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Abstract

DNA probe arrays have recently emerged as one of the
core genomic technologies. Exploiting analogies between
manufacturing processes for DNA arrays and for VLSI
chips, we demonstrate the potential for transfer of method-
ologies from the 40-year old field of electronic design au-
tomation to the newer DNA array design field. Our main
contributions in this paper are the following. (1) We give
a new design flow for DNA arrays which enhances current
methodologies by adding flow-awareness to each optimiza-
tion step and introducing feedback loops. (2) We propose
solution methods for new formulations integrating multiple
design steps, including probe selection, placement, and em-
bedding. (3) We give results of a comprehensive experimen-
tal study showing that significant improvements in solution
quality can be achieved by using the enhanced methodolo-
gies.

1 Introduction

DNA probe arrays – DNA arrays or DNA chips for short
– have recently emerged as one of the core genome tech-
nologies. They provide a cost-effective method for ob-
taining fast and accurate results in a wide range of ge-
nomic analyses, including gene expression monitoring, mu-
tation detection, and single nucleotide polymorphism anal-
ysis (see [27] for a survey). The number of applications is
growing at an exponential rate [16, 35], already covering a
diversity of fields ranging from health care to environmental
sciences and law enforcement. The reasons for this rapid ac-
ceptance of DNA arrays are a unique combination of robust
manufacturing, massive parallel measurement capabilities,
and highly accurate and reproducible results.

Today, most DNA arrays are manufactured through a
highly scalable process, referred to as Very Large-Scale Im-
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mobilized Polymer Synthesis (VLSIPS), that combines pho-
tolithographic technologies adapted from the semiconduc-
tor industry with combinatorial chemistry [1, 2, 13]. Simi-
lar to Very Large Scale Integration (VLSI) circuit manufac-
turing, multiple copies of a DNA array are simultaneously
synthesized on a wafer, typically made out of quartz. To
initiate synthesis, linker molecules including a photo-labile
protective group are attached to the wafer, forming a regu-
lar 2-dimensional pattern of synthesis sites. Probe synthesis
then proceeds in successive steps, with one nucleotide (A,
C, T, or G) being synthesized at a selected set of sites in each
step. To select which sites will receive nucleotides, pho-
tolithographic masks are placed over the wafer. Exposure to
light de-protects linker molecules at the non-masked sites.
Once the desired sites have been activated in this way, a so-
lution containing a single type of nucleotide (which bears
its own photo-labile protection group to prevent the probe
from growing by more than one nucleotide) is flushed over
the wafer’s surface. Protected nucleotides attach to the un-
protected linkers, initiating the probe synthesis process. In
each subsequent step, a new mask is used to enable selective
de-protection and single-nucleotide synthesis. This cycle is
repeated until all probes have been fully synthesized.

As the number of DNA array designs is expected to ramp
up in coming years with the ever-growing number of ap-
plications [16, 35], there is an urgent need for high-quality
software tools to assist in the design and manufacturing pro-
cess. The biggest challenges to rapid growth of DNA array
technology are the drastic increase in design sizes with si-
multaneous decrease of array cell sizes – next-generation
designs are envisioned to have hundreds of millions of cells
of sub-micron size [2, 27] – and the increased complexity of
the design process, which leads to unpredictability of design
quality and design turnaround time. Surprisingly enough,
despite huge research efforts invested in DNA array appli-
cations, very few works are devoted to computer-aided opti-
mization of DNA array design and manufacturing. Current
design practices are dominated by ad-hoc heuristics incor-
porated in proprietary tools with unknown suboptimality.
This will soon become a bottleneck for the next generation
of high-density arrays, such as the ones currently being de-
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signed at Perlegen [2].
In this paper we exploit the similarities between man-

ufacturing processes for DNA arrays and VLSI chips and
demonstrate significant potential for transfer of electronic
design automation methodologies [11, 30] to the newer
DNA array design field. Our main contributions in this pa-
per are the following:

• We give a new design flow for DNA arrays, which
enhances current methodologies by adding flow-
awareness to each optimization step and introducing
feedback loops (Section 2).

