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Abstract

We propose 1o introduce redundant interconnects for manufacturing
yield and reliability improvement. By introducing redundant intercon-
nects, the potential for open faults is reduced at the cost of increased po-
tential for short faults; overall, manufacturing yield and fauit tolerance
can be improved. We focus on a post-processing, tree augmentation ap-
proach which can be easily integrated in current physical design fows.
Our contributions are as follows:

e We formulate the problem as a variant of the classical 2-edge-
connectivity angmentation praoblem in which we take into account
such practical issues as wirelength increase budget, routing obsta-
cles, and use of Steiner points.

e We show that an optitum solution can always be found on the
Hanan grid defined by the terminals and the comers of the feasible
routing region.

e We give a compact integer program formulation which, for up to

100 terminal nets, is solved in practical runtime by the commercial

optimization package CPLEX.

‘We give a well-scaling greedy algorithm which has practical run-

time up to 1,000 terminals, and comes on the average within 1-2%

of the optimum computed by CPLEX.
¢ We give a comprehensive experimental study comparing the so-

lution quality and runtime of our methods with the best reported
methods for 2-edge-connectivity augmentation, including a sophis-
ticated heuristic based on minimum-weight branchings [9)] and a
recent genetic algorithm [14].

Experiments on randomly generated and industry testcases show that
our greedy augmentation method achieves significant increase in relia-
bility (as measured by the percentage of biconnected tree edges) with
very small increase in wirelength. For example, on 1,000 terminal nets
the average percentage of biconnected tree edges is 34.19% for a wire-
length increase of only 1%, and 87.73% for a wirelength increase of
20%. SPICE simulations on industry routed nets show that non-tree
routing has the additional benefit of reducing maximum sink delay by
an average of 28.26% compared to Steiner routing, and by an average
of 3.72% compared to timing optimized routing. SPICE simulations
further imply that non-tree routing has smaller delay variation due to
process variability.

1 Introduction

Ever-decreasing feature sizes allow integration of millions of gates on a
single chip. This integration has been enabled in part by low defect den-
sity. However, continued reductions in defect density cannot be expected
to continue in the near future. Sensitivity of parametric (performance)
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yield to variability also increases as a result of performance optimiza
tion (sizing, etc.) design flows. New design techniques must be applie.
to improve manufacturing yield of iarge-area chips, as yield becomes 2+
ever-greater determinant of design viability [2].

In nanometer technologies, likelihood of back-end-of-line (BEOL,
defects (i.e., high-resistance via or interconnect defects) has increase
relative to that of front-end-of-line (FEOL) defects (i.e., device defects)
Interconnects are now more likely to cause circuit malfunction and/o
performance or reliability degradation. Two types of catastrophic fauli-
arise due to BECL. defects: open circuit faults or broken interconieci:
due to loss of mass, and short circuit faults or unintended bridgings be-
tween interconnects due 10 augmentation of mass (Fig. 1). Manufactur-
ing yield is directly affected by the size of the critical area, which is ihe
union of all centers of fixed size defects that induce IC fauity behavior. A
typical figure of merit that measures the layout’s robustness is obiaine
as the ratio of the rotal critical area 10 the layout area [3].

In this paper we propose 1o introduce layout tevel redundancy b,
constructing non-tree interconnect topologies for manufacturing yiels
and reliability improvement. For easier integration within existing flows
we emphasize a post-processing, tree augmentation approach, rathc
than monolithic non-tree routing construction during global or detaile:
routing. In adding redundant wiring, the extra wire creates more Crific”
area for short faults, but the redundancy makes some wires immune i«
open defects and thus reduces open-fault critical arez. Overall, critic=
area and manufacturing yield could improve. We observe that:

e The existng tradeoff between short- and open-fault critical aiea.
in the BEOL is conducive to the approach we propose. For currz:.
design methodologies and manufacturing processes, the probabi!
ity of failure (POF) due to open defects of any given size is > 3:
higher than the POF due to short defects of identical size [3).

¢ Previous methods that improve manufacturability or reliability v
“decompaction” (see, e.g., [2]) will not be as useful in the fr
tare due to heavy restrictions on allowed spacings and pitches °
nanometer-scale (<100nm) processes. On the other hand, our 5
proach would work well even with restricted spacings and piichs
(but would require incremental detailed routing capability). In fac
it can be speculated that introduction of interconnect redundanc
improves uniformity of routing resource utilization by formir
“functional fill” as opposed to the present “dummy fill” metho:
ologies. ;

¢ Tree augmentation schemes have been previously proposed in i
context of clock routing for delay and skew reduction [16] and <ol
ical net routing for delay optimization [11]. However, previous -
gorithms do not work well in our context, since tree augmentatic
for manufacturability and reliability improvement involves difi.
ent tradeoffs than tree angmentation for deiay or skew optimi.
tion.

