego

La Jolla, CA, 92093
abk@ucsd.edu

Sherief Reda
CSE Department

University of CA, San Diego
La Jolla, CA, 92093
sreda@cs.ucsd.edu

ABSTRACT
In this paper we introduce the concept of zero-change trans-

formations to quantify the suboptimality of existing placers.
Given a netlist and its placement from a placer, we for-
mally define a class of netlist transformations that produce
different netlists from the given netlist but have the same
Half-Perimeter Wire Length (HPWL). Furthermore, the op-
timal HPWL value of the new netlists is no less than that
of the original netlist. By applying our transformations and
re-executing the placer, we can interpret any deviation in
HPWL as a lower bound to the deviation from the optimal
HPWL value. Such deviation is a measure of suboptimality.
Using these transformations, the suboptimality of several ex-
isting academic and industrial placers is studied on the IBM
benchmarks. Our results show that current placers are sub-
optimal for zero-change transformations with deviations in
HPWL by up to 32% on the IBM (version 1) benchmarks.
The specific nature of our transformations also pinpoints
possible directions for improvement in existing placers.

Categories and Subject Descriptors: B.7.2 [Design Aids]:
Placement and routing.
General Terms: Algorithms, performance.
Keywords: Benchmarking, placer suboptimality, wirelength.

1. INTRODUCTION
Total HPWL minimization is the most traditional place-

ment objective. This is no surprise given that HPWL is
equivalent to the Steiner minimal tree (SMT) cost for two-
pin and three-pin nets, and is well-correlated for multi-pin
(≥ 4) nets [7]. Placers minimize HPWL heuristically by us-
ing, for example, min-cut partitioners [4, 20, 21], quadratic
or analytical solvers [15, 9], or simulated annealing [19].
HPWL is also the typically reported metric when comparing
results of different placers on various benchmarks [5, 8, 2].

Given a benchmark circuit and a placer, placement bench-

marking, or placer suboptimality evaluation, is the problem
of finding how close the placer’s result is to the optimal result

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

for the given benchmark. The placement problem or HPWL
minimization is notoriously hard since (1) it is NP-hard [18],
(2) it has no polynomial constant approximation algorithms
[17], and (3) it has no approximation schemes [18]1. Given
these theoretical results, researchers must rely on heuristic
methods to solve the problem. Lack of placement bench-
marking can lead to frustration since there is no direct way
to assess whether existing heuristics are sufficiently close to
optimal for arbitrary instances.

In this paper, we propose a new direction in placement
benchmarking by introducing the concept of zero-change

transformations and devising a set of such transformations
to quantify the suboptimality of existing placers. Given a
netlist and its placement from a placer, zero-change trans-
formations alter the given netlist while keeping its HPWL
constant, resulting in zero change to its HPWL. More im-
portantly, the optimal placement HPWL of the new netlist
has a value no less than the original netlist’s optimal HPWL.
Thus, by executing the placer on the new netlist, we can use
any deviation of the new HPWL from the original HPWL
as a lower bound on the deviation from optimal results for
the new netlist. Our empirical results show that existing
placers fail to reproduce their original HPWL results, with
large deviations. One positive outcome of this work is the
ability to extract useful suboptimality information with any
given arbitrary benchmark.

The organization of this paper is as follows. Section 2
briefly summarizes previous work on the placement bench-
marking problem. Section 3 gives a number of preliminaries
and definitions essential to understand this work. Section
4 formally introduces the concept of zero-change transfor-
mations, and gives a number of such transformations. Ex-
perimental results from the application of different transfor-
mations to various netlists are given in Section 5. Finally,
Section 6 summarizes the implications of our work and gives
directions for future work.

2. PREVIOUS WORK
Several papers [10, 5, 8, 2, 16] tackle the benchmarking

problem. Hagen [10] et al. quantify the suboptimality of
VLSI layout heuristics, e.g., placers and partitioners, by
scaling VLSI instances and comparing the results of VLSI
layout heuristics against a pre-calculated value from the un-
scaled instances. A recent paper by Chang et al. [5] uses
an overlooked construction method by Hagen et al. [10] to

1Assuming P 6= NP .

208

optimally construct a number of benchmarks with known
optimal HPWL. We note that this construction method has
much earlier roots in the placement literature [11]. Existing
placers, e.g., Capo [4], Dragon [20], mPL [6], and FengShui
[21] are benchmarked on the optimally constructed bench-
marks, and it is concluded that there exists a significant gap
between the placers’ HPWL results and the optimal place-
ment HPWL. The drawback of [5]’s results is that the bench-
marks are unrealistic given that only local signals are con-
sidered. To overcome this drawback, Cong et al. [8] added
global hyperedges and established placement upper bounds.
Their experimental results show that the performance of
available placers approaches the upper bounds as the per-
centage of global edges increases. It is unknown whether the
calculated upper bounds are tight or loose.

The results of different placers on various benchmarks are
given in [2], where HPWL, timing and routability results
of different placers are tabulated. The results show that
placers exhibit different efficiencies on different benchmark
families. For example, mPL [6] outperforms all other placers
on the PEKO [5] benchmarks, but Dragon [20] outperforms
other placers on the IBM benchmarks. Placer efficiency in
the presence of various netlist structures is studied by Liu
and Marek-Sadowska [16]. Using existing benchmarks and
placers, the effects of net degree distribution, net count, and
Rent’s exponent are tabulated and practical conclusions are
given. Kahng and Mantik [12] study the mismatch between
incremental optimizers, e.g., partitioners and ECO placers,
and instance perturbations. In another effort, the stability
of different runs of Capo on the same benchmark is studied
[1], where tying a number of randomly selected cells to their
regions is proposed to stabilize results from different Capo
runs.

