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Abstract- Robust power distribution within available routing 
area resources is critical to chip performance and reliability. In 
this paper, we propose a novel and efficient method for optimizing 
worst-case static IR-drop io hierarchical, uniform power dstribu- 
tion networks. Our results can be used for planning of hierarchi- 
calpowerd&tribution in earIy design sages, so that for a fixed total 
routing area the worst-case IR-drop on the power mesh is mini- 
mal, or for a given IR-drop tolerance the power mesh achieves 
the IR-drop specification with minimal routing area. Our contri- 
butions are as follows. (1) We derive a closed-form approxima- 
tion for the worst-case IR-drop on a single-level power mesh. The 
formula shows that for a given total routing area, the worst-case 
IR-drop increases logarithmically with the number of metal lines 
on the mesh. (2) Based on the pmvious analysis and empirical 
studies, we propose a model for the worst-case static IR-drop on 
a two-level power mesh, and obtain an accurate empirical expres- 
sion. (3) Using this expression, we present a novel approach to 
optimize the two-level mesh topology. (4) We extend our study to 
three-level power meshes, and find that a third, middle-level mesh 
helps to d u c e  IR-drop by only a relatively small extent (about 
590, according to our experiments). 

I .  INTRODUCTION 

Higher device density and faster switching frequencies re- 
sult in larger currents flowing through the power distribution 
network; IR-drop thus becomes a significant problem. Simply 
using more routing area for the power network may cause se- 
rious routability problems. Hence, robust power distribution 
within available area resources becomes vital to achieving per- 
formance and reliability in high-end VLSI designs. 

In engineering practice, design of the power distribution net- 
work usually consists of a number of stages. Many important 
decisions - notably, the nominal wiring pitch and width for 
each interconnect layer - are locked in for the power distribu- 
tion network very early in the design process. In early stages 
of design, the power network has not yet been synthesized and 
the location and logic content of the blocks are unknown. It is 
therefore impossible to obtain the pattern of current drawn by 
the sinks, and transient analysis is essentially difficult at this 
stage. Thus, design decisions are mostly based on DC analysis 
of uniform mesh structures, with current drains modeled using 
simple area-based calculations.' In current practice, designers 
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'In later stages, with more design information available, the design may k 

often uy different combinations of wire pitch and width for dif- 
ferent layers, and select the best combination based on circuit 
simulations [5 ] .  Due to the time-consuming nature of circuit 
simulation, it is computationally infeasible to explore all pos- 
sible configurations; the result is hence a suboptimal solution. 
In this context, it is both practically useful and theoretically 
interesting to seek a new approach to optimize topology for a 
hierarchical, uniform power distribution. 

In this paper, we study the worst-case static IR-drop on hi- 
erarchical power meshes using both analytical and empirical 
methods. We propose a novel and efficient method for optimiz- 
ing worst-case static IR-drop on hierarchical, uniform power 
distribution meshes. Our results can be used for planning of 
hierarchical power meshes in early design stages. Main contri- 
butions of our work include: 

0 We derive a closed-form approximation for the worst-case 
IR-drop on a single-level power mesh. The formula shows 
that given a fixed total routing area, the worst-case 1R- 
drop increases logarithmically with the number of metal 
lines on the mesh. 

Based on the previous analysis and empirical studies, we 
propose a model for the worst-case IR-drop on a two-level 
power mesh, and obtain an accurate empirical expression. 

We present a new approach to optimize the topology of 
two-level power mesh, using the above expression. For a 
fixed total routing area, we can minimize the worst-case 
IR-drop. Alternatively, given a desired IR-drop tolerance, 
we can minimize the routing area used by the power mesh 
to achieve the IR-drop specification. 

0 We extend our study to three-level power meshes, and 
find out that more levels for the hierarchical power mesh 
do not significantly improve the worst-case IR-drop. The 
third, middle-level mesh helps to reduce IR-drop by only 
a relatively small extent (about 5%, according to our ex- 
periments). 