Our Manhanan Routing Tree Augmentation (MRTA) formulation ¢
sembies the classical edge connectivity augmentation problem {7,
which a given subgraph must be avgmented at minimum cost into 2
edge (or more generally k-edge) connected graph.l Finding a mininu

' A praph is &-edge connected if it cannot be separated by removing less than £ edges.
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Figure !: An open fault is formed due to loss of mass; a short fault is
formed due to augmentation of mass.

cost k-edge-connected augmentation is NP-hard even for k = 2 [4], and
much work has been devoted to finding good heuristics and approxima-
tion algorithms, see, e.g., [6] and the references therein. The MRTA for-
mulation differs from the 2-edge-connectivity augmentation (E2AUG)
problem in several respects:

e While E2AUG is typically formulated for graphs, MRTA has a
strong geometric flavor. We consider routing trees embedded in
the Manhattan plane, and allow augmenting paths between any two
points on the embedded tree (however, zaugmenting paths must be
fully contained in the feasible routing region defined by routing
obstacles and design spacing rules). In particular, we allow aug-
menting paths that are “parallel” to (fragments of) tree edges.

e To ensure the optimal balance between vulnerability to short- and
open-faults, our formalation imposes a budget on the total length of
augmentation paths and requires maximizing 2-edge connectivity
subject to this constraint. In contrast, E2ZAUG requires 100% 2-
edge connectivity regardless of the wirelength increase.

e To enable higher quality MRTA solutions, we allow augmenting
paths with one or both ends on other augmenting paths, i.c., at
newly created Steiner points (see Figure 2). The existing literature
on 2-edge-connectivity augmentation focuses almost exclusively
on the spanning subgraph formulation of the problem, in which the
use of Steiner peints is disallowed.

Qur main contributions are as follows:

e We show that an optimum MRTA solution can always be found
on the Hanan grid defined by the termminals and the corners of the
feasible routing region.

e We give integer program formulations for the MRTA problem with
and without Steiner points. The compact integer program for
MRTA without Steiner points is solved in practical runtime by the
commercial optimization package CPLEX for testcases with up to
100 terminals.

® We give a well-scaling greedy algorithm which has practical run-
time up to 1,000 terminals, and comes on the average within 1-2%
of the optimum computed by CPLEX. The mntime of our algo-
rithm is O(ND + N?K))}, where D is the runtime of Dijkstra’s al-
gorithm on the Hanan grid for the terminals and the comers of the
feasible routing region, N is the number of Hanan grid vertices on
the given routing tree, and X is the number of augmenting paths
(typically a small fraction of N). Without routing obstacles the
running time reduces to O(N?K).

e We give a comprehensive experimental study comparing the so-
lution quality and runtime of our methods with the best reported
methods for 2-edge-connectivity augmentation, including a sophis-
ticated heuristic based on minimum-weight branchings [9] and a
recent genetic algorithm [14].

Experiments on randomly generated and industry testcases show that
our greedy augmentation method achieves significant increase in relia-
bility (as measured by the percentage of biconnected tree edges) with
very small increase in wirelength. For example, on 1,000 terminal nets
the average percentage of biconnected tree edges is 34.19% for a wire-
length increase of only 1%, and 87.73% for a wirelength increase of
20%. SPICE simulations on industry routed nets show that non-tree
routing has the additional benefit of reducing maximum sink delay by
an average of 28.26% compared to Steiner routing, and by an average
of 3.72% compared to timing optimized routing. SPICE simulations
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further imply that non-tree routing has smaller delay variation due to
process variability.

The rest of the paper is organized as follows. Section 2 gives the de-
fect model, notations, and the problem formulation. Section 3 gives the
reduction to a Hanan grid, integer program formulations, and the greedy
MRTA algorithm. Section 4 presents experimental results comparing
the solution quality and rantime of our methods with two of the best ex-
isting methods for 2-edge-connectivity augmentation, as well as results
of SPICE stmulations showing that non-tree routing has improved inter-
connect delay and process variation robustness, Finally, Section 5 gives
directions for future research.