3. PRELIMINARIES
A circuit netlist is a hypergraph H = (V, E), where V is

a set of vertices representing the circuit cells, and E is the
set of hyperedges representing the circuit wires. A hyper-
edge e ∈ E is a set of vertices e ∈ 2V , where |e| gives the
cardinality or degree of hyperedge e. The placement area
is composed of a number of sites that cells can legally oc-
cupy. Each cell may occupy a number of sites depending on
its width. A placement of a hypergraph is defined as follows.

Definition 1. A placement π of a given hypergraph H(V,E)
is a mapping π : V → Z+ assigning a placement site to every
netlist cell such that no two cells overlap. If a cell occupies
more than one site then the mapping gives the first occupied
site.

The Half-Perimeter Wire Length (HPWL) of a hyperedge
e in a given placement π is the length of half the perimeter
of the smallest bounding box that includes all vertices of
e2. Such HPWL of a hyperedge is denoted by l(e, π). The
total HPWL (or wirelength) is L(H,π) =

�
e∈E

l(e, π). A
placement π∗ of a hypergraph H that has minimum total
HPWL is called an optimal placement. The HPWL of an
optimal placement is called optimal wirelength or HPWL3.

2Without loss of generality, we assume throughout this pa-
per that hyperedges/nets are connected to cells via pins at
the center of the cells.
3There can be more than one optimal placement yielding
the same optimal HPWL.

A suboptimal placement is a placement with a total HPWL
larger than the optimal HPWL.

Definition 2. A netlist or a hypergraph transformation ap-
plied to an input hypergraph H1 = (V, E) produces a new
hypergraph H2 = (V, E′) with the same set of vertices as H1

but with a different set of hyperedges, i.e., a netlist trans-
formation changes the connectivity.

With these basic definitions, we are ready to introduce
the concept of zero-change transformations.

4. ZERO-CHANGE TRANSFORMATIONS
In this section we introduce the concept of zero-change

transformation as well as a number of such transformations.

Definition 3. Given a placement π1 of some hypergraph
H1, a netlist transformation to H1 produces a new hyper-
graph H2 with the same number of vertices as H1 but with
a different set of hyperedges. We define this transformation
as zero-change if the following two properties are satisfied:

• Quiescency Property: L(H1, π1) = L(H2, π1), i.e., the
transformation results in zero-change to HPWL with re-
spect to the input placement π1.

• Hardness Property: For any other placement πk :
L(H1, πk) ≤ L(H2, πk).

From the hardness property, it is possible to qualify the re-
lationship between the optimal placement π∗

1 of H1 and the
optimal placement π∗

2 of H2.

Theorem 1. Given an original hypergraph, a hypergraph
generated from zero-change transformations has an optimal
HPWL no less than that of the original hypergraph, i.e.,
L(H2, π

∗

2) ≥ L(H1, π
∗

1).
Proof. Towards a contradiction, assume that the optimal
placement π∗

2 of H2 has HPWL less than the optimal place-
ment π∗

1 of H1. Using π∗

2 for H1 gives a placement with
HPWL L(H1, π

∗

2) ≤ L(H2, π
∗

2) from the hardness property.
Consequently L(H1, π

∗

2) < L(H1, π
∗

1), contradicting the as-
sumption that π∗

1 is the optimal placement of H1.

The use of zero-change transformations for benchmarking
is illustrated in Figure 1. Given a netlist H, placer P pro-
duces a placement π1 with HPWL w1 = L(H1, π1). Given
π1, applying zero-change transformations to H1 produces a
new netlist H2. From the quiescency property, L(H2, π1) =
L(H1, π1). However, executing P on H2 might produce a
new placement π2 with some wirelength w2 = L(H2, π2).
The main question is whether w1 = w2. If the placer is op-
timal then w1 = w2. If the placer is suboptimal then there
are three possibilities:

1. w1 = w2 indicating that the placer is stable and not
sensitive to the netlist transformations.

2. w2 < w1 indicating that the original placement was not
optimal and the transformations lead the placer to a bet-
ter suboptimal placement.

3. w2 > w1 showing that the placer is suboptimal and sen-
sitive to the netlist transformations. Since w1 acts as
an upper bound to the optimal placement of H2, the
amount w2 − w1 = L(H2, π2) − L(H2, π1) is a lower
bound to the suboptimality gap of H2 which is equal

209

2 Calculator
HPWL

HPWL
Calculator

Calculator
HPWL

placement
H

zero−change
transformation

Calculator
HPWL

P

Placer
P

netlist placement

netlist

Placer

1

H2

w

w2

w3

π1

w1

1

π

Figure 1: Conceptual presentation of zero-change transformations. The difference w2 − w1 represents a
suboptimality measure of placer P .

to w2 − L(H2, π
∗

2) = L(H2, π2) − L(H2, π
∗

2), as shown in
Figure 2.

The most important characteristic of zero-change trans-
formations is that the optimal placement HPWL of the new
netlist H2 is no less than that of the original netlist H1 as
established in Theorem 1. Thus, executing the placer on the
new netlist likely yields the third possibility where w2 > w1.
This will be empirically demonstrated in Section 5.