Related previous works. Most previous works on 
power/ground network [8, 9, IO, 13, 141 focus on the 
power network wire sizing problem. Many mathematical 
programming methods are adopted to solve the problem, such 
as conjugate-gradient method [3], Sequential LP method [IO], 
Incomplete Cholesky Decomposition Conjugate Gradient 
method [14], and multigrid-based method [131. [2, 3, 41 dis- 
cussed how to optimize the topology of the power distribution 
network. In particular, [Z] and [3] utilize the wire sizing 
technique on a complete graph topology, and thus are not 
~~ 

refined based on more accurate dynamic analysis. 

0-7803-8175-0104617.00 @ZOO4 IEEE. 444 

mailto:cs.ucsd.edu
mailto:mouri.makoto@jp.fujitsu.com


5B-4 

capable of handling a large-scale optimization problem. [4] is 
based on current pattern analysis, but can only be applied to 
tree-like structures. However, meshes are much more robust 
than tree structure in terms of IR-drop variation [2]; virtually 
every modem design adopts a hierarchy of meshes as the basic 
topology for the power distribution network. 

The rest of the paper is organized as follows. Section I1 
formulates the optimization problem. Section I11 derives a 
closed-form formula for the worst-case IR-drop on a single- 
level power mesh. The worst-case IR-drop on two-level power 
meshes is discussed in Section IV. Section V discusses the op- 
timization of two-level uniform power mesh topology. Section 
VI considers power meshes with more levels. Finally, Section 
VI1 gives conclusions and possible future research directions. 

11. PROBLEM FORMULATION 

We focus on the following optimization problem for a hi- 
erarchical power mesh: Given fixed wire pitch and width for 
the bottom-level mesh, find the optimal wire pitch and width 
for each mesh except the bottom-level mesh, such that for a 
given total routing area the power mesh achieves the minimum 
worst-case IR-drop, or for a given worst-case IR-drop require- 
ment, the power mesh meets the requirement with minimum 
total routing area. 

The work is based on the following model of the power dis- 
tribution network in early design stages. 

The power distribution network is constructed by a hier- 
archy of mesh structures connected by vias at crossing 
points of wires. Each mesh has uniform wire spacing and 
width. Ignoring the resistance of vias2, we assume perfect 
contact at each crossing point. 

a On top of metal layers, there are arrays of C4 power pads 
evenly distributed on the surface of the power mesh. 
Under the bottom-level mesh, there are devices connected 
to the wires of the bottom-level mesh. In the early stage of 
design, the devices are modeled as uniform current sinks 
and placed at crossing points of the bottom-level mesh, 
since before the accurate floorplan the exact current drain 
at different locations is unknown. 

Analytical and empirical methods are employed to solve the 
problem. In state-of-artdesigns, there are a fairly large number 
(> 100) of power pads evenly distributed on the surface of the 
top-level power mesh 1151. It is reasonable to assume that the 
whole power mesh is an infinite resistive grid constructed by 
replicating the representative area surrounded by four power 
pads. Figure 1 (a) and (b) illustrate a two-level power mesh 
and the representative area. Our analysis and circuit simula- 
tions consider only the worst-case IR-drop on the representa- 
tive area. This method is also used in [51. 

111. WORST-CASE IR-DROP ON 
SINGLE-LEVEL POWER MESH 

Static IR-drop on a hierarchical power mesh largely depends 
on the top-level mesh since usually the top-level mesh is wider 

2Via resistance is ignored, since it is much smaller than that of mesh seg- 
ments. 

