Performance-Driven OPC for Mask Cost Reduction

Puneet Gupta’, Andrew B. Kahng', Dennis Sylvester and Jie Yang*
+ EECS Department, University of Michigan at Ann Arbor
 ECE Department, University of California at San Diego
(puneet, abk@ucsd.edu), (dennis, jiey @ eecs.umich.edu)

ABSTRACT

With continued aggressive process scaling in the subwavelength
lithographic regime, resolution enhancement techniques (RETSs) such
as optical proximity correction (OPC) are an integral part of the
design to mask flow. OPC adds complex features to the layout, re-
sulting in mask data volume explosion and increased mask costs.
Traditionally the mask flow has suffered from a lack of design in-
formation, such that all features (whether critical or non-critical)
are treated alike by RET insertion. A recent work [1] proposes to
exploit design information (timing slacks) to reduce OPC data vol-
ume, but has a number of impractical aspects. In this paper, we
propose an implementable flow that drives model-based OPC ex-
plicitly by timing constraints, with the objective of reducing mask
data volume and OPC runtime. We apply a mathematical program-
ming based slack budgeting algorithm to determine edge placement
error (EPE) tolerance budgets for all polysilicon gate geometries.
These tolerances are then enforced by a commercial OPC tool to
achieve up to 24% MEBES data volume and 41% OPC runtime re-
ductions on a suite of six testcases implemented in Artisan TSMC
0.13um libraries.

1. Introduction

Continued technology scaling in the subwavelength lithography
regime results in printed features that are substantially smaller than
the optical wavelength used to pattern them. For instance, modern
130nm CMOS processes use 248nm exposure tools, and the indus-
try roadmap through the 45nm technology node will use 193nm
(immersion) lithography. The International Technology Roadmap
for Semiconductors (ITRS) [2] identifies aggressive microproces-
sor (MPU) gate lengths and highly controllable gate CD control as
two critical issues for the continuation of Moore’s Law cost and
integration trajectories. To meet ITRS requirements (see Table 1),
resolution enhancement techniques (RETSs) such as optical proxim-
ity correction (OPC) and phase shift masks (PSM) are applied to
an increasing number of mask layers and with increasing aggres-
siveness. The recent steep increase in mask costs and lithographic
complexity due to these RET approaches has had a harmful impact
on design starts and project risk across the semiconductor industry.

OPC and Mask Cost. In this work we focus on OPC, which is a
major contributor to mask costs as well as design turnaround time
(TAT). More than a 5X increase in data volume and several days of
CPU runtime are common side effects of OPC insertion in current
designs [3]. With respect to the cost breakdown shown in Figure 1,
OPC affects mask data preparation (MDP), defect inspection (and
implicitly defect repair), and the mask-writing process itself. To-
day, variable-shaped electron beam mask writers, in combination

Others

Materials

Data Prep.-OPC conversion/e-beam file
Defect Repair
Defect Inspection

Writing-Optical or e-beam
o 10 20 30 40
Weight in Mask Cost (%)

Figure 1: Relative contributions of various components of mask
cost [6].

with vector scanning!, comprise the dominant approach to high-
speed mask writing. In the standard mask data preparation flow,
the input GDSII layout data is converted into the mask writer for-
mat by fracturing into rectangles or trapezoids of different dimen-
sions. With OPC applied during mask data preparation, the number
of line edges increases by 4-8X over a non-OPC layout, driving up
the resulting GDSII file size as well as fractured data (e.g., MEBES
format) volume [4]. Mask writers are hence slowed by the software
for e-beam data fracturing and transfer, as well as by the extremely
large file sizes involved. Moreover, increases in the fractured lay-
out data volume? lead to disproportionate, superlinear increases in
mask writing and inspection time. Compounding these woes is the
fact that the total cost to produce low-volume parts is now dom-
inated by mask costs [5] since masks costs cannot be amortized
over a large number of shipped products. There is a clear need to
reduce the negative implications of OPC on total design cost while
maintaining the printability improvements provided by this crucial
RET step.