2 Problem Formulation

QOur problem formulation is based on the following defect model:

o Uniform defect distribution. We assume that manufacturing de-
fects are uniformiy distributed across the die area. In particular,
since we are concerned with routing reliability of large global nets,
the uniform defect distribution allows us to ignore defects at the
nodes of the routing (which have negligible probability of occur-
rence), and consider only defects that affect its edges.

o Single-defect faults. The occurrence probability of a fault caused
by multiple defects is orders of magnitude smaller than the occur-
rence probability of a fault cansed by a single defect. We there-
fore concentrate on reducing routing vulnerability to single defect
faults, and measure routing vulnerability to open faults by the total
length of bridges (i.e., routing edges whose removal disconnects
the net) of the routing.

e Open faults only. For current design methodologies and man-
ufacturing processes (e.g., damascene copper electroplating) the
prevailing error mechanism is void formation (open favits). As
noted in {3], the probability of failure (POF) due to open defects
of a given size is > 3x higher than the POF due to short defects
of identical size. In particular, design rule correctness guarantees
that there will be no short fault induced by a defect of size smaller
than the minimum spacing between interconnects and routing ob-
stacles. In this paper we concentrate on reducing vulnerability to
open fanlts by adding redundant wires. Vuinerability to short faults
is maintained within desired limits by imposing an upper-bound on
the amount of added wires.

‘We use the following notations throughout the paper :

1. P = set of terminals for the given net

2. T{P) = given routing tree over terminals of P

3. pr{u,v) = the unique path in tree T between u,v€ T

4. a(u,v) = augmenting path, assumed to be a shortest path between

u and v within the feasible routing region (i.e., avoiding the given
routing obstacles)
. A = set of augmenting paths
G = T UA = augmented routing graph
7. bridges(G) = set of all bridge edges of G; an edge (u,v) is a bridge
of G if its removal disconnects G
8. {(G) = total length of routing graph G
9. I(A) = total length of augmenting paths
10. Ibridges(G) = total length of bridge edges of G; in our defect
model the probability of failure due to open faults for the routing
G is proportional ta lbridges(G)
11. I;(u,v} = length of augmenting path a(u,v)
12. lbridgesg(u,v) =1(pr(u,v)Nbridges(G)) = total length of bridge
edges on path pr(u,v)

o

13. FRR = rectilinear feasible routing region®

2The feasible routing region FRR is formed by enlarging the neighboring wires and rout-
ing obstacles by the minimum design spacing rules. The inieial routing T as well as the
augmenting paths A must be within the FRR 10 guarantes design rule comectness,
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Figure 2: Initial routing tree T and a set of augmenting paths. Remaining
bridges are shown as thin lines.

14. F = set of comer vertices of the rectilinear feasible routing region
FRR

15. H{PUF) = Hanan grid over the points in PUF, obtained by taking
the union of vertical and horizontal lines through the points

16. HV{PUF) = the set of vertices of H(PUF)
17. N=|TNHV(PUF)|=number of Hanan grid points on the routing
tree T

The problem of maximally increasing the reliability to open faults by
adding a bounded amount of wire redundancy te an already routed net is
formulated as follows:

Manhattan Routing Tree Augmentation (MRTA) Problem
Given:
1. Rectilinear feasible routing region FRR,
2. Rectilinear Steiner routing tree T within FRR, and
3. Wirelength budget W.
Find: Set of augmenting paths A within the FRR such that:
(a) Total length of augmenting paths is at most W, i.e., {{A) < W, and
(b) Totat length I{T) — lbridges(G) of edges of T which are non-
bridges in G = T UA is maximum.

3 Exact and Heuristic Algorithms for the MRTA Problem

We begin this section by showing that, despite the seemingly continuous
solution space (due to the flexibility in choosing endpoeints of augment-
ing paths), an optimum soiution can always be found on the Hanan grid
defined by the terminals and the corners of the feasible routing region.
Based on this result, in Section 3.2 we give a compact integer linear pro-
gram (TLP) formulation for the MRTA problem in which Steiner points
are disallowed, and an ILP with exponentially many constraints for the
MRTA probiem with Steiner points. Finally, in Section 3.3 we describe
an efficient greedy MRTA heuristic.

3.1 Reduction to Hanan Grid

Theorem 1 There exists an optimum MRTA solution with all augment-
ing paths embedded on the Hanan grid defined by terminals and corners
of the rectilinear feasible routing region.