One may wonder about w3 = L(H1, π2) produced from us-
ing π2 for the original netlist H1. This raises the possibility
of using netlist transformations to improve the placeability
of netlists. Notice that from the hardness property, we al-
ready know that L(H1, π2) ≤ L(H2, π2). We now propose
a number of zero-change transformations to assess different
placers’ performance.

4.1 Hyperedge Cardinality Increase
The purpose of this transformation is to assess the sensi-

tivity of placers to hyperedge cardinality by examining the
impact of increasing the cardinality of hyperedges. We only
increase the cardinality of hyperedges of degree ≥ 3. Our
transformation is simple: given a netlist H and its placement
π1, the bounding box of each hyperedge (excluding 2-pin
edges) is calculated, and an additional number of vertices
are added to each hyperedge from within its bounding This
cardinality increase procedure HYPERC is given in Figure
3. Before we prove that HYPERC is a zero-change transfor-
mation, we state the following lemma which is easy to prove.

Lemma 1. Given two sets of nodes S1 and S2: if S1 ⊆ S2

then l(S1, πk) ≤ l(S2, πk) in any placement πk.

Lemma 1 basically states that HPWL is monotone [3].

Theorem 2. Procedure HYPERC in Figure 3 is a zero-
change transformation.

2 w w
1 2opt(H)1

opt(H)

Figure 2: Relationship between the different HPWL
quantities. opt(H1) = L(H1, π

∗

1) is optimal HPWL of
H1 and opt(H2) = L(H2, π

∗

2) is the optimal HPWL of
H2. w2 − w1 is a lower bound on the suboptimality
gap, w2 − opt(H2), of the new netlist H2.

Proof: If the netlist produced by procedure HYPERC has
the quiescency and hardness properties of Definition 3 then
the theorem is proved. We will prove that each of these
properties holds.

• Quiescency: Given a hypergraph H1 and a placement
π1, applying procedure HYPERC produces a new hy-
pergraph H2. By construction, adding a number of ver-
tices to a hyperedge from within its bounding box does
not change its HPWL value. Therefore, L(H2, π1) =
L(H1, π1).

• Hardness: Given some πk 6= π1, H1 would have an HPWL
value of L(H1, πk). Replacing each hyperedge ei in H1

with e′i according to procedure HYPERC yields a HPWL
value of L(H1, πp)+

�
i
(l(e′i, πk)− l(ei, πk)) ≥ L(H1, πk)

since l(e′i, πk) ≥ l(ei, πk) by Lemma 1. Thus L(H2, πk) ≥
L(H1, πk).

Finally, we note that the converse or “anti” transforma-
tion to HYPERC, where a hyperedge’s cardinality is de-
creased, does not satisfy the zero-change requirements since
it might yield a netlist with lower optimal HPWL than the
original netlist.

4.2 Hyperedge Decomposition
Our second transformation simplifies a hyperedge by de-

composing it into two hyperedges, with each of the new hy-
peredges having smaller cardinality than the original hyper-
edge. We define an optimal hyperedge decomposition as
follows.

Definition 4. A hyperedge e is optimally decomposable in
some placement πk if it is possible to decompose e into two
hyperedges e1 and e2 such that l(e, πk) = l(e1, πk)+l(e2, πk)

Input: A hypergraph H1 = (V, E1) and a placement π1 for
H.
Output: A new hypergraph H2 = (V, E1).

1. Initialize E2 = E1.

2. For each hyperedge ei ∈ E2 where |ei| ≥ 3:

3. Find the set of vertices Cei
enclosed within the

bounding box of ei in placement π1.

4. If Cei
6= ∅ then augment hyperedge ei as follows:

ei = ei ∪ Se, where Sei
⊆ Cei

.

5. Return hypergraph H2 = (V, E2).

Figure 3: Procedure HYPERC for hyperedge cardi-
nality increase.

210

Figure 4: An example of an optimally decomposable
hyperedge.

(a) (b) (c) (d)

Figure 5: Enumeration of possible bounding box
configurations.

and e = e1 ∪ e2.

Figure 4 shows a hyperedge, whose bounding box is rep-
resented by a dashed line, optimally decomposed into two
hyperedges as shown by the dashed rectangles. The follow-
ing Lemma is crucial for our transformation.

Lemma 2. For any two hyperedges ei and ej with |ei ∩
ej | 6= ∅, max(l(ei, πk), l(ej , πk)) ≤ l(ei ∪ ej , πk) ≤ l(ei, πk) +
l(ej , πk) in any placement πk.
Proof: The proof is by enumerating all possible cases for
bounding boxes of ei and ej . Since |ei ∩ ej | 6= ∅, there are
only three possible configurations for the bounding boxes of
ei and ej .

1. Contained: In this case, the bounding box of one hyper-
edge is completely contained within the other bounding
box as shown in Figure 5.a. In this case l(ei ∪ ej , πk) =
max(l(ei, πk), l(ej , πk)).

2. Overlapping: In this case, the two bounding boxes over-
lap with l(ei ∪ ej , πk) < l(ei, πk) + l(ej , πk) as shown in
Figures 5.b and 5.c.

3. Touching: In this case, the two bounding boxes touch
each other at a common vertex with l(ei ∪ ej , πk) =
l(ei, πk) + l(ej , πk) as shown in Figure 5.d.

From the previous lemma, it is easy to see the following.

