Net Partitions Yield Better Module Partitions

Jason Cong, Lars Hagen and Andrew Kahng

UCLA Department of Computer Science
Los Angeles, CA 90024-1596

Abstract

In this paper, we demonstrate that the “dual” in-
tersection graph of the netlist strongly captures cir-
cuit properties relevant to partitioning. We apply this
transformation within an ezisting testbed that uses an
eigenvector computation to derive a linear ordering
of nets, rather than modules [12]. We then find a
good module partition with respect to the ratio cut mei-
ric [23] via a sequence of incremental independent-set
computations in bipartite graphs derived from the net
ordering. An efficient matching-based algorithm called
IG-Match was tested on MCNC benchmark circuits as
well as additional industry ezamples. Resulls are very
encouraging: the algorithm yields an average of 28.8%
improvement over the results of [23]. The intersection
graph representation also yields speedups over, e.g.,
the method of [11], due to additional sparsity in the

netlist representation.!

1 Preliminaries

A standard model for VLSI layout associates a
graph G = (V, E) with the circuit netlist; vertices in
V represent modules and edges in E represent signal
nets. The vertices and edges of G may be weighted to
reflect module area and the multiplicity or importance
of a wiring connection. Because nets often have more
than two pins, the netlist is more generally represented
by a hypergraph H = (V, E'), where hyperedges in E’
are the subsets of V contained by each net.

Two basic partitioning formulations are:

e Minimum-Width Bisection: Given G =
(V, E), find the partition of V into disjoint U and
W, with |U| = |W|, such that e(U, W) i.e., the
number of edges in j(u,w) € F|ue€ U and
w € W}, is minimized.

¢ Minimum Ratio Cut: Given G = (V, E), find
the partition of V into disjoint U and W such that

eU'W . e . d
OTIw1 is minimized.

Minimum-width bisection has been a popular ob-
jective, particularly within hierarchical approaches.
However, the area bisection requirement is unneces-
sarily restrictive, and various ad hoc thresholds and

I Research supported in part by NSF grants MIP-9110511
and MIP-9110696.

penalty functions (e.g., the r-bipartition formulation
of Fiduccia and Mattheyses [8]) have had varying de-
grees of success in relaxing this constraint. With this
in mind, the recent ratio cut metric of Wei and Cheng
£23] has proved to be a highly successful objective
unction for many applications, ranging from layout
to hardware simulation. The ratio cut metric intu-
itively allows freedom to find “natural” partitions: the
numerator captures the minimum-cut criterion, while
the denominator favors an even partition. Unfortu-
nately, finding either a minimum-width bisection or a
minimum ratio cut is NP-complete, so heuristic meth-
ods must be used. Previous approaches to min-width
bisection, most of which can also be applied to the
minimum ratio cut objective fall into several classes,
as surveyed in [6] [12] f18].

In practice, the class of iterative methods are pop-
ular either as stand-alone strategies or as a postpro-
cessing refinement to other methods. Iterative meth-
ods are based on local perturbation of a current so-
lution and can be greedy or stochastic. Practical im-
plementations will use a number of random starting
configurations and return the best result [18] [23] in
order to adequately search the solution space and give
predictable performance, or “stability”. For example,
Wei and Cheng [23] use an adaptation of the shifting
and group swapping methods in [8], and take the best
result of 10 runs, in order to achieve the results cited
in Section 4.

With respect to the present work, the most impor-
tant class of partitioning algorithms consists of “spec-
tral” methods which use eigenvalues and eigenvectors
of matrices derived from the netlist graph. Recall
that the circuit netlist may be represented by the
undirected graph G = (V, E) with |V| = n vertices
V1,...,0n. Often, we use the n x n adjacency matriz
A = A(G), where A;; is equal to the weight of (v;, v;)
if (vi,v;) € E and A;; = 0 otherwise. By convention
A =0foralli =1,...,n. If we let d(v;) denote
the degree of node v; (i.e., the sum of the weights of
all edges incident to v;), we obtain the n x n diagonal
degree matriz D defined by D;; = d(v;).