• We propose new formulations and solution methods
that integrate probe placement and embedding with
probe selection and deposition sequence design (Sec-
tion 3).

• We empirically demonstrate significant solution qual-
ity improvements for the enhanced methodologies. In
particular, we show that 5-7% improvement in border
length can be achieved over the highest-quality scal-
able flow previously reported in the literature [23] by
a tighter integration of probe placement and embed-
ding (more precisely, by replacing synchronous initial
probe embedding with the so-called “as soon as pos-
sible” embedding, see Section 4). Furthermore, we
show that up to 15% improvement in border length can
be achieved by integrating probe selection with probe
placement and embedding (Section 5).

2 Main Steps of the DNA Array Design Flow

In this section we introduce the main steps of the de-
sign flow for DNA arrays (see Figure 1, solid arcs), noting
the similarity to the VLSI design flow and briefly reviewing
previous work. Then we discuss how the current DNA array
design flow may be enhanced by adding flow-awareness to
each optimization step and introducing feedback loops be-
tween steps - techniques that have proved very effective in
the VLSI design context [11, 30].

2.1 Probe Selection

Analogous to logic synthesis in VLSI design, the probe
selection step is responsible for implementing the desired
functionality of the DNA array. Although probe selection
is application-dependent, several underlying selection cri-
teria are common to all designs, regardless of the intended
application [1, 2, 26, 4, 21, 29].

First, in order to meet array functionality, the selected
probes must have low hybridization energy for their in-
tended targets and high hybridization energy for all other
target sequences. Hence, a standard way of selecting probes
is to select a probe of minimum hybridization energy from
the set of probes which maximize the minimum number of
mismatches with all other sequences [26]. Second, since

selected probes must hybridize under similar operating con-
ditions, they must have similar melting temperatures.1 Fi-
nally, to simplify array design, probes are often constrained
to be substrings of a predetermined nucleotide deposition
sequence. Typically, there are multiple probe candidates
satisfying these constraints.

2.2 Deposition Sequence Design

The number of synthesis steps directly affects manufac-
turing time and the number of masks in the mask set, and
also directly affects the quantity of defective probes synthe-
sized on the chip. Therefore, a basic optimization in DNA
array design is to minimize the number of synthesis steps.
In the simplest model, this optimization has been reformu-
lated as the classical shortest common supersequence (SCS)
problem [24, 34]: Given a finite alphabet Σ (for DNA ar-
rays Σ = {A, C, T, G}) and a set P = {p1, ..., pt} ⊆ Σn

of probes, find a minimum-length string sopt ∈ Σ∗ such
that every string of P is a subsequence of sopt. (A string
pi is a subsequence of sopt if sopt can be obtained from pi

by inserting zero or more symbols from Σ.) The SCS prob-
lem has been studied for over two decades from the point of
view of computational complexity, probabilistic and worst-
case analysis, approximation algorithms and heuristics, ex-
perimental studies, etc. (see, e.g., [5, 6, 7, 9, 14, 15, 20]).

The general SCS problem is NP-hard, and cannot be ap-
proximated within a constant factor in polynomial time un-
less P = NP [20]. On the other hand, a |Σ|-approximation
is produced by using the trivial periodic supersequence
s = (x1x2 . . . x|Σ|)n, where Σ = {x1, x2, . . . , x|Σ|} Better
results are produced in practice by a simple greedy algo-
rithm usually referred to as the “majority merge” algorithm
[14], or variations of it that add randomization, lookahead,
bidirectionality, etc. (see, e.g., [24]).

Current DNA array design methodologies bypass the de-
position design step and use a predefined, typically periodic
deposition sequence such as ACTGACTG . . . (see, e.g.,
[24, 34]).