Lemma 3. e1 and e2 give an optimal decomposition of e

in some placement πk only if |e1 ∩ e2| = 1 and the bounding
boxes of e1 and e2 touch at their common vertex.

Lemma 3 provides us with a simple characterization to
optimally decompose any hyperedge. Using this character-
ization, we devise a a procedure for optimal hyperedge de-
composition (procedure HYPERD) as given in Figure 6. We
next prove that procedure HYPERD is a zero-transformation
procedure.

Theorem 3. Procedure HYPERD is a zero-change trans-
formation.
Proof: If the netlist produced by procedure HYPERD has
the quiescency and hardness properties of Definition 3 then

Input: A hypergraph H1 = (V, E1) and its placement
permutation π1.
Output: A hypergraph H2 = (V, E2).

1. Iterate until there is no possible decomposition:

2. Set E2 = ∅.

3. For each hyperedge ei in E1:

4. For each vertex vj ∈ ei:

5. If ei can be partitioned into two sets e1
i and e2

i

such that the bounding boxes of e1
i and e2

i touch each
other at vj

then insert e1
i and e2

i into E2 and goto Step 3.
else insert ei into E2.

6. Set E1 = E2.

7. Return hypergraph H2 = (V, E2)

Figure 6: Procedure HYPERD for hyperedge de-
composition.

the theorem is proved. We will prove that each of these
properties holds.

• Quiescency: Since procedure HYPERD decomposes edges
only optimally according to Lemma 3, it is clear that
L(H1, π1) = L(H2, π1).

• Hardness: Given some πk 6= π1, H1 would have an HPWL
value of L(H1, πk). Replacing each hyperedge ei in H1

with e′i according to procedure HYPERD yields a HPWL
value of L(H1, πk)+

�
i
(l(e1

i , πk)+(l(e2
i , πk)−l(ei, πk))) ≥

L(H1, πk) since l(e1
i , πk)+ l(e2

i , πk) ≥ l(ei, πk) by Lemma
2. Thus L(H2, πk) ≥ L(H1, πk).

Before ending this subsection, we note that the converse or
“anti” transformation to HYPERD, i.e., merging two touch-
ing hyperedges into one bigger hyperedge, does not satisfy
the zero-change requirements since it might yield a netlist
with lower optimal HPWL than the original netlist.

4.3 Edge Substitution
Our third transformation deals with edges, i.e., hyper-

edges of degree two. Our transformation does not change
the cardinality of edges but rather increases the total num-
ber of two-pin edges. We start with the following fact that
characterizes the triangle inequality in Manhattan or recti-
linear metric.

Fact 1. If dij gives the Manhattan distance between two
placement sites i and j then dij ≤ dip + dpj for any site p,
and if p lies within the bounding box defined by sites i and
j then dij = dip + dpj .

We leverage Fact 1 for netlist transformation as given in
procedure EDGESUB of Figure 7, where we take every edge,
calculate its bounding box, and substitute it with two edges
by using a third vertex from within its bounding box. Such
substitution can be carried more than once, effectively trans-
forming an edge between sites i and j into a path between
sites i and j as depicted in Figure 8.

Theorem 4. Procedure EDGESUB is a zero-change trans-
formation.

211

Input: A hypergraph H1 = (V, E1) and its placement π1.
Output: A hypergraph H2 = (V,E2).

1. Initialize E2 = E1.

2. Find a two-pin edge {u, v} in E2 and calculate its
bounding box in π1

3. Find a node p inside the bounding box of {u, v}

4. If such node p exists then

5. Delete {u, v} from E2 and insert two new two-pin
edges {u, p} and {p, v} in E2.

Figure 7: Procedure EDGESUB for two-pin edge
substitution. i

j

Figure 8: Substituting an edge between i and j by
a path according to procedure EDGESUB does not
change the optimality of a given placement.

Proof: We omit the proof for space limitations. Essen-
tially, Fact 1 is used to prove Theorem 4 in a similar fashion
to the proofs of Theorems 2 and 3.

We note that if procedure HYPERC of Subsection 4.1
(for hyperedge cardinality increase) is allowed to operate on
two-pin edges, then transformation EDGESUB can be con-
sidered as a combination of hyperedge cardinality increase
(HYPERC) on two-pin nets, immediately followed by the
hyperedge decomposition (HYPERD) of Subsection 4.2.

As a final remark, we stress that the converse or “anti”
transformation to EDGESUB, by substituting a path of
edges with a single edge, does not satisfy the zero-change
requirements.

4.4 Hybrid Transformations
It is possible to apply the previous three transformations

on a given netlist and empirically examine the collective
impact of all transformations. Since each transformation is
zero-change, the hybrid application of all transformations is
also zero-change. We try the following combination:

1. Apply procedure HYPERD to decompose hyperedges into
smaller hyperedges if possible.

2. Apply procedure HYPERC to increase the cardinality of
hyperedges of degree ≥ 3 by four additional vertices if
possible.

3. Apply procedure EDGESUB to increase the number of
two-pin edges, substituting each edge by a path up to
length four if possible.