Early theoretical work connecting graph spectra
and partitioning is due to Barnes, Donath and Hoff-
man [1] [6] 57] Most recent eigenvector and eigen-
value methods have dealt with both module placement
(Frankle and Karp [9], Kleinhans et al. [17] and Tsay
and Kuh [21]) and graph min-cut bisection (Blanks

29th ACM/IEEE Design Automation Conference®

0738-100X/92 $3.00 © 1992 IEEE

Paper 5.1

}2] and Boppana [3]). In general, these previous works
ormulate the partitioning problem as the assignment
or placement of nodes into bounded-size clusters, i.e.,
chip locations. The problem is then transformed into
a quadratic optimization, and Lagrangian relaxation
is used to derive an eigenvector formulation [13]. In
{11], Hagen and Kahng established a close relation-
ship between the optimal ratio cut cost and the second
smallest eigenvalue of the matrix Q = D — A, where
D and A are as defined above:

Theorem 1 (Hagen-Kahng): Given a netlist

raph G = (V, E) with adjacency matrix A, diagonal
ﬁegree matrix D, and IV]] = n, the second smallest
eigenvalue A of Q = D — A yields a lower bound on the
cost ¢ of the optimal ratio cut partition, with ¢ > %

O

This result suggests that the eigenvector z corre-
sponding to J, i.e., the solution of the matrix equation
Qz = Az, be used to guide the partitioning. In [11
z was used to induce a linear ordering of the mo
ules, and the best “split” in terms of ratio cut cost
was returned. To be more specific, the n components
z; of the eigenvector were sorted, yielding an ordering
v="vi,..., 0, of the modules. The splitting index r,
1< r < n—1, was then found which gave the best ra-
tio cut-cost when modules with index > r were placed
in U and modules with index < r were placed in W.

The main contribution of the present work follows
[12] in highlighting advantages to using the dual repre-
sentation of the logic design, and confirming that net
structure and interrelationships, rather than module
adjacencies, should constitute the primary descriptors
of a circuit. In particular, the dual intersection graph
representation of the netlist hypergraph yields much
more natural circuit partitioning formulations, since
it inherently emphasizes relationships between signal
nets. Moreover, the intersection graph yields a sparser
circuit representation than traditional net models.?

When we use the intersection graph representation
of the netlist, we may formulate the minimum-cost
module partitioning as a two-stage process. In the
first stage, we partition the nets of the design. Some
modules will belong only to nets on one side of the par-
tition; these modules can be unambiguously assigned
to that side. However, other modules may belong to
nets on both sides of the partition. Thus, the second
stage of the module partitioning involves finding the
best completion of the net partition, i.e., an assign-
ment of each shared module to one side or the other
such that the partition cost is minimized. We propose
an efficient algorithm, called IG-Match, for completing
the net partition; the algorithm is so named because
it is based on a matching computation in a special

’

2For example, as reported in {12}, the intersection graph of
the MCNC Test05 benchmark has an adjacency matrix that is
over ten times sparser than the adjacency matrix created us-
ing the standard cliq del (19935 o8 versus 219811
nonzeros). This allows significant speedup of numerical com-
putations: the eigenvector computation for Test05 using the
intersection graph representation requires 48 CPU seconds on a
Sun 4/60, versus 619 seconds with the standard clique model.

Paper 5.1

48

bipartite graph. IG-Match affords a tight bound on
the number of nets cut in completing any given par-
tition; this bound is essentially best-possible. When
we move from one net partition to another based on
a shift in the splitting index of the sorted eigenvec-
tor, the corresponding change in the bipartite graph
is very small. Therefore, an incremental strategy is
possible, with the computational burden of examining
all splits of the eigenvector effectively amortized. Em-
pirical results are very encouraging. The IG-Match
method yields significant improvements over the pre-
vious ratio-cut partitioning methods: results are an
average of 28.89%) better than those of Wei and Cheng
{22] [23], and this also represents a 6% average im-
provement over the recent “voting” scheme of Hagen
and Kahng (12].