2.3 Design of Control and Test Structures

DNA array manufacturing defects can be classified as
non-catastrophic, i.e., defects that affect the reliability of
hybridization results, but do not compromise its function-
ality when maintained within reasonable limits, and catas-
trophic, i.e., defects that render the chip unusable. Non-
catastrophic defects are caused by systematic error sources
in the VLSIPS manufacturing process, such as unintended
illumination due to diffraction, internal reflection, and scat-
tering. Their impact on hybridization reliability of the chip
is reduced by using the Perfect Match/Mismatch strategy
[1, 27], which is also used to reduce the contribution of

1Below the melting temperature, two complementary strands of DNA
are always bound to each other, while above it they separate. A practical
method for estimating the melting temperature is suggested in [21].
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Figure 1. A typical DNA array design flow with solid arcs and proposed enhancements represented
by dashed arcs.

background and cross-hybridization [27]. Under this strat-
egy, a single nucleotide polymorphic probe (“Mismatch
Probe”) is synthesized next to each functional probe (“Per-
fect Match Probe”). Catastrophic defects are caused by
missing, out-of-order, or incomplete synthesis steps, wrong
or misaligned masks, etc.

DNA array test structures are the equivalent of built-in
self-test (BIST) structures in VLSI design, and seeking to
detect catastrophic manufacturing defects. The current ap-
proach to detecting catastrophic defects in DNA arrays is to
synthesize a small set of test probes. Hubbell and Pevzner
[19] have recently introduced a combinatorial approach that
constructs such a small set of fidelity probes that, besides
detecting manufacturing defects, can be used to identify the
erroneous manufacturing steps. The approach relies on us-
ing multiple identical copies of the same fidelity probe, de-
liberately manufactured using different synthesis steps. A
known target is then hybridized to these probes, and hy-
bridization results reflect the quality of the manufacturing
process. Further recent progress on the test structure design
problem include results of [3, 8, 31].

2.4 Physical Design

Physical design for DNA arrays is equivalent to the phys-
ical design phase in VLSI design. It consists of two steps:
probe placement, which is responsible for mapping selected
probes onto locations on the chip, and probe embedding,
which embeds each probe into the deposition sequence (i.e.,
determines synthesis steps for all nucleotides in the probe).
The result of probe placement and embedding is the com-
plete description of the reticles used to manufacture the ar-
ray.

Under ideal manufacturing conditions, the functional-
ity of a DNA array is not affected by the placement of
the probes on the chip or by the probe synthesis sched-
ules. In practice, since manufacturing process is prone to
errors, probe locations and synthesis schedules affect to a
great degree the hybridization sensitivity and ultimately the
functionality of the DNA array. There are several types of
synthesis errors that take place during array manufacturing.
First, a probe may not loose its protective group when ex-
posed to light, or the protective group may be lost but the
nucleotide to be synthesized may not attach to the probe.
Second, due to diffraction, internal reflection, and scatter-
ing, unintended illumination may occur at sites that are ge-

ometrically close to intentionally exposed regions. The first
type of manufacturing errors can be effectively controlled
by careful choice of manufacturing process parameters, e.g.,
by proper control of exposure times and by insertion of cor-
rection steps that irrevocably end synthesis of all probes
that are unprotected at the end of a synthesis step [1]. Er-
rors of the second type result in synthesis of unforeseen se-
quences in masked sites and can compromise interpretation
of hybridization intensities. To reduce such uncertainty, one
can exploit the freedom available in assigning probes to ar-
ray sites during placement and in choosing among multiple
probe embeddings, when available. The objective of probe
placement and embedding algorithms is therefore to mini-
mize the sum of border lengths in all masks, which directly
corresponds to the magnitude of the unintended illumina-
tion effects. Reducing these effects improves the signal to
noise ratio in image analysis after hybridization, and thus
permits smaller array sites or more probes per array [18].