Design Function in the Design-Manufacturing Interface.

A primary failing of current approaches to the design-manufacturing

interface is in lack of communication across disciplines and/or tool
sets. For example, it is well documented that mask writers do not
differentiate among shapes being patterned - given this, gates in
critical paths are given the same priority as pieces of a company
logo and errors in either of these shapes will cause mask inspection
tools to reject a mask. In this light, we observe that OPC has tra-

ICompared to traditional raster scanning, vector scanning allows
features to be scaled up or down in size while maintaining sharp-
ness, but the write cost is proportional to feature complexity: the
mask pattern must be decomposed into a set of disjoint “shots” or
“flashes”, each of which takes roughly constant (unit) time.

%E.g., according to the 2003 ITRS [2], the maximum single-layer
MEBES file size increases from 216GB in 90nm to 729GB in
65nm.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 |IEEE

Year 2004 | 2007 | 2010
Technology Node | 90nm | 65nm | 45nm
MPU gate length | 37nm | 25nm | 18nm
MPU Gate CD 36 | 3.3nm | 2.2nm | 1.6nm
ASIC gate length | 53nm | 32nm | 22nm

ASIC CD 30 4.7nm | 29nm | 2.0nm

Table 1: The ITRS requirement of gate dimension variation
control is becoming more stringent as the technology scales.

ditionally been treated as a purely geometric exercise wherein the
OPC insertion tool tries to match every edge as best as it can. As
we show in our work, and has been observed in [1], such “over-
correction” leads to higher mask costs and larger runtimes. A first
approach to driving RET explicitly by performance considerations
was proposed at DAC-2003 by Gupta et al. [1]. Their work pro-
poses selective OPC based on an assumption of several available
levels of correction. By a clever mapping of assumed statistical
timing libraries and OPC costs to the classical gate sizing problem,
a commercial synthesis tool was coerced into functioning as a sizer
to determine minimum levels of correction for each cell instance
under timing and parametric yield constraints. However, we note
that OPC causes a pattern dependent variation and in this case mod-
eling variation by Gaussian random variables, as in [1], is inaccu-
rate. Further, the work of [1] does not quantify levels of correction
and hence is not validated (in fact, cannot be validated) within any
current industrial design-MDP flow.

A Performance-Driven OPC Methodology. In this work, we
propose a performance-driven OPC methodology that is demon-
strated to be highly implementable within the limitations of current
industrial design flows. Contributions of our work include the fol-
lowing.

o Quantified CD error tolerance. We propose a mathematical
programming based budgeting algorithm that outputs edge
placement error tolerances (in nm) for layout features.

o [ntegration within a commercial MDP flow. We describe a
practical flow implementable with commercial tools and val-
idate the minimum cost of correction methodology.

e Reduction of OPC overhead. We measure OPC overhead in
terms of additional MEBES features as well as runtime of
the OPC insertion tool and show substantial improvements
in both.

Our paper is organized as follows. In Section 2, we review the
“MinCorr” (minimum cost of correction) methodology [1], and dis-
cuss roadblocks to its adoption within the context of the modern de-
sign methodology. Section 3 proposes a practical approach to the
cost of correction problem that overcomes difficulties in the orig-
inal MinCorr methodology. Section 4 then describes several key
implementation details, our experimental setup, and experimental
results. Section 5 concludes with directions for future work.

2. Review of the MinCorr Methodology

In this section we review the MinCorr methodology presented
in [1]. Recall that current OPC techniques are unaware of de-
sign intent, so that the entire layout is corrected uniformly with
the same effort. On the other hand, features in the layout which
are not timing-critical might reasonably be expected to tolerate a
larger degree of variation. This leads to the key idea behind Min-
Corr: if various levels of correction are available to trade off OPC
cost for L.y uncertainty, then selected gates can receive less ag-
gressive OPC provided that the resulting increase in their timing

I|

(4} fl]] (4]

Figure 2: Example from [1] showing an assumed three levels of
OPC: (a) No OPC; (b) Medium OPC; (c) Aggressive OPC.

uncertainties does not harm the overall circuit performance. More
formally, the Minimum Cost of Correction (MinCorr) problem is:
Given a range of allowable corrections for each feature in the lay-
out as well as the cost and CD deviation associated with each level
of correction, find the level of correction for each feature such that
prescribed circuit performance is attained with minimum total cor-
rection cost.