The remainder of this paper is organized as follows.
In Section 2, we discuss netlist representations and de-
fine the netlist intersection graph. In Section 3, we
formulate the problem of completing the module par-
tition from a given net partition as a maximum in-
dependent set instance in a bipartite graph, and then
present the IG-Match algorithm along with analyses
of its performance and complexity. %ection 4 gives
performance results on benchmarks from MCNC and
industry sources; we also give comparisons with the
RCut1.0 program of Wei and Cheng [23]. Finally, Sec-
tion 5 gives conclusions and directions for future work.

2 The Netlist Intersection Graph

The transformation of the netlist hypergraph to a
graph is accomplished via a net model which deter-
mines the A;; values in the weighted graph represen-
tation of the design. The most common net model is
that of a weighted clique, where a k-pin net will induce
C(k,2) edges among its k modules. Recent work has
widely adopted a “standard” weighted clique model
[18), wherein a k-pin net contributes ¢i; to each of

C(k,2) A;; values. Advantages of the clique model
stem chiefly from its “fairness”; however, the model
also has a number of disadvantages. For circuit netlists
with large nets the clique model will induce dense ad-
jacency matrices poorly suited for the numerical meth-
ods used to calculate the eigenvector.

If we consider the partitioning problem from a
slightly different perspective, we realize that the min-
imum (ratio) cut metric is not only asking for an as-
signment of modules to the two sides of the partition,
but is equivalently asking us to assign nets to the two
sides of the partition, with the objective of maximizing
the number of nets that are not cut by the partition.
In other words, we want to assign the greatest possible
number of nets completely to one side or the other of
the partition. A central observation [12] is that such
an objective can be captured using the graph dual of
the netlist hypergraph, also known as the intersection
graph of the hypergraph.

The dualization of the problem is as follows. Given
a netlist hypergraph H = (V, E’) with |V| = n and
|E’| = m, we consider the graph G’ = (V’, Eg') which
has |V'| = m, i.e., G’ has m vertices, one for each hy-

peredge of H (that is to say, each signal in the netlist).
Two vertices of G’ are adjacent if and only if the corre-
sponding hyPered es in H have at least one module in
common. G’ is called the intersection graph of the hy-
pergraph H. For any given H, the intersection graph
G’ 1s uniquely determined; however, there is no unique
reverse construction. An example of the intersection
graph is shown in Figure 1.

Netl

Ner2

Ne4 Net3

Figure 1: Left: the hypergraph for a netlist with
four signal nets (each node represents a module).
Right: the intersection graph of the hypergraph
(each node represents a signal net).

Given this definition, the adjacency matrix A’ of
the intersection graph G’ will have a nonzero element
A, when signal nets s, and s, share at least one mod-
ule. As with the usual mapping of the netlist hyper-
graph to a graph via the weighted clique net model,
there are a number of possible heuristic edge weighting
methods for the intersection graph. We have tried sev-
eral approaches, most of which lead to extremely sim-
ilar, high-quality partitioning results; this indicates
that the intersection graph is indeed a robust, nat-
ural representation. In the discussion below, we use
the following weighting in the intersection graph con-
struction.

For each pair of signal nets s, and s; with ¢ > 1
nodes vy,...,v, in common, let |s,;| and |sy| be the
number of nodes in s, and s, respectively. The ele-
ment A’ is then given by

1

[so]

! —i_l—(_l__{,)
® = Za(de—1) [sal

where dy, is again equal to the degree of the k** com-
mon node v, i.e., the number of nets incident to mod-
ule k.3 The diagonal degree matrix D’ is constructed
analogously to the matrix D described in Section 1
above, with the D;J- entry equal to the sum of the

: : sth ‘s R m 1
entries in the j** row of A’ i.e,, Dj; =317, Al

Given A’ and D', we then find the eigenvector z’
corresponding to the second smallest eigenvalue X’ of
@ = D' — A, using the same Lanczos code as in

3This net weighting scheme is designed so that overlaps be-
tween large nets are accorded somewhat lower significance than
overlaps between small nets.