The border minimization problem was first considered
for uniform arrays (i.e., arrays containing all possible
probes of a given length) by Feldman and Pevzner [12],
who proposed an optimal solution based on 2-dimensional
Gray codes. Hannenhalli et al. [17] gave a heuristic for
synthesizing arbitrary sets of probes, but considered only
synchronous probe embeddings. This embedding method
requires a periodic deposition sequence, and mandates that
the ith nucleotide of a probe be embedded at the unique
matching position available in the ith period (see Figure
2(b)). The method in [17] is to order the probes in a trav-
eling salesman problem (TSP) tour that heuristically min-
imizes the total Hamming distance between neighboring
probes. The tour is then threaded into the two-dimensional
array of sites, using a technique similar to one previously
used in VLSI design [25]. For the same synchronous
context, [22] suggested an epitaxial, or “seeded crystal
growth”, placement heuristic similar to heuristics explored
in the VLSI circuit placement literature by [28, 32].

The general border minimization problem, which allows
arbitrary, or asynchronous probe embeddings (see Figure
2(c)), was introduced by Kahng et al. [22]. They pro-
posed a dynamic programming algorithm that embeds a
given probe optimally with respect to fixed embeddings of
the probe’s neighbors. This algorithm is used as a building
block for designing several algorithms that improve a place-
ment by re-embedding probes, but without re-placing them.
Very recently, [23] proposed methods with near-linear run-
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Figure 2. (a) Periodic deposition sequence.
(b) Synchronous embedding of the probes
AGTA and GTGA gives 6 border conflicts (in-
dicated by arrows). (c) “As soon as possi-
ble” asynchronous embedding of the probes
AGTA and GTGA gives only 2 border con-
flicts.

time combining simple ordering-based heuristics for ini-
tial placement, such as lexicographic sorting followed by
threading, with heuristics for placement improvement, such
optimal reassignment of an “independent” set of probes [33]
chosen from a sliding window [10], or a row-based imple-
mentation of the epitaxial algorithm that speeds-up the com-
putation by considering only a limited number of candidates
when filling each array site.2

2.5 Flow Enhancements

The current design flow can be significantly improved by
introducing flow-aware problem formulations, adding feed-
back loops between optimization steps, and/or integrating
multiple optimizations. These enhancements, which are
represented schematically in Figure 1 by the dashed arcs,
are similar to flow enhancements that have proved very ef-
fective in the VLSI design context [11, 30].

In this paper we concentrated on two such enhance-
ments, both aiming for further reductions in total border
length. The first enhancement is a tighter integration be-
tween probe placement and embedding; this enhancement is
discussed in Section 4. The second enhancement is the inte-
gration between physical design and probe selection, which
is achieved by passing the entire pools of candidates avail-
able for each probe to the physical design step. As shown
in Section 5, this enhancement enables significant improve-
ments (up to 15%) in border length compared to best previ-
ous flows [23].

Other feedback loops and integrated optimizations are
possible but are not explored in this paper. Faster and more

2The work of [23] also extends probe placement algorithms to handle
practical concerns such as pre-placed control probes, presence of polymor-
phic probes, unintended illumination between non-adjacent array sites, and
position-dependent border conflict weights.

targeted probe selection may be achievable by adding a
feedback loop to provide updated selection rules and pa-
rameters to the probe selection step. Integrating deposition
sequence design with probe selection may lead to further
reductions in the number of masks by exploiting the free-
dom available in choosing the candidates for each probe.
Although we show in Section 6 that a simple method for in-
tegrating physical design with deposition sequence design
leads to insignificant improvements in solution quality, this
does not rule out future improvements from tighter integra-
tions between the two steps, such as the addition of a feed-
back loop transferring to the deposition sequence design
step conflict map information (i.e., border length distribu-
tion across deposition steps) generated by physical design.

3 Formulation and Core Algorithms for In-
tegrated Probe Selection and DNA Array
Physical Design

In this section we formally introduce the border-length
minimization objective. We then give an integrated formu-
lation capturing several of the flow enhancements suggested
in the previous section and further studied in Sections 4-5.
We conclude the section by describing two algorithms used
as building blocks in these studies.