5. EXPERIMENTAL RESULTS
In this section we empirically evaluate the suboptimality

of existing placers with respect to our proposed transforma-
tions. This evaluation is carried out using the IBM bench-
marks (version 1), four academic placers (Dragon [20] (ver-
sion 3.01), Capo [4] (version 8.8 with feedback [14]), Feng-
Shui [21] (version 2.6), and mPL (version 4.0) [6]) and one

industrial placer (Cadence’s QPlace (version 5.2)). Feng-
Shui, Capo, and Dragon are based on a min-cut partition-
ing framework. mPL is a based a non-linear programming
formulation in a multi-level optimization framework. Ca-
dence’s QPlace is believed to be based on a quadratic solver
in a top-down partitioning framework. Since all pins are
placed at the center of their respective cells in all circuits of
the IBM benchmarks, we measure HPWL center-to-center
and any additional pins necessitated by our transformations
are also placed at the cells’ centers. Before carrying out our
experiments, we estimate the noise [1, 13] of different placers
by reporting the average difference in HPWL for two differ-
ent executions of a single placer on the same netlist4. Our
results show that FengShui has a noise margin of around
0.92%, mPL has a noise margin of around 0.89%, Capo has
a noise margin of around 2.9%, and Dragon has a noise mar-
gin of around 3.37%.

Our experimental execution flow is based on the outline
of Figure 1. In all experiments, we report the percentage de-
viations SUBOPT= w2−w1

w1
and DELTA= w3−w1

w1
. The first

amount, SUBOPT= w2−w1

w1
, is a lower bound on deviation

from the optimal HPWL of the new netlists and thus is a
measure of suboptimality for current placers. The second
amount, DELTA= w3−w1

w1

, is reported to see if the transfor-
mations can lead to an improvement in the placeability of
the original netlists.

In a first series of experiments, we empirically determine
the suboptimality of placers with respect to hyperedge car-
dinality increase transformations as given by procedure HY-
PERC. Table 1 gives the results of applying procedure HY-
PERC with cardinality increase of two when possible. The
total number of pins (total hyperedge cardinality) in the
original netlist Pins and in the new netlists after the trans-
formation New Pins are reported. From the results, we
observe that none of the five placers managed to maintain
their original HPWL. All placers exhibit a substantial expe-
rience increase in HPWL.

To further study the impact of procedure HYPERC, we
focus on the IBM01 benchmark and measure the HPWL
changes due to a cardinality increase from 1 to a cardinality
increase of 6. We plot our results in Figure 9. From the
figure, current placers exhibit unstable and suboptimal be-
havior. Dragon shows a deviation of about 16% percent in
HPWL. Capo shows a deviation by 24% percent in HPWL.
QPlace shows a deviation by up to 18%. mPL and FengShui
are relatively the least sensitive with deviations of up to 6%
and 9% respectively.

In a second series of experiment, we empirically determine
the suboptimality of placers to hyperedge decomposition as
given by the HYPERD transformation. The empirical re-
sults are given in Table 2. Column Nets gives the original
total number of nets for each benchmark, while column New
Nets gives the total number of nets for each benchmark af-
ter applying procedure HYPERD. We report the percentage
increase in each placer HPWL. From the results, we notice
that placers sometimes are able to exploit such transforma-
tion to improve their results. On the average, there is an
instability in the placers’ results with a small average de-
viation in HPWL results. On the average, mPL deviates
by 0.61%, Capo by 0.87%, FengShui by 1.32%, Dragon by

4Different placer’s runs use the same netlist but with differ-
ent ordering of nets.

212

bench Pins Placer New Pins SUBOPT DELTA bench Pins Placer New Pins SUBOPT DELTA

ibm01 44266 Capo 50219 15.03% 9.08% ibm05 126308 Capo 148739 5.30% 2.96%
FengShui 50339 5.58% 2.87% FengShui 148429 0.10% 0.10%

Dragon 49627 11.96% 7.74% Dragon 148494 1.14% 0.40%
mPL 50336 9.33% 5.69% mPL 149247 1.66% 0.77%

QPlace 50057 14.20% 9.37% QPlace 148117 1.10% 1.98%
ibm02 78171 Capo 92101 8.17% 5.03% ibm06 124299 Capo 141852 2.29% 1.14%

FengShui 91686 7.83% 4.49% FengShui 142763 1.50% 0.59%
Dragon 91029 8.47% 3.72% Dragon 141855 11.39% 6.80%

mPL 92238 6.51% 3.83% mPL 142181 7.32% 4.58%
QPlace 91472 4.83% 5.59% QPlace 141121 4.33% 7.05%

ibm03 75710 Capo 87008 6.49% 3.98% ibm07 164369 Capo 190746 9.42% 5.53%
FengShui 86292 2.22% 1.39% FengShui 189428 3.25% 1.55%

Dragon 86505 3.16% 1.68% Dragon 191139 11.10% 6.52%
mPL 87653 1.72% -0.53% mPL 191315 2.78% 1.52%

QPlace 87305 5.79% 6.87% QPlace 191611 19.73% 17.47%
ibm04 89591 Capo 104903 2.85% 1.53% ibm08 198180 Capo 225126 3.72% 1.85%

FengShui 104855 3.53% 2.35% FengShui 223595 2.04% 1.14%
Dragon 105069 12.52% 8.57% Dragon 224198 3.10% 1.80%

mPL 106031 15.28% 9.68% mPL 226102 2.08% 0.89%
QPlace 104688 5.66% 6.96% QPlace 225029 6.86% 6.67%

Table 1: Hyperedge Cardinality Increase Results. Cardinality Increased by Two. Pins is the total hyperedge
cardinality in the original netlists. Pins New is the total hyperedge cardinality in the new transformed
netlists. Average suboptimality (SUBOPT) results are as follows: FengShui 3.26%, mPL 5.84%, Capo 6.66%,
QPlace 7.81%, and Dragon 7.85%.