Finer Mesh 

(b) 

Fig. I .  A two-level power mesh and the representative area. 

and coarser, and most current flows along the top-level mesh. 
In this section, we analyze the worst-case static IR-drop on a 
single-level power mesh with a fixed total routing area. The 
top-level power mesh is abstracted as a uniform infinite resis- 
tive lattice with edge resistance R.3 C4 power pads are evenly 
distributed on the mesh, and we examine IR-drop in an N x N 
representative area surrounded by four power pads4; the worst- 
case IR-drop appears at the center of this representative area. 
Each power pad supplies a current I = N Z i  to the power mesh, 
where i is the current drain at each intersection on the mesh. 

Assume there is a coordinate system with the origin at the 
center of the power mesh. We analyze the voltage drop be- 
tween the node (0,O) and the power pad at ($, $) by con- 
sidering incoming currents from power pads and evenly dis- 
tributed current sinks separately. 

A. IR-Drop Relative to Power Pad Locations 

Suppose only a current I enters the resistive lattice at the 
node (m8 ,ns) ,  We analyze the IR-drop by first adopting an 
approximation for the infinite lattice, due to [l 11. According to 
[lI],thevoltagedropbetweentwonodes(m.,n,) and(m,n ) ,  
denoted as vm,,ns)(m,n), is given by the integral 

(IR/2?r) (l-e-lm-mala cos(n-n.)fl)/ sinh a dfl, (I) 

where cosh a+cos f l  = 2. When ]m -111.1 or In -n,l is large, 
the voltage drop V,ms,na) (m, n) can be approximated as 

0 

I R  
4?r V(,.&)(m,n) = -[h((m - m.)Z + (n - ne)? + 2ac11, 

(2) 
where c1 = 0.51469 is a constant. 

denote the voltage drop between (0,O) and the 
power pad at ( $ , g) caused by the incoming current from the 
power pad at (ma, n8).  According to Formula (3, we have 

when (%,ne) = ( 7 , ~ ) .  V,m,,n,) 

when (m,,n.) # ( T ,  T I ,  V,m,,n,) = 

Let V,,, 

N N  

(IR/4?r)(21nN -In2+2?rc1);  

V,m*,n.)(Y,T) - ~ , m , , n , ) ( o , o )  = ( I R P ? r ) I n g - ,  

3N0te that for a uniform mesh, the edge resistance is determined only by 
the total routing area and is independent of the number of metal lines. With a 
6 xed total routing area, when the number of metal lines on the mesh increases, 
wire pitch and wire width decrease with the same ratio. and the edge resistance 
remains the same. 

N N  
N N  

4E.g., for the coarser mesh shown in Figure I (b), N = 3. 
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where D. is the Euclidean distance between 
(m,,n.) and (9, g), and DO is the Euclidean dis- 
tance between ( m , , n d  and (0,O). The constant 
c2 = In $ can be computed by a simple 

algorithm, which calculates the summation for currents 
from all power pads within a circle around the origin. 
As the radius of the circle increases, the summation 
converges to a constant c2 = -1.40278. 

(m. ,n . )#(41f)  

Therefore, if only incoming currents are considered, the volt- 
age drop between (0,O) and the power pad at (:, :) is 

where the constant c = rcl - h 2 / 2  + c2 = -0.1324 

B. IR-Drop Due to Evenly Distributed Current Sinks 

Next, we consider the voltage drop caused by current sinks 
at the intersections of the power mesh. If the voltage drop be- 
tween (0,O) and ( m , n )  is denoted by V,i,k(m,n), by a com- 
bination of Ohm's and Kirchhoff's Laws we have 

Kinh(m-  l ,n )+V, inh(m+l ,n )+V, i , r (m,n-  1) 
+V,i,r(m,n+l)-4Vinr(m,n) = i R ,  

(4) 
which is a discrete Poisson equation. If the resistive lattice is 
regarded as a discrete approximation to a continuous resistive 
medium, we will obtain a potential function proportional to 
Dz, where D is the Euclidean distance from the origin. There- 
fore, we assume the following representation for the voltage 
between (0,O) and ( m , n ) :  

where k is a constant. Equation (4) then yields 

Veink(m,n) = ( i R / 4 ) ( m 2  + n2). (6) 