The authors of [1] show equivalence between the MinCorr prob-
lem and the traditional gate-sizing problem, enabling the use of
off-the-shelf synthesis tools to solve the MinCorr problem. The key
analogy - and assumption - is that there are discrete allowed “sizes”
in the MinCorr problem that correspond to allowed levels of OPC
aggressiveness (see Figure 2). Furthermore, for each instance in
the design there is a cost and delay penalty associated with every
level of correction. The mapping between traditional gate-sizing
and the MinCorr problems is reproduced in Table 2. Using a flow
that involves construction of yield-aware libraries for each level of
correction, and a commercial synthesis tool which then “resizes”
the design for minimum cost of correction, [1] reports up to a 70%
reduction in figure count.

Our investigations have identified several key areas for improve-
ment over the approach of [1], as follows.

e OPC corrects the layout for pattern-dependent through-pitch
CD variation. Such variations are predictable, for example,
by lithography simulations. Treating these variations as ran-
dom - as is done in [1] - is inaccurate.

No distinction is made between field-poly and gate-poly fea-
tures in the MinCorr approach. Field poly features do not
impact performance and hence any delay-constrained Min-
Corr approach should not change the correction of field-poly.
Moreover, quality metrics of field-poly are different from
those of gate-poly (e.g., contact coverage [3]). Therefore,
the cost savings given in [1] may represent substantial over-
estimates.

Commercial OPC tools are driven by edge placement errors
(EPE?s), rather than critical dimensions (CDs). Thus, the lev-
els of correction assumed in [1] need to be quantified so that
they can be enforced using existing OPC insertion tools.

e The figure count numbers (which are proxies for mask cost
implications) for the cells are projected numbers, and are not
obtained by model-based OPC. Indeed, the entire MinCorr
flow as presented in [1] has not, to our knowledge, been val-
idated with any actual OPC insertion tool.

3. A Practical Methodology: EPEMinCorr

We now describe EPEMinCorr, a practical implementation of the
MinCorr methodology that accounts for the shortcomings in [1]
noted above. We can summarize the key contribution of EPEM-
inCorr as: We devise a flow to pass design constraints on to the
OPC insertion tool in a form that it can understand.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Gate Sizing MinCorr
Area = | Cost of Correction
Nominal delay | = Delay u+ ko
Cycle Time = | Selling point delay
Die Area = | Total Cost of OPC

Table 2: Correspondence established in [1] between the tradi-
tional gate sizing problem and the minimum cost of correction
(to achieve a prescribed selling point delay with given yield)
problem.

| EPE<0

(a) b)
Figure 3: The signed edge placement error (EPE).

As previously mentioned, OPC insertion tools are driven by edge
placement error (EPE) tolerances. Typical model-based OPC tech-
niques break up edges into edge-fragments that are then iteratively
shifted outward or inward (with respect to the feature boundary)
based on simulation results, until the estimated wafer image of each
edge-fragment falls within the specified EPE tolerance. EPE (and
hence EPE tolerance) is typically signed, with negative EPE corre-
sponding to a decrease in CD (i.e., moving the edge inward with
respect to the feature boundary). An example of a layout fragment
and its EPE is shown in Figure 3. Mask data volume is heavily
dependent on the assigned EPE tolerance that the OPC insertion
tool is asked to achieve. For example, Figure 4 shows the change
in MEBES file size for cell with applied OPC as the EPE tolerance
is varied. In this particular example, loosened EPE tolerances can
reduce data volume by roughly 20% relative to tight control levels.