49

[11] [12]). As described above, the sorted eigenvector
yields an ordering v’ of the net indices, and we use
this ordering to derive a heuristic module partition.
Before presenting our new partitioning algorithm, we
note that the intersection graph has had only limited
previous application in the CAD literature. Pillage
and Rohrer 120] applied the “nets-as-points metric”
to module placement, the idea being that a heuris-
tic 2-D placement of nets would establish preferred
regions for each module - i.e., a module would wish
to lie somewhere within the convex hull of the loca-
tions of nets to which it belonged. For partitioning,
Kahng [16] used diameters of the intersection graph to
yield an approximate hypergraph bisection heuristic;
more recently, Yeh et al. [24] proposed to compute
gains from a “net perspective” in an iterative multi-
way partitioning approach. Finally, Hagen and Kahng
[12] have recently given a spectral approach which also
involves the netlist intersection graph.

3 Module Partitions Based on Net
Partitions

Recall that sorting the eigenvector of the second
smallest eigenvalue of the netlist intersection graph
yields a linear ordering v’ for the signal nets of the
original netlist. Nets at one end of the sorted eigen-
vector will usually have very weak connections to nets
at the other end, so our basic strategy is to test all
possible splitting points of the linear ordering, in or-
der to see which splits might lead to a good module
partition. Although such an approach seems compu-
tationally expensive, an efficient incremental method
can be applied.

Consider what happens when we split the vertices
of the intersection graph into two sets L and R. A net
l; € L might share one or more modules with a net
rj € R. If we draw an edge {l;,r;} between all pairs
of signal nets (I;, r;) which are on opposite sides of the
split and which have at least one module in common,
we induce a bipartite graph B(L, R, Ep) (see Figure
2). Note that according to such results as Theorem
1'[11], use of the eigenvector-based ordering suggests
that |Eg|, i.e., the number of edges in {(l,-,rj%fl.' €
L,r; € R}, will be small.

1 3 2 1 4
4
L={1234)
2
5 —
R ={56,7.8)
3 7
O O
6 8 7 5
6 8

Figure 2: Inducing a bipartite graph from the
intersection graph.

If a given edge {l;,r;} is present in B, the key ob-
servation is that for any module partition, at most

Paper 5.1

one of the following can be true: (i) /; has all of its
modules on the L-side of the partition, or (ii) r; has
all of its modules on the R-side of the partition. This
follows immediately from the fact that l; and r; have
some module in common. In [16], nets left uncut by
the final module partition were called winners, and
those cut were called losers. Adopting this terminol-
ogy, we see that the min-cut objective is to maximize
the number of winner nets, or equivalently, to mini-
mize the number of loser nets.

In formalizing this optimization, the following
graph-theoretic terms are useful.
Definition: Given a graph G = (V, E), an inde-
pendent set in G is a subset V'’ C V such that no two
nodes of V' are connected by an edge. A mazimum in-
dependent set (MIS) is an independent set with largest
possible cardinality.
Definition: Given a graph G = (V, E), a vertez
cover (VC) of G is a subset V' C V such that for
every edge {vi,v;} € E, either v; € V' orv; € V'. A
minimum vertex cover (MVC) is a vertex cover with
smallest possible cardinality.
Definition: Given a graph G = (V, E), a malching
in G is a set of k edges in E, no two of which have
a vertex in common; we say that k is the size of the
matching. A mazimum maiching (MM) is a matching
with largest possible size.