bench Nets Placer New Nets SUBOPT DELTA bench Nets Placer New Nets SUBOPT DELTA

ibm01 11507 Capo 12720 3.43% 2.53% ibm05 28446 Capo 31462 2.93% 2.36%
FengShui 12660 1.54% 0.90% FengShui 31016 0.48% 0.17%

Dragon 12632 3.92% 3.16% Dragon 31463 -0.05% -0.53%
mPL 12848 2.16% 1.32% mPL 31581 0.10% -0.18%

QPlace 12751 2.79% 1.79% QPlace 31350 0.16% -0.62%
ibm02 18429 Capo 20761 1.21% 0.51% ibm06 33354 Capo 36711 -3.79% -4.91%

FengShui 20563 3.75% 3.01% FengShui 36464 0.12% -0.39%
Dragon 20459 -0.21% -0.97% Dragon 36726 1.06% 0.45%

mPL 20639 2.22% 1.74% mPL 37084 -2.25% -2.96%
QPlace 20621 4.35% 3.60% QPlace 36734 6.20% 4.77%

ibm03 21621 Capo 23673 1.22% 0.57% ibm07 44394 Capo 49412 2.03% 1.21%
FengShui 23490 1.95% 1.48% FengShui 49056 3.17% 2.50%

Dragon 23434 1.62% 1.21% Dragon 49444 1.95% -1.30%
mPL 23980 0.00% -0.66% mPL 49684 -0.54% -1.14%

QPlace 23763 -2.57% -3.39% QPlace 49485 2.59% 1.64%
ibm04 26163 Capo 28887 1.11% 0.54% ibm08 47944 Capo 53208 -1.23% -1.95%

FengShui 28711 2.47% 2.03% FengShui 53122 -2.93% -3.62%
Dragon 28949 3.62% 2.84% Dragon 53460 0.45% -0.07%

mPL 29294 -0.17% -0.78% mPL 54038 3.33% 2.74%
QPlace 28987 -0.53% -1.21% QPlace 53111 2.26% 1.59%

Table 2: Hyperedge Decomposition Results. Nets is the total number of hyperedges in the original netlists.
Nets New is the total number of hyperedges in the new transformed netlists. Average suboptimality (SUB-
OPT) results are as follows: mPL 0.61%, Capo 0.87%, FengShui 1.32%, Dragon 1.54%, and QPlace 1.90%.

1.54%, and QPlace by 1.90%. We also carry out a more
detailed study on the ibm01 benchmark as given in Figure
10. In the plot, the x-axis gives the decomposition iteration,
and the y-axis gives the HPWL produced from the different
placers. While the magnitude of changes in HPWL is rela-
tively small, there is a clear resemblance between the curves
of Capo, QPlace, mPL, and FengShui. Dragon, however,
seems to exploit the transformation to improve its perfor-
mance. We can envision using this transformation within a
placement run to simplify netlists, leading to better place-
ments.

In a third series of experiments, we determine the subopti-
mality of existing placers with respect to the increase of two-
pin edges by using transformation EDGESUB. We present
our results in Table 3, where each edge is substituted by a
path of length 2 when possible. We report the total number
of hyperedges before the transformation (Nets) and after
the transformation (New Nets). From the results, placers
exhibit an unnecessary increase in wirelength by up to 20%.
To further study the impact of procedure EDGESUB, we
apply it to the ibm01 benchmark to transform its edges into

paths of length l=2, 3, 4, and 5 and plot the results in Figure
11. It is important to stress that given one placement π1, we
apply procedure EDGESUB only once to substitute all edges
by paths of length l if possible, i.e., we do not iterate execut-
ing procedure EDGESUB l times on consecutive placement
runs. From the plot, we notice that placers exhibit a con-
sistent increase in HPWL as the substitution increases with
the HPWL deviating by up to 18% for academic placers and
up to 35% for QPlace.

In a fourth series of experiments, we test the suboptimal-
ity of placers with respect to hybrid transformations. We
give our results in Table 4. The results show that placers
can deviate from their previous results by up to 32%.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new concept zero-change

netlist transformations to determine the suboptimality of
existing placers. While one may envision many transforma-
tions that do not change the HPWL of a given netlist, our
transformations share an important property: the optimal
HPWL of new netlist is not less than the original HPWL

213

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

H
P

W
L

Cardinality Increase

FengShui

mPL

Dragon

QPlace

Capo

Figure 9: Effect of increasing the cardinality of hy-
peredges on the HPWL for the ibm01 benchmark.

-2

-1

 0

 1

 2

 3

 4

 5

 0 0.5 1 1.5 2 2.5 3 3.5 4

H
P

W
L

Decomposition Iterations

Dragon

FengShui

mPL

QPlace

Capo

Figure 10: Effect of hyperedge decompositions on
HPWL for the ibm01 benchmark.

optimal value, and consequently the placement of the new
benchmarks is not “easier” than for the original benchmarks.
By applying our transformations and re-executing a placer,
we can interpret any deviation in HPWL results as a lower
bound to the deviation from optimal HPWL value, and thus
such deviation is a measure of suboptimality. Our set of
netlist transformations can be summarized as follows.

• Procedure HYPERC increases, if possible, the cardinal-
ity of hyperedges with degree ≥ 3 leaving 2-pin edges
intact.