Since model-based OPC corrects for pattern-dependent CD vari-
ation, which is systematic and predictable, we assert that OPC ac-
tually determines nominal timing, rather than parametric yield as
assumed in the work of [1]. This allows us to base our OPC inser-
tion methodology on traditional corner-case timing analysis tools
instead of (currently non-existent from a commercial standpoint)
statistical timing analysis tools. Our methodology adopts a slack
budgeting based approach - as opposed to a sizing based approach
as in [1] - to determine EPE tolerance values for every feature in the
design. For simplicity, our description and experiments reported
here are restricted in two ways: (1) we apply selective EPE toler-
ances in OPC to only gate-poly features, and (2) every gate feature
in a given cell instance is assumed to have the same EPE toler-
ance (the approach may be made more fine-grained using the same
techniques that we describe). Figure 5 shows our EPEMinCorr
flow. The quality of results generated by the flow are measured as
MEBES data volume of fractured post-OPC insertion layout shapes
as well as OPC insertion tool runtime, which can be prohibitive
when run at the full-chip level. In the remainder of this section,
we describe details of the major steps of the Figure 5 EPEMinCorr
flow.

3.1 Slack Budgeting

360

o SN
\

300 \
280 \

MEBES Data Volume

EPE Tolerance (nm)

Figure 4: Mask data volume (kB) vs EPE tolerance for a
NAND3X4 cell in TSMC 130nm technology.

Mask cost per unit delay increment

Routed design Design timing slack reports

Slack Budgeting

I

Map delay budget to
CD tolerance

o

Map CD tolerance
to EPE tolerance

o

Constrained OPC
insertion

Figure 5: The EPEMinCorr flow to find quantified edge place-
ment error tolerances for layout features and drive OPC with
them.

The slack budgeting problem seeks to distribute slack at the pri-
mary inputs of combinational logic (i.e., sequential cell outputs) to
various nodes in the design. One of the earliest and simplest ap-
proaches, the zero-slack algorithm (ZSA) [7], iteratively finds the
minimum-slack timing path and distributes its slack equally among
the nodes in the path. The MISA algorithm for slack budgeting
proposed in [8] distributes slack iteratively to an independent set of
nodes. As with ZSA, the objective is to maximize the total added
incremental delay budget on timing arcs. A weighted version of
MISA is also proposed in [8].

We observe:

e Neither MISA variant is guaranteed to provide optimal solu-
tions.

e ZSA is much faster than MISA, and a weighted version of
ZSA can also be formulated.

o While [9] formulates the budgeting problem as a convex pro-
gramming problem, full-chip MISA or mathematical pro-
gramming is, as far as we can determine, too CPU-intensive
for inclusion in a practical flow.

We propose to approximate full-chip mathematical programming
by iteratively solving a sequence of linear programs (LPs). In each
iteration, slack is budgeted among the top k available paths. Once

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 |IEEE

a budget is obtained for a node, this budget is retained as an up-
per bound for subsequent iterations. The process is repeated until
all nodes have been assigned a slack budget or path slack is suffi-
ciently large. The basic LP has the following form:

n
Maximize Y Cjs; (1)
i=1
2 5j < 8k V k € Current path list
JEP

sjgs;VjeF

where C; denotes the correction cost decrease per unit delay in-
crease for cell i, and s; is the slack allocated to cell i. The notation
Py is used to denote the k™" most critical path, and S; is the slack
of this path. Finally, ' denotes the set of nodes with slacks fixed
from previous iterations. An example sequence of LPs might be
obtained by allowing k to take on the range from 1 to 100 in the
first iteration, 101 to 200 in the second iteration, and so on.

We observe that when a budgeting formulation is adopted in
place of a sizing formulation, the method of accounting for changes
in next-stage input pin capacitance becomes an open question. To
be conservative, we generate timing reports with pin input capaci-
tances that correspond to the loosest tolerance (i.e., largest pin ca-
pacitance) but gate delays corresponding to the tightest achievable
tolerance. C; is obtained via a pre-built look-up table (similar to .lib
format) containing the increase in data volume, mapped against de-
lay change.