Using these terms, the problem of maximizing the
number of winners (minimizing the number of cut
nets) is equivalent to finding a maximum indepen-
dent set in B. While the MIS problem is NP-complete
in general, it is efficiently solved for bipartite graphs.
The following two standard results (see, e.g., Theo-
rems 10.1 and 10.2 in [14]) motivate our algorithmic
approach.

Theorem 2: For a bipartite graph B =
(L, R, Eg) with |L| + |R| = n, the sizes of any mini-
mum vertex cover and any maximum independent set
sum to n. Moreover, the complement of any MIS will
be a MVC, i.e,, (LUR)- MIS = MVC. O

Theorem 3: For a bipartite graph B =
(L, R, EB), the size of a minimum vertex cover of B is
equal to the size of a maximum matching in B. o

Given a minimum vertex cover, by Theorem 2 we
may simply take its complement to obtain a maximum
independent set, and vice versa. (Our plan will be to
derive an MIS and make all of the corresponding signal
nets winners.) Theorem 3 provides a lower bound for
the size of the vertex cover (i.e., the set of loser nets).

Our high-level strategy is as follows. Given the
intersection graph G' = (V', Eg:), we will split the
eigenvector-based net ordering v’ at some index r.
Placing v}, i < r, in L, and v, j > r, in R, induces
a bipartite subgraph B = (L, R, Eg) of G’. The al-
gorithm will try all splitting indices r = 1,...,n -1,
where n = |V|.

For each bipartite subgraph B, Phase I of the
IG-Match main loop (the reader is referred to Fig-
ure 4) finds a maximum independent set in B. We

Paper 5.1

first find a maximum matching in B using the stan-
dard augmenting-path technique [19] and breadth-first
search. The size of the MM gives the size of the MVC,
which is the number of cut nets that we hope to at-
tain. From the maximum matching, we construct a
maximum independent set in B (i.e., the set of winner
nets), as follows. Any unmatched vertex of B is a win-
ner (Figure 3 shows the unmatched vertices on each
side of the partition as Uy and Ugr). Starting from
each vertex in Uy or Ur, we trace alternating paths;
none of these paths will be an augmenting path since
the matching was maximum. We mark the second,
fourth, etc. vertices in each of these alternating paths
as losers; the (first,) third, fifth, etc. vertices in each
path are marked as winners. We do this because the
vertex cover (i.e., the set of losers) must contain at
least one vertex from every edge, and in particular,
it must contain at least one node from every edge in
the set of alternating paths. (If we make nodes of
the opposite parity into losers, i.e., the first, third,
etc., the resulting vertex cover would not necessarily
be minimum.) In Figure 3, winners on paths starting
at vertices of UL are denoted as the set Even(L) since
they are at even distance from UL, and losers on these
paths are denoted as Odd(L); Even(R) and Odd(Rg
are similarly denoted. Note that Ur C Even(L) an

Ug C Even(R).A

Even(L)
Odd(R) UL
L ' ' o p!
1 1 AN AN K /1 7
T BV A I IR /17

/2N V2N B R B /’
1| vy vy
1 R YR %
R 9 LYy
\Us | Odd(L)
Even(R)

Figure 3: An example bipartite graph showing
the set M of matching edges (solid lines), the
edges not in the matching (dashed lines), and
the sets Ur, Ur, Even(L), Even(R), Odd(L),
and Odd(R).

It is possible that after Phase I has been executed,
some edges in the matching M remain whose ver-

41t is worth noting that the set of loser nets computed dur-
ing Phase I of the IG-Match main loop is the so-called crit-
ical set described by Hasan and Liu in [15]. The critical set
C = Odd(L)UOdd(R) is the unique subset of vertices in B such
that every minimum vertex cover of B contains C. Note that
even though we start with an arbitrary maximum matching M
in B, a result of [15] shows that we will always end up with
the same Odd and Even sets, independent of which maximum
matching we use.

tices do not belong to any one of the sets Even(L),
Even(R), Odd(L), or Odd(R). These remaining ver-
tices and their induced bipartite subgraph are denoted
as B'= (L', R, EBI{. Phase II of the IG-Match main
loop will consider all modules which have not been as-
signed to a side of the partition via any of the winners
determined in Phase I. Essentially, Phase II will put
all of these unassigned modules first on one side, then
the other, and determine which option yields the bet-
ter ratio cut cost. Note that this will force all nets in
L’ to be winners and all nets in R’ to be losers, or vice
versa.