• Procedure HYPERD simplifies large hyperedges (when
possible) of degree ≥ 3 by decomposing a larger hyper-
edge into two or more smaller hyperedges.

• Procedure EDGESUB increases the number of two-pin
edges if possible.

Our empirical results show that even when testing very
few netlist variants, we can easily find large deviations in
placement HPWL of up to 32%. From our empirical results,
we make the following remarks.

• Remark 1: Placers’ poor handling of hyperedges might
be the main cause for HPWL increase due to procedure
HYPERC transformations. This calls for more work on
mechanisms such as terminal propagation, or hyperedge
to clique/tree conversion. Perhaps better handling of
such mechanisms can lead to substantial improvement.

• Remark 2: Empirical results indicate that placers ex-
hibit large amount of suboptimality with respect to edge

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5

H
P

W
L

Path length substituted for 2-pin edges

mPL

FengShui

Capo

Dragon

QPlace

Figure 11: Effect of increasing the amount of edge
substitution on the HPWL for the ibm01 bench-
mark.

substitution. Such suboptimality might be a result of the
typical top-down sequential placement process, where in-
creasing the number of edges exemplifies the adverse im-
pact of sequential optimization.

• Remark 3: Placers can exploit the reduction in hyperedge
cardinality by procedure HYPERD to improve their re-
sults. However, our procedure HYPERD simultaneously
increases the number of hyperedges while reducing their
cardinality. Thus, transformation HYPERD has the po-
tential to reduce the HPWL (from Remark 1), and to
increase the HPWL (from Remark 2).

Experimental researchers in physical design would no doubt
agree there is a tendency to tune algorithms and codes to
specific benchmarks [2]. A good placer should be good not
just for a single real instance, but also for “similar” in-
stances. Using our transformations allows the creation of
a range of instances around any given arbitrary benchmark.
Thus, for the first time, the field is afforded a means of cre-
ating “similar” instances in a systematic way such that the
suboptimality and consistency of placement quality can be
immediately evaluated

Our future work will focus on extending this work to (1)
δ-change transformations, where the introduced transforma-
tions cause a δ change in the HPWL, but at the same time,
the change in the optimal HPWL can be bounded, and (2)
suboptimality evaluation using other metrics such as recti-
linear minimum spanning trees, or Steiner trees.

7. REFERENCES
[1] S. Adya, I. Markov, and P. Villarrubia, “On Whitespace and

Stability in Mixed-Size Placement,” in Proc. IEEE
International Conference on Computer Aided Design, 2003,
pp. 311–318.

[2] S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N.
Parakh, and P. H. Madden, “Benchmarking for Large-Scale
Placement and Beyond,” in Proc. ACM/IEEE International
Symposium on Physical Design, 2003, pp. 95–103.

[3] J. Beardwood, J. Halton, and J. Hammersley, “The Shortest
Path through Many Points,” Proc. Cambridge Philos. Soc. 55,
pp. 299–327, 1959.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?” in Proc.
ACM/IEEE Design Automation Conference, 2000, pp.
477–482.

[5] C. Chang, J. Cong, and M. Xie, “Optimality and Scalability
Study of Existing Placement Algorithms,” in Proc. IEEE Asia
and South Pacific Design Automation Conference, 2003, pp.
621–627.

214

bench Nets Placer New Nets SUBOPT DELTA bench Nets Placer New Nets SUBOPT DELTA

ibm01 11507 Capo 13703 7.84% 6.29% ibm05 28446 Capo 35682 5.33% 4.27%
FengShui 13852 6.89% 5.56% FengShui 36173 1.50% 1.15%

Dragon 13913 10.09% 8.48% Dragon 36021 1.17% 0.78%
mPL 13840 6.44% 5.03% mPL 36399 1.97% 1.58%

QPlace 12736 11.94% 9.37% QPlace 32017 2.93% 1.98%
ibm02 18429 Capo 22461 4.28% 3.53% ibm06 33354 Capo 42726 4.54% 3.75%

FengShui 22922 6.03% 5.09% FengShui 43096 4.15% 3.08%
Dragon 22832 8.90% 7.35% Dragon 43433 6.97% 5.56%

mPL 22881 3.43% 2.90% mPL 43551 10.13% 7.88%
QPlace 21072 7.58% 5.59% QPlace 36922 9.81% 7.05%

ibm03 21621 Capo 27217 6.76% 5.61% ibm07 44394 Capo 54858 7.11% 5.70%
FengShui 27617 4.16% 3.41% FengShui 55755 3.20% 2.52%

Dragon 27860 7.97% 5.86% Dragon 56329 12.52% 10.60%
mPL 27856 1.88% 0.93% mPL 56768 4.90% 3.76%

QPlace 23928 9.26% 6.87% QPlace 49916 20.08% 17.47%
ibm04 26163 Capo 33153 5.06% 4.07% ibm08 47944 Capo 58944 6.10% 3.71%

FengShui 33373 3.97% 3.13% FengShui 59811 3.89% 3.21%
Dragon 34044 11.05% 9.61% Dragon 60360 8.59% 7.23%

mPL 34204 12.19% 10.69% mPL 60528 8.37% 7.14%
QPlace 29320 9.20% 6.96% QPlace 53672 8.83% 6.67%