Our budgeting procedure yields positive delay budgets leading to
positive EPE tolerances. Since EPE tolerance is a signed quantity
(e.g., in Mentor Calibre, a common OPC insertion tool), negative
EPE tolerances (corresponding to reduced gate length and faster
delay) can also be obtained in a similar way based on hold-time or
leakage power constraints. However, in this paper we assume equal
positive and negative EPE tolerances since we deal with purely
combinational benchmarks and focus on timing rather than power.

3.2 Calculation of CD Tolerances

To map delay budgets found from the above linear programming
based formulation to CD tolerances, we require characterization
of a standard-cell library with varying gate lengths. Using such
an augmented library, along with input slew and load capacitance
values for every cell instance, we can map delay budgets to the cor-
responding gate lengths. For example, if a particular instance with
specified load and input slew rate has a delay budget of 100ps, then
we can select the longest gate length implementation of this gate
type that meets this delay. This largest allowable CD will lead to
a more easily manufactured gate with less RET effort. Subtracting
these budgeted gate lengths from nominal gate lengths yields the
CD tolerance for every cell in the design.

3.3 Calculation of EPE Tolerances

The next step in our flow maps CD tolerances to signed EPE tol-
erances. Again, obtaining EPE tolerances is crucial since this is the
parameter which OPC insertion tools understand and can exploit.
As noted above, in this work we assume positive and negative EPE
tolerance to be the same. Since CD is determined by two edges, the
worst-case CD tolerance is twice the EPE tolerance.

In most lithography processes, gates shrink along their entire
width such that the printed gate length is always smaller than the
drawn gate length, except at the corners of the critical gate feature.
OPC typically biases the gate length such that corrected gate length
is larger than the designer-drawn gate length. Thus, model-based
OPC shifts edges outward, i.e., in the “positive” direction, until it
meets the EPE tolerance specification. If the step size of each edge

Test Case Source Cell Count
c432 ISCASS85 337
c5315 ISCASS85 2093
c6288 ISCASS85 4523
c7552 ISCASS5 2775
alul28 Opencores 12403

r4_sova Industry 34288

Table 3: Benchmark details.

move is small enough, the EPE along the gate width will always be
negative (since we are approaching the larger nominal gate length
value starting from the smaller printed gate length value). As a re-
sult, actual printed gate length will almost always be smaller than
the drawn gate length, leading to leakier but faster devices.

To achieve a more unbiased deviation from nominal, we exploit
the behavior of the OPC tool by applying simple pre-biasing of
gate features in an attempt to achieve EPE tolerances that are equal
to CD tolerance. Specifically, we pre-bias each gate feature by its
intended EPE tolerance. For instance, for a drawn gate length of
130nm and EPE tolerance of 10nm, the printed CD would typically
lie between 110nm and 130nm (each edge shifts by 10nm inward).
If the gate length is biased by 10nm so that the OPC tool views
140nm as the target CD, the printed CD would lie between 120nm
and 140nm, which amounts to a 10nm CD tolerance. In this way,
pre-biasing achieves CD tolerances equal to the EPE tolerance. An
example of the average CD for a specific gate-poly with and with-
out pre-biasing is shown in Figure 6. It is clear that pre-biasing
achieves its goal of attaining average CDs that are very close to the
target CD (130nm in our case). Another point illustrated in Figure
6 is that the variation in CD (measured as the standard deviation of
CD taken across all edge-fragments) grows as the EPE tolerance is
relaxed. This is shown more clearly in Section 4.

3.4 Constrained OPC

We enforce the obtained EPE tolerances within a commercial
OPC insertion flow. We use Calibre [10] as the OPC insertion tool;
details of constraining the tool are described in the next section.

4. Experimental Setup and Results

In this section we describe our experiments and the results ob-
tained in order to validate the EPEMinCorr methodology.

4.1 Test Cases

We use several combinational benchmarks drawn from ISCAS85
suite of benchmarks, Opencores [11] and industrial signal process-
ing benchmarks>. These benchmark circuits are synthesized, placed
and routed in a restricted TSMC 0.13 um library containing a total
of 32 cell macros with cell types of BUF, INV, NAND2, NAND3,
NAND4, NOR2, NOR3, and NOR4. The test case characteristics
are given in Table 3.