The IG-Match algorithm is optimal in that the
number of nets cut by the module partition will never
exceed the size of the maximum matching in B (see
[5] for all theorem proofs).

Theorem 4: The set of loser nets output by Algo-
rithm IG-Match is an MVC in B. 0

In practice, the number of nets cut by the com-
pleted module partition can be less than the size of
the MM. This is because a loser net v in Odd(L) may
in some instances only have modules in common with
nets in Even(R). When Phase II assigns all the mod-
ules of nets in Even(R) to the R-side of the partition,
the net v will end up with all its modules on the R-
side and none of its modules on the L-side, i.e., net v
will actually not be cut by the partition, even though
it is a loser.

With each test of a split of the sorted eigenvector,
we move one node from L to R. Since the change in
the bipartite graph B is very small, we may retain in-
formation between the successive maximum matching
computations, as well as between the successive MIS
constructions. This allows an efficient implementation
of the IG-Match algorithm which has small amortized
complexity.

Theorem 6: Given the intersection graph G' =
(V', Eg+) of the netlist hypergraph, The IG-Match al-
gorithm requires O(|V'| * (JV’| + |Eg/])) time to com-
plete the module partition for each of the |V’| — 1 net
partitions derived by splitting the sorted eigenvector

v of Q'(G"). 0

4 Experimental Results

Table 1 shows computational results for the IG-
Match algorithm on benchmark circuits from the
MCNC layout test suite, as well as two additional in-
dustry circuits analyzed in [23]. The experiments were
conducted using uniform module areas as in [12]; thus,
the values L and R sum to the total number of modules
in each benchmark circuit. For each benchmark, we
compare our results with the best result over 10 runs
of the RCutl.0 program, following the experimental
procedure in [23].5 Overall, our results are an aver-
age of 28.8% better than those of RCut1.0. IG-Match

5The results reported in {23] are already an average of 39%
better than Fiduccia-Mattheyses output in terms of the ratio
cut metric; in obtaining this assessment, the authors of [23]
compared the best of 10 Rcut1.0 runs to the best of 20 F-M
runs, all with random starting seeds.

51

1G-Match for B = (L, R, Ei).

L, R : sets of net-vertices in left, right partitions

Eg : set of edges in the intersection graph G’

Epg : set of edges between L and R

M : set of edges in maximum matching between L and R

N : set of net-vertices to examine in breadth first search
W, Wr : sets of winner net-vertices in L, R resp.

Vi, Vr : sets of modules contained by nets in Wp, Wr resp.
Vi : set of modules not contained by nets in W or Wg

Main Loop Phase I: Selecting Winner Nets

v € L /*vis the next net in the sorted IG eigenvector */
L:=L - {v}
for all edges (v,y) € Eg do

Ep = Ep -~ {(v,y)}
R := Ru {v}
for all edges (z,v) € Egs do

if £ € L then

Ep := Egpu {(a:,v)}

M := a maximum matching of B

/* Construct a maximum independent set */
WL := set of unmatched net-vertices of L, 1.e., UL
N =W,
while N # @ do
letz € N
N =N - {z}
for all edges (x,y) € Ep do
if (#',y) € M and =’ € Wy then
Wy = Wi + {z'}
N := N+ {z'}
endwhile /* W, = Even(L) */
Whr := set of unmatched net-vertices of R, i.e.,, Ur
N = Wgr
while N # @ do
letye N
N := N - {y}
for all edges (z,y) € Ep do
if (r,y') € M and y' € Wg then
WL = WL + {y'}
N :=N+{y'}
endwhile /* Wgr = Even(R) */