When only current sinks are considered, the voltage drop be- 
tween (0,O) and the power pad at (:, g) is 

C. Verification of Worst-case 1R-Drop 

From the above analysis, we obtain the voltage drop at the 
center: 

IR IR 
a 27t v = vmource + Vsink = - + -(lnN + C), (8) 

where c = -0.1324. 
To verify the above formula for worst-case IR-drop on the 

single-level power mesh, we use HSpice to simulate various 
power meshes with fixed total routing area and different values 
of N's. Since it is a linear problem, in our experiments the 
resistance of each wire segment R is simply set to be 1 K 0 ,  and 
the total current drain in the area I is set to be 1mA. We list 
simulation results for N from 4 to 12 in Table I, and compare 
them with the estimated values from the formula. The results 
show that when N is larger than 4, the formula is accurate, 
with error less than 1%. 

~ 
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TABLE I 
SIMULATION RESULTS FOR WORST-CASE IR-DROP ON THE 

SINGLE-LEVEL POWER MESH, COMPARED TO ESTIMATED VALUES (MV). 

IV. WORST-CASE IR-DROP ON 
TWO-LEVEL POWER MESH 

A two-level power mesh is abstracted as two uniform infi- 
nite resistive lattices, with the bottom-level grid usually being 
much finer than the top-level one. In this section, we analyze 
worst-case IR-drop on two-level power mesh by considering 
IR-drop on the coarser and finer meshes separately. 

Suppose the representative area surrounded by four power 
pads is comprised of an Nl x NI coarser mesh and an N2 x N2 
finer mesh.5 When NI is odd, the worst-case IR-drop on the 
power mesh appears at the center of this representative area. 
Suppose the wiring resource for the finer mesh is 1, and the 
edge resistance is R.  Let r (F > 1 )  denote the total routing 
area for the combined two-level power mesh. Then the routing 
area for the coarser mesh is T - 1, and the corresponding edge 
resistance of the coarser mesh is R / ( r  - 1). 

A. Equivalent Single-Level Mesh 

Each power pad supplies a current I = Nzi to the power 
mesh, where i is the current drain at each intersection on the 
finer mesh. When the ratio of NZ to NI is large, the coarser 
mesh has much less resistance than the finer mesh, and thus 
most of the current Rows along the coarser mesh. Assume that 
the currents flow along an equivalent single-level coarse mesh 
with edge resistance R e .  According to the analysis in Sec- 
tion 111, the worst-case IR-drop on the equivalent single-level 
coarse mesh can be expressed as 

where c is a constant. 
We simulate two-level power meshes using HSpice, setting 

the routing area of the two meshes to be the same (i.e., T = Z), 
and setting the finer mesh to be 10 times finer than the coarser 
one (i.e., NZ = 10Nl).6 The resistance R is set to be 1KR and 
the total current drain in the area I is set to be 1mA. We list 
the worst-case IR-drop V for N I  from 2 to I 1  in Table n. We 
also plot the V - InNI relation in Figure 2, and the worst-case 
IR-drop grows roughly linearly with 1nN. 

'E.g.. far the two-level power mesh shown in Figure I (h), N I  = 3 and 
Nz = 9. 

'As noted earlier, static IR-drop on a hierarchical power mesh largely de- 
pends on the top-level mesh. On two-level power meshes, when Nz > lON, 
the difference of the worst-case IR-drops is relatively small and can be ignored. 
Therefore. in our simulations of twdevel power meshes, NI is usually set to 
be 10N1. 
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cell formed by the coarser mesh has equal voltage on the cell 
boundary. 

[ M I 2  1 3  1 4  1 5  1 6  1 7  I S  

TABLE I1 
SIMULATION RESULTS FOR WORST-CASE IR-DROP ON THE TWO-LEVEL 

POWER MESH WITH SAME ROUTING AREA BETWEEN THE TOP-LEVEL 
AND THE BOTTOM-LEVEL MESHES. 