4.2 Library Characterization

We assume a total of EPE tolerance levels ranging from +4nm
to =14nm. Corresponding to each EPE tolerance, the worst case
gate length is 130nm + EPE Tolerance. We map cell delays to
EPE tolerance levels by creating multiple .lib files for each of the
10 worst case gate lengths using circuit simulation. For simplicity,
we neglect the dependence of delay on input slew in our analysis
but this could easily be added to the framework.

Expected mask cost for each cell type is extracted as a function
of EPE tolerance. We run model-based OPC using Calibre on indi-

3Thank Prof. B. Nikolic with the Dept. of EECS, University of
California at Berkeley, for providing the benchmark.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

vidual cells followed by fracturing to obtain MEBES data volume
numbers for each (cell, tolerance) pair. Though the exact correc-
tions applied to a cell will depend somewhat on its placement en-
vironment, standalone OPC is fairly representative of data volume
changes with changing EPE tolerance. Finally, we calculate the
sensitivity of mask cost to delay change under the assumption that
cost reduction is a linear function of delay increase. This assump-
tion is based on linearity between gate delay and CD as well as the
rough linearity shown in Figure 4 between data volume and EPE
tolerance. We then build a .lib-like look-up table of correction cost
sensitivities (with respect to the tightest EPE tolerance of 4nm).
‘When slack is distributed to various nodes, we extract the load ca-
pacitances that are used to identify entries in the sensitivity table.
Cost change is most sensitive to delay changes when the load ca-
pacitance is small (this typically indicates a small driver and subse-
quently small amount of data volume) and the sensitivity numbers
are on the order or 102 to 10* MEBES features per ns delay change.

4.3 EPEMinCorr with Calibre

Our OPC flow involves assist-feature insertion followed by model-
based OPC. The EPE tolerance is assigned to each gate by the rag-
ging command within Calibre. We first separate the entire poly
layer into gate poly and field poly components. The field-poly tol-
erance is taken to be £14nm while gate-poly tolerance ranges from
+4nm to +14nm. We tag the assigned EPE tolerance to cell names.
In this way, we can track the EPE tolerance of each gate individu-
ally. We take 1nm as our step size* when applying OPC to obtain
very precise correction levels. We set the iteration number to the
minimum value beyond which adding mask cost and CD distribu-
tion show little sensitivity to OPCs, which is found experimentally.
After model-based OPC is applied, we perform ’printimage’ sim-
ulations in Calibre to obtain the expected as-printed wafer image
of the layout. Average gate CD and its standard deviation are ex-
tracted from this wafer image. The corrected GDSII is fractured
into MEBES using CalibreMDP. The total mask data volume is
then determined based on the MEBES file sizes.

4.4 Results

We synthesize the benchmark circuits using Synopsys Design
Compiler. Place and route is performed using Cadence Silicon
Ensemble. Synopsys Primetime is used to output the slack report
of the top 500 critical paths (not true for the biggest benchmark
r4_sova where more paths are needed as discussed below) as well
as the load capacitance for each driving pin. As noted above, STA
is run with a modified 134nm (tightest EPE tolerance) library with
pin capacitances corresponding to 144nm (loosest EPE tolerance)
to remain conservative after slack budgeting. We use Cplex v8.1
[12] as the mathematical programming solver to solve the budget-
ing linear program. Two types of benchmarks are involved in our
experiments: (i) large designs with a “wall” of critical paths, e.g.,
r4_sova in Table 3; and (ii) circuits with fairly small sizes, e.g.,
benchmarks except r4_sova. For (ii), a single iteration is efficient to
solve the budgeting problem; for (i) however, more iterations may
be necessary because some paths which are potentially critical but
are not reported due to the constraint of maximum number of crit-
ical paths may become top critical later on as they are not treated
as optimization objects by the slack budgeting algorithm, resulting
in performance degradation. One possible solution to this problem
is to perform iterations to selectively include those paths that may
cause performance degradation, as slack budgeting objects. An-