Table 3: Edge substitution Results. Nets is the total number of edges in the original netlists. Nets New is
the total number of edges in the new transformed netlists. Average suboptimality (SUBOPT) results are as
follows: FengShui 4.67%, mPL 5.84%, Capo 6.17%, Dragon 8.88%, and QPlace 10.78%.

bench Nets Placer New Nets SUBOPT DELTA bench Nets Placer New Nets SUBOPT DELTA

ibm01 11507 Capo 20667 25.52% 15.74% ibm05 28446 Capo 58780 10.13% 6.01%
FengShui 20782 11.07% 5.97% FengShui 62294 4.42% 2.15%

Dragon 22010 19.11% 11.86% Dragon 59834 4.51% 2.73%
mPL 25503 13.39% 7.77% mPL 95367 10.43% 5.94%

QPlace 25724 24.45% 21.74% QPlace 65487 3.96% 3.39%
ibm02 18429 Capo 38071 6.01% 3.07% ibm06 33354 Capo 74137 6.41% 3.44%

FengShui 38222 12.39% 7.21% FengShui 73185 8.20% 3.98%
Dragon 38888 17.99% 11.55% Dragon 76948 32.66% 22.93%

mPL 50006 10.03% 6.00% mPL 99769 13.91% 6.50%
QPlace 46934 7.76% 6.68% QPlace 89587 13.18% 11.52%

ibm03 21621 Capo 45256 24.71% 14.25% ibm07 44394 Capo 91524 7.72% 4.12%
FengShui 48530 9.83% 4.94% FengShui 99200 16.09% 9.20%

Dragon 49959 20.06% 12.36% Dragon 100220 10.96% 6.06%
mPL 65744 17.32% 9.26% mPL 139429 20.01% 10.27%

QPlace 55863 12.51% 11.02% QPlace 111255 9.50% 8.29%
ibm04 26163 Capo 56864 7.71% 3.86% ibm08 47944 Capo 96031 7.58% 4.11%

FengShui 55102 6.80% 3.43% FengShui 101847 16.67% 7.42%
Dragon 59298 10.94% 6.26% Dragon 105234 10.61% 6.16%

mPL 84333 37.29% 25.46% mPL 134085 16.81% 9.95%
QPlace 68422 12.94% 11.23% QPlace 115639 15.94% 13.93%

Table 4: Hybrid transformation Results. Nets is the total number of edges in the original netlists. Nets New
is the total number of edges in the new transformed netlists. Average suboptimality (SUBOPT) results for
are as follows: FengShui 10.68%, Capo 11.97%, Qplace 12.53%, Dragon 16.86%, and mPL 17.40%.

[6] C.-C. Chang, J. Cong, D. Pan, and X. Yuan, “Multilevel
Global Placement with Congestion Control,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22(4), pp. 395–409, 2003.

[7] C. E. Cheng, “RISA: Accurate and Efficient Placement
Routability Modeling,” in Proc. IEEE International
Conference on Computer Aided Design, 1994, pp. 690–695.

[8] J. Cong, M. Romesis, and M. Xie, “Optimality and Scalability
Study of Partitioning and Placement Algorithms,” in Proc.
ACM/IEEE International Symposium on Physical Design,
2003, pp. 88–94.

[9] H. Eisenmann and F. M. Johannes, “Generic Global Placement
and Floorplanning,” in Proc. ACM/IEEE Design Automation
Conference, 1998, pp. 269–274.

[10] L. W. Hagen, D. J. H. Huang, and A. B. Kahng, “Quantified
Suboptimality of VLSI Layout Heuristics,” in Proc.
ACM/IEEE Design Automation Conference, 1995, pp.
216–221.

[11] M. Hanan and J. M. Kurtzberg, “Placement Techniques,” in In
Design Automation of Digital Systems, M. A. Breuer Ed.,
1972, pp. 213–282.

[12] A. B. Kahng and S. Mantik, “On Mistmatches between
Incremental Optimizers and Instance Perturbations in Physical
Design Tools,” in ICCAD, 2000, pp. 17–22.

[13] ——, “Measurement of Inherent Noise in EDA Tools,” in
International Symposium on Quality in Electronic Design,
2002, pp. 206–211.

[14] A. B. Kahng and S. Reda, “Placemet Feedback: A Concept and
Method for Better Min-Cut Placement,” in Proc. ACM/IEEE
Design Automation Conference, 2004, pp. 357–362.

[15] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich,
“GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 10(3), pp.
356–365, 1991.

[16] Q. Liu and M. Marek-Sadowska, “A Study of Netlist Structure
and Placement Efficiency,” in ISPD, 2004, pp. 198–203.

[17] M. Queyranne, “Performance Ratio of Polynomial Heuristics
for Triangle Inequality Quadratic Assignment Problem,”
Operations Research Letters, vol. 4, p. 1986, 231-342.

[18] S. Sahni and T. Gonzalez, “P-Complete approximation
problems,” Journal of the ACM, vol. 23, pp. 555–565, 1976.

[19] W.-J. Sun and C. Sechen, “Efficient and Effective Placement
for Very Large Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 14(5), pp. 349–359, 1995.

[20] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON2000:
Standard-Cell Placement Tool for Large Industry Circuits,” in
Proc. IEEE International Conference on Computer Aided
Design, 2001, pp. 260–263.

[21] M. Yildiz and P. Madden, “Global Objectives for Standard-Cell
Placement,” in Proc. IEEE Great Lakes Symposium on VLSI,
2001, pp. 68–72.

215