Let M1, M2, . . . , MK denote the sequence of masks
used in the synthesis of an array, and let si ∈ {A, C, T, G}
be the nucleotide synthesized after exposing mask Mi. Ev-
ery array probe must be a subsequence of the nucleotide
deposition sequence S = s1s2 . . . sK . Often, a probe cor-
responds to multiple subsequences of S, and one such sub-
sequence must be chosen as the synthesis schedule for the
probe. Clearly, the geometry of the masks is uniquely deter-
mined by the placement of the probes on the array and the
particular synthesis schedule used for each probe.

Formally, array design can be viewed as a 3-dimensional
placement problem [22]: two dimensions represent the site
array, and the third dimension represents the nucleotide de-
position sequence S (see Figure 3). Each layer in the third
dimension corresponds to a mask that induces deposition of
a particular nucleotide (A, C, G, or T ); a probe is embed-
ded within a “column” of this 3-dimensional placement rep-
resentation. Border length of a given mask is computed as
the number of conflicts, i.e., pairs of adjacent exposed and
masked sites in the mask. Given two adjacent embedded
probes p and p′, the conflict distance d(p, p′) is the number
of conflicts between the corresponding columns. The bor-
der length of the embedding is the sum of conflict distances
between adjacent probes, and the border length minimiza-
tion problem seeks to minimize this quantity.

To integrate probe selection and physical design, we pass
the entire pools of candidates for each probe to the physical
design step (Figure 1). This gives additional freedom dur-
ing placement and embedding, and may potentially reduce
final border cost. Indeed, theoretical analysis omitted from
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Figure 3. 3-dimensional probe placement
with 4 masks and S = ACTG. Total border
length is 24 (7 on the A mask, 4 on the C
mask, 6 on the T mask, and 7 on the G mask).

the paper due to space constraints shows that the expected
Hamming distance between two random probes of length
25 (which is proportional to the number of border conflicts
between them under the commonly used synchronous em-
bedding of the probes [17]) is 18.75. On the other hand, the
expected Hamming distance between the closest candidates
from two pools of size 10 is less than 13.

DNA array physical design with probe pools is captured
by the following problem formulation:3

Integrated DNA Array Design Problem

Given:
• Pools of candidates {pij | j = 1, . . . , li} for each probe

i = 1, . . . , N2, where N × N is the size of array

• The number of masks K

Find:
1. A single probe pij among the li available candidates

for probe i, i = 1, . . . , N2,

2. A deposition sequence S = s1, . . . , sK which is a su-
persequence of all chosen probes pij ,

3. A placement of the chosen probes pij into an N × N
array,

4. An embedding of the chosen probes pij into the depo-
sition sequence S

Such that:
• The total number of conflicts between adjacent embed-

ded probes is minimized
3This formulation also integrates deposition sequence design. For sim-

plicity, we leave out design of control and test sequences.

Although the flow in Figure 1 suggests a particular or-
der for making the choices 1-4, the integrated formulation
above allows interleaving these decisions. The following
two algorithms capture key optimizations in the integrated
formulations, and are used as core building blocks in the so-
lution methods evaluated in Sections 4–5. They are “probe
pool” versions of the Row-epitaxial and re-embedding algo-
rithms proposed in [23], and degenerate to the latter ones in
the case when each probe pool contains a single candidate.

• The Row-Epitaxial algorithm (REPTX) is the exten-
sion to probe pools of a probe placement algorithm
in [23]. REPTX performs choices 1 and 3 for given
choices 2 and 4, i.e., it simultaneously chooses already
embedded candidates from the respective pools and
places them in the N × N array. The input of REPTX
consists of probe candidates pij embedded in the de-
position sequence S written as a sequence of length
K = |S| in the alphabet {A, C, T, G, Blank}, where
A, C, T, G denote embedded nucleotides and Blank’s
denote positions of S left unused by the embedded can-
didate. REPTX consists of the following steps: (1)
Lexicographic sorting of probes (based on the first can-
didate, when more than one candidate is available); (2)
Threading the sorted probes in row-by-row order into
the N ×N array; (3) Finding, in row-by-row order, the
best probe candidate4 among the not yet placed probes
within a prescribed lookahead region.