4Step size is the minimum perturbation to an edge that model-based
OPC can make. Smaller step sizes lead to better correction accu-
racy at the cost of runtime.

other simple but not as efficient option is to increase the constraint
of maximum number of critical paths in the slack report. We deploy
a hybrid way for r4_sova in our case, i.e., the constraint on the ini-
tial number of critical paths is increased from 500 to 10000, then
in each iteration 5000 more paths that are potentially critical are
included for slack budgeting. After 8 iterations the performance
degradation due to the selective OPC is reduced to less than 1%
(first iteration gives 4.3% performance degradation).

The extracted CD variation for test case ¢432 after EPEMinCorr
OPC is shown in Figure 7. The distributions show that Calibre is
able to enforce assigned tolerances very consistently. A tighter CD
distribution for critical gates is achieved while non-critical gates
(which can tolerate a larger deviation from nominal) have a more
relaxed (and hence less expensive to implement) gate length dis-
tribution. Table 4 compares the runtime and data volume results
for EPEMinCorr OPC and traditional OPC. For relatively small
circuits, a single iteration of the budgeting approach ensures that
there is no timing degradation going from the traditional to the
EPEMinCorr flow, and the budgeting runtimes are negligibly small
ranging from 1s to 11s. For large designs especially those with a
“wall” of critical paths, iterations may be required to avoid per-
formance degradation and the sum of budgeting runtimes of each
iteration may reach several hours (7 hours for r4_sova). The impor-
tant result is the amount of mask cost reductions achieved whether
measures as runtime of model-based OPC or fractured MEBES
data volume. EPEMinCorr flow reduces MEBES data volume by
17%-24%. Such reductions directly translate to substantial mask-
write time improvements. OPC runtimes are improved by 6%-41%.
These percentage numbers translate to a huge absolute TAT sav-
ings. For instance, the EPEMinCorr flow saves 16.4 hours com-
pared to the traditional OPC flow on a 34000 gate benchmark.

5. Conclusions and Future Work

This work aims to propose and implement a practical means of
reducing masks costs and the computational complexity of OPC
insertion through formalized performance-driven OPC assignment.
In particular we focus on the use of edge placement errors to drive
OPC insertion tools and leverage EPEs as the mechanism to di-
rect these tools to correct only to the levels required to meet timing
specifications. An iterative linear programming based approach is
used to perform slack budgeting in an efficient manner. This for-
mulation results in a specific slack budget for each gate which is
then mapped to allowable critical dimensions in the standard cell.
Finally EPEs are generated from the CD budget and tags are placed
on gates to indicate to the OPC insertion tool the appropriate level
of correction. Our results on several benchmarks ranging from 300
to 34000 cells show up to 24% reductions in MEBES data volume
which is frequently used a metric for RET complexity. Further-
more, the runtime of the OPC insertion tool is reduced by up to
41% - this is critical since running OPC tools at the full-chip level
is an extremely time-consuming step during the physical verifica-
tion stage of IC design.

Our future work in this area will extend the above framework
to consider sequential circuits (e.g., comprehending hold-time con-
straints) and leakage power constraints. This latter point is signif-
icant given that the spread observed in static power consumption
in modern microprocessors can exceed an order of magnitude due
to the exponential dependency of leakage on channel length [13].
In future technologies allowable CD tolerances may be set more
by bounds on acceptable leakage power than by traditional delay
uncertainty constraints. We also plan to extend the EPEMinCorr
methodology to field-poly features.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

without pre-bias for the cell macro NAND3X4.