Main Loop Phase II: Module Assignment
V=0
VR =9
for all nets z € W do
Vp := V, U { modules in net z}
for all nets y € Wx do
VR := Vr U { modules in net y}
VN =V —(VLUVR)
calculate ratio-cut with partition (VL U VN | V&)
calculate ratio-cut with partition (Vo | Ve U V)

Figure 4: Algorithm IG-Match.

also uniformly dominates results from the precursor
intersection graph based algorithm in [12], averaging
almost 6% improvement.

The CPU times required by our numerical algo-
rithms are very competitive with those cited in [123] for
Fiduccia-Mattheyses optimization: for example, the
eigenvector computation for PrimSC2 requires 83 sec-
onds of CPU time on a Sun4/60, versus 204 seconds
of CPU for 10 runs of RCut1.0.

Paper 5.1

Test Wei-Cheng RCut1.0 1G-Match Gain
problem T R:cutsize L:R:cutsize (%)
bm1 9:873:1 21:861:1 57
19ks 1011:1833:109 650:2194:85 -1
riml 152:681:14 154:679:14 1
Prim2 1132:1882:123 740:2274:77 | 21
est02 372:1291:9% 311:1452:98 37
Test03 147:1460:31 803:804:58 38
Test04 401:1114:51 73:1442:6 50
Test05 1204:1391:110 105:2490:8 53
Test06 145:1607:18 141:1611:17 3

Table 1: Output from IG-Match algorithm, com-
pared with results from the RCut1.0 program of
Wei and Cheng.

5 Conclusions

We have presented a new approach to module parti-
tioning, based on a combination of spectral techniques
and the intersection graph representation G’ for the
circuit hypergraph. Following [12], we use a sparse
Lanczos code to induce a linear ordering of nets via
the sorted second eigenvector of Q'(G’). We then for-
mulate the optimal completion of the module partition
as a maximum independent set computation in a bi-
partite graph. Our IG-Match algorithm is guaranteed
to complete a module partition without cutting more
nets than the size of a maximum matching in the bi-
partite graph; this bound is tight. Furthermore, the
computation is efficient in an amortized sense when
we test all possible partitions (“splits”) of the sorted
eigenvector to see which leads to the best module par-
tition: IG-Match tests all splits in O(|V’|* ()V’l +|E))
time. Since the computational complexity of the Lanc-
zos implementation scales well with increasing prob-
lem sizes [10], we believe that this overall methodol-
ogy will continue to be useful even when problem sizes
grow very large.

A number of interesting open issues remain. The
eigenvector computation can be sped up further by ad-
ditionally sparsifying the input through thresholding,
or by relaxation of the numerical convergence criteria.
A hybrid algorithm which uses clustering to condense
the input before applying the partitioning algorithm
(such an approach 1s discussed by Bui et al. [4] and by
Lengauer FIS]) is also promising. Parallel speedups of
the Lanczos code are also possiile. With any of these
heuristics, the ratio cuts so obtained may optionally
be improved by using standard iterative techniques.
Finally, following the successes reported by Wei and
Cheng [22] [23], the intersection graph based ratio cut
partitioning should be applied to ratio cut partition-
ing for other CAD applications, particularly test and
the mapping of logic for hardware simulation.

References

{1] E. R. Barnes, “An Algorithm for Partitioning the Nodes of a
Graph”, SIAM J. Alg. Disc. Meth. 3(4) (1982), pp. 541-550.

[2] J. Blanks, “Partitioning by Probability Condensation”, Proc.
ACM/IEEE Design Automation Conf., 1989, pp. 758-761.

Paper 5.1

52

[3) R.B. Boppana, “Eigenvalues and Graph Bisection: An
Average-Case Analysis”, I[EEE Symp. on Foundations of
Computer Science, 1987, pp. 280-285.