• The sequential re-embedding algorithm is the exten-
sion to probe pools of the probe embedding algorithm
in [23]. It complements REPTX by iteratively modify-
ing candidate selections and their embeddings (choices
2 and 4) as follows. In row-by-row order, for each po-
sition in the N × N array, and for each candidate pij

from the pool of the respective probe, an embedding
having minimum number of conflicts with the existing
embeddings of the neighbors is computed, and then the
best embedded candidate replaces the current one.

4 Improved Integration of Probe Placement
and Embedding

As noted in [22], allowing arbitrary, or asynchronous,
embeddings leads to further reductions in border length (see
Figure 2). An interesting question is how to best exploit
the placement and embedding degrees of freedom. Previous
methods [22, 23] can be divided into two classes: (1) meth-
ods that perform placement and embedding decisions si-
multaneously, and (2) methods that exploit the two degrees
of freedom one at a time. Currently, best methods in the
second class (e.g., synchronous row-epitaxial followed by
chessboard/sequential in-place probe re-embedding [23])

4I.e., the candidate having the minimum number of conflicts with al-
ready placed neighbors.
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outperform the methods in the first class (e.g., the asyn-
chronous epitaxial algorithm in [22]) in terms of both run-
time and solution quality.

All known methods in the second class perform syn-
chronous probe placement followed by iterated in-place re-
embedding of the probes (with locked probe locations).
More specifically, these methods perform the following 3
steps:

• Synchronous embedding of the probes.

• Probe placement with costs given by the Hamming dis-
tance between the synchronous probe embeddings.

• Iterated in-place probe re-embedding.

We note that significant reductions in border cost are possi-
ble by performing the placement based on asynchronous,
rather than synchronous, embeddings of the probes, and
therefore modify the above scheme as follows:

• Asynchronous embedding of the probes.

• Probe placement with costs given by the Hamming dis-
tance between the fixed asynchronous probe embed-
dings.

• Iterated in-place probe re-embedding.

Since solution spaces for placement and embedding are
still searched independently of one another and the compu-
tation of the initial asynchronous embedding adds insignifi-
cant overhead, the proposed change is unlikely to adversely
affect the runtime. However, because placement optimiza-
tion is now applied to embeddings more similar to those
sought in the final optimization stage, there is significant
potential for improvement.

In the current embodiment of the modified scheme, we
implement the first step by using for each probe the “as soon
as possible,” or ASAP, embedding. Under ASAP embed-
ding the nucleotides in a probe are embedded sequentially
by always using the earliest available synthesis step. The in-
tuition behind using ASAP embeddings is that, since ASAP
embeddings are more densely packed, the likelihood that
two neighboring probes will both use a synthesis step in-
creases compared to synchronous embeddings. This trans-
lates directly into reductions in the number of border con-
flicts. Indeed, theoretical analysis omitted here shows that
the expected number of border conflicts between two ran-
dom probes of length 25 is only≈31.1 when both probes are
embedded using ASAP, compared to 37.5 when the probes
are embedded synchronously.

To empirically evaluate the advantages of ASAP em-
bedding we compared on testcases ranging in size from
100×100 to 500×500 the “champion” method in [22, 23],
which uses synchronous initial embeddings for the probes,
with the corresponding method based on ASAP initial probe
embeddings.5 For both methods, the second and third

5All experiments reported in this paper were performed on testcases
obtained by generating each probe candidate uniformly at random. The
probe length was set to 25, which is the typical value for commercial arrays
[1]. Unless otherwise noted, we used the canonical periodic deposition

steps are implemented using REPTX and sequential in-
place probe re-embedding algorithms in [23] (see also Sec-
tion 3).