I 

Fig. 2. Worst-case IR-dmp vs. lnNl relation far two-level power meshes 
with the same wiring re~ource allocation between the two meshes. 

M 2  3 4 5 6 
V 0.50 1.13 1.67 2.60 3.43 
M 9  10 I I  12 13 
V 7.32 8.73 10.55 12.27 14.38 
M 16 17 18 19 20 
V 21.11 23.91 26.41 29.41 32.31 

TABLE IV 
S~MULATION RESULTS FOR WORST-CASEIR-DROP v ON A N  M X M 

7 8 
4.66 5.79 
14 15 
16.39 18.80 
21 22 
35.39 37.58 

MESH WITH EQUAL VOLTAGE ON THE BOUNDARY (MV) 

V 0.50 1.13 1.67 2.60 3.43 
M 9  10 I I  12 13 
V 7.32 8.73 10.55 12.27 14.38 
M 16 17 18 19 20 
V 21.11 23.91 26.41 29.41 32.31 

4.66 5.79 
14 15 
16.39 18.80 
21 22 
35.39 37.58 

-- 

The equivalent resistance Re can be computed by calculat- 
ing the slope of the line in Figure 2. The values are shown in 
the third column of Table 11. When Nl > 10, the V N lnNl 
relation is close to linear, and R, approaches RI2 = R/r. 
Additional simulations confirm this relationship for different 
total amounts of routing area r. Table III lists the ratio of R to 
Re for different r's when NI = 19. According to the simula- 
tion results, the ratio of R to Re is close to r, and Re can be 
approximated by R/r. Note that when r increases, the error 
grows larger. The data show that although the voltage drop is 
largely proportional to In N I  when N I  is large, there are still 
other terms which depend on NI and grow with r. This will be 
explained in the discussion below. 

TABLE 111 
RATLO OF R TO I& FOR TWO-LEVEL POWER MESHES WITH DIFFERENT 

TOTAL ROUTING AREA 9' W H E N  N I  : 19 

[ r I 1.667 I 2 I 4 1  6 1  8 1  
[ R / R  1 1.661 1 1 .991  1 3.953 I 5.888 I 7.806 1 

B. IR-Drop on the Finer Mesh 

Although most of the current flows along the coarser mesh, 
IR-drop on the finer mesh cannot be neglected, especially when 
NI is small. When the ratio of Nz to N I  is large, the wire 
segments on the coarser mesh are much wider than those on 
the finer mesh, and thus the resistance of a wire segment with 
unit length on the coarser mesh is much smaller than that on the 
finer mesh. Therefore, when considering IR-drop on the finer 
mesh, it is reasonable to assume that the finer mesh within each 

Fig. 3. Worst-case IR-dmp vs. M' relation an the fine mesh with equal 
voltage on the boundary (mV). 

We use HSpice simulations to obtain the worst-case IR-drop 
V on a fine mesh with equal voltage on the boundary. In our 
simulations, at each node of the fine mesh, there is a current 
drain with i = 0.001mA. and each wire segment has resistance 
R = 1KR. Let M denote the number of metal lines in the fine 
mesh. Table IV shows simulation results for different values 
of M. We plot the V N M 2  relation in Figure 3. The relation 
displays a very clear linearity. 

In the two-level power mesh, the number of metal lines of 
the finer mesh within each cell formed by the coarser mesh 
M = Nz/N1 and the total current drain within the cell 
I = N;i. Therefore the IR-drop in the finer mesh within a 
cell surrounded by the coarser mesh is roughly proportional to 
M Z i R  = IR/N; .  