[4 T. N. Bui, S. Chaudhuri, F. T. Leighton and M. Sipser,
“Graph Bisection Algorithms with Good Average Case Behav-
ior”, Combinatorica 7(2) (1987), pp. 171-191.

J. Cong, L. Hagen and A. B. Kahng, “Net Partitions Yield Bet-
ter Module Partitions”, UCLA CS Dept. TR-910075, Novem-
ber 1991.

W.E. Donath, “Logic Partitioning”, in Physical Design Au-
tomation of VLSI Systems, B. Preas and M. Lorenzetti, eds.,
Benjamin/Cummings, 1988, pp. 65-86.

W.E. Donath and A.J. Hoffman, “Lower Bounds for the Par-
titioning of Graphs”, IBM J. Res. Dev. (1973), pp. 420-425.

C.M Fiduccia and R.M. Mattheyses, “A Linear Time Heuristic
for Improving Network Partitions”, ACM/IEEE Design Au-
tomation Conf., 1982, pp. 175-181.

[9] J. Frankle and R.M. Karp, “Circuit Placement and Cost
Bounds by Eigenvector Decomposition”, IEEE Intl. Conf. on
Computer-Aided Design, 1986, pp. 414-417.

G. Golub and C. Van Loan, Matriz Computations, Baltimore,
Johns Hopkins University Press, 1983.

L. Hagen and A. B. Kahng, “Fast Spectral Methods for Ratio
Cut Partitioning and Clustering”, Proc. IEEE Intl. Conf. on
Computer-Aided Design, Santa Clara, 1991, pp. 10-13.

L. Hagen and A. B. Kahng, “New Spectral Methods for Ratio
Cut Partitioning and Clustering”, to appear in JEEE Trans-
actions on CAD; also available as UCLA CSD TR-910073.

K. M. Hall, “An r-dimensional Quadratic Placement Algo-
rithm”, Management Science 17(1970), pp. 219-229.

F. Harary, Graph Theory, Addison-Wesley, 1969.

N. Hasan and C. L. Liu, “Minimum Fault Coverage in Re-
configurable Arrays”, Proc. 18th IEEE Intl. Symp. on Fault-
Tolerant Computing Systems, 1988, pp. 348-353.

A. B. Kahng, “Fast Hypergraph Partition”, Proc. ACM/IEEE
Design Automation Conf., 1989, pp. 762-766.

J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich,
“GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization”, IEEE Trans. on CAD 10(3) (1991), pp.
356-365.

T. Lengauer, Combinatorial Algorithms for Integrated Cir-
cust Layout, Wiley-Teubner, 1990.

C. L. Liu, Introduction to Combinatorial Mathematics,
McGraw-Hill, 1968.

L. T. Pillage and R. A. Rohrer, “A Quadratic Metric with
a Simple Solution Scheme for Initial Placement”, Proc.
ACM/IEEE Design Automation Conf., 1988, pp. 324-329.

R.S. Tsay and E.S. Kuh, “A Unified Approach to Partitioning
and Placement”, Princeton Conf. on Inf. and Comp., 1986.

[5]

—

(6]

M
(8)

(10]

(1)

12]

(23]

[14]
[15]

[16]
n7

(18]
(19]

{20]

(21]

[22) Y. C. Wei, “Circuit Partitioning and Its Applications to VLSI

Designs”, Ph.D. Thesis, UCSD CSE Dept., September 1990.

Y. C. Wei and C. K. Cheng, “Ratio Cut Partitioning for Hier-
archical Designs”, IEEE Trans. on CAD, July 1991, pp. 911-
921.

C. W. Yeh, C. K. Cheng and T. T. Lin, “A General Purpose
Multiple Way Partitioning Algorithm”, Proc. ACM/IEEE De-
sign Automation Conf., June 1991, pp. 421-426.

(23}

[24])