Tables 1 and 2 give the border-length and CPU time (in
seconds) for the two methods. Each number in these ta-
bles represents the average over 10 testcases of the given
size. Surprisingly, the simple switch from synchronous to
ASAP initial embedding results in 5-7% reduction in to-
tal border-length. Furthermore, the runtimes for the two
methods are comparable. In fact, sequential re-embedding
becomes faster in the ASAP-based method compared to the
synchronous-based one since there is less room for optimiz-
ing the REPTX placement and hence the number of itera-
tions drops (from 9 to 3 on the average).

5 Integrated Probe Selection and Physical
Design

We explored two methods for exploiting the availabil-
ity of multiple probe candidates during placement and em-
bedding. The first method uses the row-epitaxial and se-
quential in-place probe re-embedding algorithms described
in Section 3. This method is an instance of integration
between multiple flow steps, since probe selection deci-
sions are made during probe placement and can be further
changed during probe re-embedding. The detailed steps are
as follows:

• Perform ASAP embedding of all probe candidates.

• Run the REPTX placement algorithm using border
costs given by the Hamming distance between the
ASAP embeddings.

• Run the iterated sequential in-place probe re-
embedding algorithm.

The second method follows the separation between can-
didate selection and placement+embedding. However, we
modify probe selection to make it flow-aware, i.e., to make
its results more suitable for the subsequent placement and
embedding optimizations. Building on the observation that
shorter probe embeddings lead to improved border length,
we choose from the available candidates the one that em-
beds in the least number of steps of the standard periodic
deposition sequence using ASAP:

• Perform ASAP embedding of all probe candidates.

• Select from each pool of candidates the one that em-
beds in the least number of steps using ASAP.

• Run the REPTX placement algorithm using only the
selected candidates and border costs given by the Ham-
ming distance between the ASAP embeddings.

• Run the iterated sequential in-place probe re-
embedding algorithm, again using only selected can-
didates.
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Chip Synchronous Initial Embedding ASAP Initial Embedding Percent
Sync Embed REPTX Re-Embed ASAP Embed REPTX Re-Embed Improv.

100 619153 502314 415227 514053 393765 389637 5.2
200 2382044 1918785 1603745 1980913 1496937 1484252 6.7
300 5822857 4193439 3514087 4357395 3273357 3245906 6.9
500 18786229 11203933 9417723 11724292 8760836 8687596 7.0

Table 1. Total border cost (averages over 10 random instances) for synchronous and ASAP initial
probe embedding followed by row-epitaxial and iterated sequential in-place probe re-embedding.

Chip Synchronous Initial Embedding ASAP Initial Embedding
Sync+REPTX Re-Embed Total ASAP+REPTX Re-Embed Total

100 166 81 247 188 29 217
200 1227 340 1567 1302 114 1416
300 3187 748 3935 2736 235 2971
500 8495 2034 10529 6391 451 6842

Table 2. CPU seconds (averages over 10 random instances) for synchronous and ASAP initial probe
embedding followed by row-epitaxial and iterated sequential in-place probe re-embedding.

Table 3 gives the border-length and the runtime (in CPU
seconds) for the two methods of combining probe place-
ment and embedding with probe selection (each number
represents the average over 10 testcases of the given size).
We varied the number of candidates available for each probe
between 1 and 16.

As expected, for each method and chip size, the im-
provement in solution quality grows monotonically with
the number of available candidates. The improvement is
significant (up to 15% when running the first method on
a 100×100 chip with 16 candidates per probe), but varies
non-uniformly with the method and chip size. For small
chips the first method gives better solution quality than
the second. For chips of size 200×200 the two methods
give comparable solution quality, while for chips with size
300×300 or larger the second method is better (by over 5%
for 500×500 chips with 8 probe candidates). The second
method is faster than first for all chip sizes. The speedup
factor varies between 5× and 40× when the number of can-
didates varies between 2 and 16. Interestingly, the runtime
of the second method is slightly improving with the number
of candidates, the reason being that the number of iterations
of sequential re-embedding decreases when the length of
the ASAP embedding of the selected candidates decreases.