C. Formula for Worst-case IR-Drop on Two-Level Mesh 

Based on the above discussions, we seek an expression for 
worst-case IR-drop on the two-level power mesh with the fol- 
lowing form: 

V w  - l n N l + C ~ ( r ) I R + C ~ ( r ) -  IR m (10) 
2ar N: ' 

where Cl(r) and C2(r) are functions of r. 
We simulate various two-level power meshes with total rout- 

ing area r = 16 and different wire pitches for the coarser mesh, 
to compute worst-case IR-drops. In our simulations, the finer 
mesh is 10 times finer than the coarser one (i.e., N2 = 10Nl), 
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the resistance R is 1KR and the total current drain in the area 
I is 1mA. We list the results in Table V. 

TABLE V 
SIMULATION RESULTS FOR WORST-CASE IR-DROP ON TWO-LEVEL 

r I NI I IR-Drop I Approx.IR-Drop I Error I 
82.34 I 5.19 I 

From the simulation results for NI = 7 and NI = 9 (in 
some sense, the choice of these two NI values is arbitrary, al- 
though larger values are better), CL( r )  and C2(r) can be es- 
timated, yielding Cl(16) = 0.006719 and C~( l6 )  = 0.0759. 
We can then estimate values of V for other NI's according to 
Equation (IO),  and compare the values with experimental re- 
sults in the fifth column of Table v. The expression is accurate 
when NI is odd and larger than I ,  with error less than 1%. 
When NI is even, worst-case IR-drop does not appear at the 
center of the representative area as when NI is odd, and the 
errors for even NI's are somewhat larger. 

v. OPTIMAL PLANNING OF TWO-LEVEL POWER MESH 

In this section, we consider objectives mentioned in Section 
11, and optimize the topology of two-level power meshes based 
on the above expression for worst-case IR-drop on two-level 
power meshes (Equation (IO)). 

A. Optimizing Topology with a Given Total Routing Area 

First, we optimize wire pitch and width for the coarser mesh, 
such that for a given total routing area r, the power mesh 
achieves the min,imum worst-case IR-drop. 

For a given value of r, to obtain the minimum value of V in 
Equation (IO), we set the derivative of V to zero: 

Then, the optimal wire pitch for the coarser mesh, i.e. the op- 
timal NI, is given by 

In practice, we can estimate the value of C2 (r) in the expres- 
sion by simulating two-level power meshes with total routing 
area r for several values of NI. (In the example above (Section 
C), for a given total routing area T = 16, Cz(r) was estimated 
from simulations of power meshes for N I  = 7 and NI = 9.) 
We may then compute the optimal Nl according to Equation 
(11); e.g., we obtain NOpt(l6) = 3.9, which matches simula- 
tion results in Table V. 

~ 
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TABLE VI 
MINIMAL WORST-CASE IR-DROPS ( M V )  FOR DIFFERENT VALUES OF r. 

25.2 

B. Optimizing Topology with a Given Worst-case 
IR-Drop Requirement 

A second problem is to find the optimal wire pitch and width 
for the coarser mesh, such that for a given worst-case IR-drop 
requirement, the power mesh meets the requirement with min- 
imum total routing area T. According to Equation ( I  I ) ,  for 
each value of r, the minimal worst-case IR-drop occurs when 
NI = J-. Plugging into Equation (lo), we obtain 
the minimal worst-case IR-drop for a given total routing area 
P: 

For each value of T, we simulate the two-level power meshes 
with total routing area T for several values of NI, compute 
the values of Ci(r) and C2(r), and then compute the optimal 
worst-case IR-drop Vopt(r). We increase the total routing area 
T until the corresponding minimal worst-case IR-drop Vofl(r) 
satisfies the given requirement. 

For example, given a worst-case IR-drop requirement V > 
30mV7, we simulate two-level power meshes with different 
T'S for NI = 7 and Nl = 9, and compute the minimal worst- 
case IR-drop Vopt(r). The results are summarized in Table 
VI. The results show that the optimal r' falls between 12 and 
13, and the optimal Ni is 3 or 4. Further simulations may 
be needed to get more accurate results, e.g., simulations with 
r E [12,13] and NI = 3 or 4. However, we believe that this 
resolution in the estimation is already valuable for planning 
purposes. 