Traditional OPC Flow EPEMinCorr Flow
Testcase | CD Distribution OopPC Delay | Budgeting CD Dis tribution OPC Delay | Normalized
All Gates (nm) | Runtime (ns) Runtime | All Gates (nm) | Critical Gates (nm) | Runtime (ns) MEBES
mean G (s) (s) mean c mean c (s) Volume
r4_sova | 126.3 2.07 142989 8.19 29648 131.9 | 5.00 130.0 1.75 83864 8.26 0.79
alul28 126.1 1.48 51516 3.28 11 131.5 | 493 130.8 2.04 33535 3.28 0.76
c7552 126.2 1.89 7149 1.59 4 132.0 | 4.77 130.1 1.99 5142 1.59 0.78
c6288 126.0 1.37 12830 5.21 9 1314 | 445 129.7 1.27 9710 5.21 0.82
c5315 126.1 1.82 4539 1.94 3 131.7 | 4.70 129.7 1.89 4247 1.94 0.79
c432 126.8 1.57 1020 1.33 1 131.3 3.90 129.9 1.67 737 1.33 0.83
Table 4: Impact of EPEMinCorr optimization on Cost and CD. All runtimes are based on a 2.4GHz Xeon machine with 2GB memory
running Linux.
600 -
126 2
) g 500 Al
£
1244 - g 400
\ l.; Non-critical
—_ - (=
E 122 \'\ o 3004 “\ critical
8 120 - % 200 -
] £ "
® 118+ \ 2 100 \
: N \
? 116 4 \ 0 T - T T T T T 1
5 115 120 125 130 135 140 145 150
z Gate CD (nm
< 114-. \.\ (nm)
—a—n
124 Figure 7: Gate CD distribution for c432. Gates with budgeted 4nm
, . , , . , . , . , EPE tolerance are labeled critical gates while others are labeled as non-
4 6 8 10 12 14 critical. The y-axis shows the number of fragments of gate edges with
EPE Tolerance (nm) a given printed CD.
(a) Unbiased OPC 6. REFERENCES
[1] P. Gupta, A.B. Kahng, D. Sylvester and J. Yang, ‘A Cost-Driven
Lithographic Correction Methodology Based on Off-the-Shelf
138 Sizing Tools”, Proc. IEEE/ACM DAC, June 2003, pp. 16-21.
1 [2] International Technology Roadmap for Semiconductors, 2003.
136 http://public.itrs.net/
i [3] P. Gupta, F.-L. Heng and M. Lavin, ‘Merits of Cellwise
— 134 Model-Based OPC”, Proc. SPIE International Symposium on
g | Microlithography, 2004, pp. 182-189.
g [4] S. Murphy, Dupont Photomask, SEMATECH: Mask Supply
o 1324
IT)] m Workshop, 2001.
i) / - [5] M.L. Rieger, J.P. Mayhew and S. Panchapakesan, ‘Layout Design
& 130+ i = | — Methodologies for Sub-Wavelength Manufacturing”, Proceedings of
3 1 " \. / Design Automation Conference, 2001, pp. 85-92.
© 128 4 m - [6] Optical Lithography Cost of Ownership - Final Report ,
g] http://www.sematech.org/docubse/document/4014atr.pdf
< 126 [7] R. Nair, C.L. Berman, P.S. Hauge and E.J. Yoffa, ‘Generation of
E Performance Constraints for Layout”, IEEE Transactions on
124 1 Computer Aided Design, 8(8), 1989, pp. 860-874.
. T [8] C. Chen, E. Bozorgzadeh, A. Srivastava and M. Sarrafzadeh,
4 6 8 10 12 14 ‘Budget Management with Applications”, Algorithmica, 2002, pp.
EPE Tolerance (nm) 261-275.
[9] E. Bozorgzadeh, S. Ghiasi, A. Takahashi and M. Sarrafzadeh,
. ‘Optimal Integer Delay Budgeting on Directed Acyclic Graphs”,
(b) Pre-biased OPC Proc. IEEE/ACM DAC, 2003, pp. 920-925.
[10] http://www.mentor.com
X . . . [11] http://www.opencores.org
Figure 6: Comparison of average printed gate CD with and [12] http://www.ilog.com

[13] P. Gupta, A.B. Kahng, P. Sharma and D. Sylvester, ‘Selective
GateLength Biasing for Cost-Effective Runtime Leakage Control”,

Proc. IEEE/ACM DAC, June 2004, pp. 327-330.

YF]',F.

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

COMPUTER

SOCIETY