6 Conclusions

In this paper we have proposed enhancing the design
flow for DNA arrays by introducing flow-aware optimiza-
tion formulations and adding feedback loops between opti-
mization steps. We have proposed integrated formulations
for probe selection and physical design, and experimentally

sequence, (ACTG)25, and a lookahead of 10,000/chipsize in the REPTX
algorithm. All reported runtimes are for a 2.4 GHz Intel Xeon server with
2GB of RAM running under Linux.

verified that integrated optimizations lead to significant im-
provements in solution quality.

Given the significant reduction in border length achieved
by integrating physical design with probe selection, it is nat-
ural to explore integration with other design steps, in partic-
ular with deposition sequence design. In a preliminary as-
sessment of this integrated optimization, we ran the winning
algorithm from Section 4 (REPTX followed by sequential
re-embedding using ASAP initial embedding of the probes)
for all 24 periodic deposition sequences. On chips of size
100×100, the best deposition sequence gives only 0.17%
improvement compared to the cost averaged over all 24 se-
quences.6 This improvement is comparable with the inher-
ent noise in the placement and embedding algorithm: for the
same chip size, randomly choosing the order of nucleotides
in the lexicographic sorting step of REPTX leads to an im-
provement of 0.08% for the best order versus the average
over the 24 possible orders. In conclusion, consideration
of multiple periodic deposition sequences during placement
and embedding leads to improvements in solution quality
that are too small to justify the increase in runtime. It is
possible that more sophisticated integration methods (such
as consideration of multiple aperiodic sequences, or the ad-
dition of a feedback loop transferring to the deposition se-
quence design step the conflict map information generated
by physical design) to be more successful. We leave their
study as subject of future research.

Other direction of future research is to find formulations
and methods for integrated optimization of test structure de-
sign and physical design. Since test structures are typically
pre-placed at sites uniformly distributed across the array,
integrated optimization can have a significant impact on the

6The improvement remains in the same range when we take into con-
sideration multiple probe candidates using the second method given in Sec-
tion 5.

Proceedings of the 21st International Conference on Computer Design (ICCD’03) 
1063-6404/03 $ 17.00 © 2003 IEEE 



Chip Pool Multi-Candidate ASAP-Based Selection
Size Size Border CPU % Border CPU %

Cost Sec. Imp. Cost Sec. Imp.
100 1 389637 217 – 389637 217 –

2 372951 1040 4.3 377026 212 3.2
4 357562 1796 8.2 363944 193 6.6
8 343604 3645 11.8 351540 191 9.8

16 330600 7315 15.2 339636 185 12.8
200 1 1484252 1416 – 1484252 1416 –

2 1438182 6278 3.1 1435712 1176 3.3
4 1386527 12750 6.6 1385556 1189 6.6
8 1334273 27382 10.1 1336851 1121 9.9

16 1284550 44460 13.5 1289566 1117 13.1
300 1 3245906 2971 – 3245906 2971 –

2 3185015 14956 1.9 3141088 2724 3.2
4 3093633 26514 4.7 3018490 2771 7.0
8 2985393 51226 8.0 2921195 2603 10.0

16 2878886 98189 11.3 2835695 2760 12.6
500 1 8687596 6842 – 8687596 6842 –

2 8611468 51847 0.9 8407839 6090 3.2
4 8477014 86395 2.4 8105358 6709 6.7
8 8248838 161651 5.1 7807763 6085 10.1

16 – – – 7518331 5986 13.5

Table 3. Total border cost and runtime (av-
erages over 10 random instances) for the
two methods of combining probe placement
and embedding with probe selection. The
improvement (in percents) is relative to the
single-candidate version of the same code.

total border length.
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