VI. WORST-CASE IR-DROP ON 
THREE-LEVEL POWER MESH 

After considering two-level power meshes, it is natural to 
ask how much we can gain by adding more levels to the power 
mesh. For a three-level power mesh with a given topology 
(fixed number of metal lines for three levels of meshes) and 
a given total routing area, using power network wire sizing 
techniques, we can find the optimal resource distribution. For 
given numbers of metal lines in the top-level and bottom-level 
meshes, we can explore different numbers of metal lines for the 
middle-level mesh, and for each topology we find the optimal 
resource allocation solution and the corresponding worst-case 
IR-drop. 
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studies, we have obtained accurate expression for worst-case 
R d r o p  on two-level power meshes. With the expression, we 
can optimize topology of two-level power mesh, so that for a 
given total routing area, the worst-case static IR-drop is mini- 
mal, or for a given IR-drop tolerance the power mesh achieves 
the IR-drop specification with minimal total routing area. Our 
approach can be used in early design stages to decide nominal 
wire width and pitch for power networks. 

Further research directions may include: ( I )  optimization of 
non-uniform power meshes; and (2) interactions with layout or 
detailed current analysis. 

TABLE VI1 
WORST-CASE IR-DROP OF THREE-LEVEL POWER MESHES WITH FIXED 

BOTTOM-LEVEL MESH. 

I NI I NZ I IR-Drop(mV) I rl I rz 1 
I 3 1 4 1  3s.x I 6.43 I 3.57 I 
1 3 1 6 1  35.2 1 6.54 1 3.46 I 

6.13 3.87 
6.44 3.56 
6.51 3.49 

20 35.8 6.77 3.23 
40 36.4 6.99 3.01 

4 1601 37.1 I 7.48 I 2.52 

A key element in our exploration is the sequential LP 
method proposed by Tan et al. [IO]. Their method assumes that 
the current direction on each branch is known, and then min- 
imizes total wiring area under maximum worst-case IR-drop 
and maximum branch current constraints. The optimal sizing 
problem here is much easier than Tan’s formulation, because 
we only need to decide the values of three variables, namely, 
the wire widths of uniform meshes at three different levels. 
From the symmetric structure of three-level meshes, we al- 
ready know which node on the power mesh has the worst-case 
IR-drop. These two advantages allow us to further simplify the 
original method to accelerate the search. 

In our scheme, for a given width assignment, we can find the 
voltage at each node by solving a set of linear equations. We 
then fix the node voltages and find the optimal width assign- 
ment to maximize current drain under the node where worst- 
case IR-drop occurs. After obtaining a new wire width as- 
signment from the linear programming, we repeat this process 
iteratively until the solution converges. The algorithm ia im- 
plemented using the linear programming package from IBM 
Optimization Solutions Library [ 161. Our implementation al- 
lows us to explore the optimal wire width assignment for a 
three-level mesh with more than ~00,000 nodes. 

In the experiments, we fix the routing resource of the 
bottom-level 120 x 120 mesh to he 1, and set the total rout. 
ing resource of the top-level and middle-level meshes to he IO. 
We find the optimal routing resource distribution between the 
top-level and middle-level meshes using the algorithm. Table 
VI1 depicts the results. When N I  = 3, with different middle- 
level meshes, the optimal worst-case IR-drop changes in the 
range from 34.3mV to 36. lmV. When N I  = 4, the opti- 
mal worst-case IR-drops range from 35. lmV to 37. lmV. The 
middle-level mesh helps to reduce IR-drop only to a relatively 
small extent (about 5%).  

VII. CONCLUSION A N D  FUTURE WORK 

In this paper, we have discussed static IR-drop on hierarchi- 
cal uniform power meshes. Based on analytical and empirical 
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