Proof. If both ends of an augmenting path are Hanan grid vertices then
clearly the whole augmenting path (which is a shortest path within the
given rectilinear feasible routing region) can be routed along the Hanan
grid. Assume that an optimum MRTA solution G = T UA has a non-
Hanan augmenting path a ending at a point p which is not a Hanan grid
vertex. Let ! and r be the vertical Hanan grid lines immediately to the
left and right of p, and let k be the horizontal line through p. There are
two cases to consider:
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Figure 3: (i) If augmenting path a connects two parallel edzes, then I{G)
remains constant when a slides horizontally, and for at least one direction
lbridges(G) does not increase. (i) Otherwise, a can be re-embedded
along the Hanan grid lines.

(i) If the augmenting path a has the other end strictly between ! and r
on a horizontal edge of G, then, by optimality, it follows that a is
a straight line segment. Siding a horizontally does not change the
total length 1(G), and there exists a horizontal sliding direction (ei-
thier sliding towards [ or sliding towards r) which does not increase
the bridge length lbridges(G). By sliding & in this direction we
obtain another optimum solution with strictly shorter augmenting
path length not embedded on the Hanan grid (Fig. 3(1)).

(it) Otherwise, let g be the first point, starting from p, where a cresses

again I U hUr (such a point must exist, since every augmenting

path creates a cycle with the rest of G). The portion of a between p

and g can be re-embedded as an L shape atong the Hanan grid (Fig.

3(i1)). Again, this gives an optimum solution with strictty shorter
augmenting path length not embedded on the Hanan: grid.

The theorem fellows by repeating the above transformations (and the

symmetrical vertical transformations) vntil all augmenung edges are

completely embedded on the grid. [m]

Remark. Notice that Theorem 1 does not gnarantee that all augmenting

path endpoints are Hanan grid vertices. It is easy to see that, due to the

wirelength budget, endpoints which are not Hanan grid vertices may be

required. However, Theorem 1 implies that this happens only when the
augmenting path is parallel 1o an edge of the augmented tree 7.

3.2 Integer Program Formulations

Theorem 1 implies that the optimum MRTA can be found by consider-
ing only augmenting paths which are shortest paths between arbitrary
vertices on the Hanan grid H(PU F), plus, possibly, augmenting paths
which are parallel to (partial) tree edges.

We first give the ILP formulation for MRTA without Steiner points.
In this version of the problem augmenting paths a(u,v) which are not
parallel to tree edges connect points #,v € TNHV (PUF). To formulate
the MRTA problem as an integer program, we first assign to each pair of
vertices u,v € TNHV(PUF) a 0/1 variable x,, mdlcalmg whether or
not a{u,v) is an augmenting path, ie,,

1
Xuy = { 0

Also, we assign to each edge {w,v) € T a 0/1 variable y,, indicating
whether or not (i, v) is contained in a cycle of TUA, i.e.,

1
;,yu,v = { 0

Removing any edge (u,v) € T separates T into two subtrees, T, and
T, such that T = T, U T, U (1, v). Since Steiner points are disallowed, it
follows that (u,v) is contained in a cycle of TUA if and onty if A contains
an augmenting path between T, and Ty, i.e., iff there exist i € T, and
j €T, such that a{i, j) € A. Using this observation, we can reformulate
MRTA as the foilowing integer program: ‘

a(u,v) €A
a(u,v) g A 5 )

,v) & bridges(G)
EZ,V) € bridges(G). @



maximize Y, yuul(u,v)+ (W -y x“,vi'a(u,v)) 3

(u)er uvETRHV(PUF)
such that
xuplaluy) < W
u,veTNHV{PUF)
2 X f 2 yu,v;v(u, v) eT

i€, jeT,
xuy € {0,1},Yu,v e TNHV(PUF)
Yuw € {01 1},V(u,v) eT

where I(u,v) is the length of edge (u,v} € T and l,{u,v) is the length of
the augmenting path between u and v.

In ILP (3), the first constraint enforces the wirelength budget, while
the following constraints ensure that only edges of T that are bicon-
nected are counted in the objective function. Augmenting paths parallel
to (fragments of} tree edges are handled implicitly by the addition to the
objective function of the term W — 3, crryiv(pur) Xu,vla(#, v), which
represents the wirelength budget left unused after adding “regular” aug-
menting paths.

Similar to ILP (3), the ILP formulation for MRTA with Steiner points
uses /1 variables y,, indicating whether or not {,v) € T are bicon-
nected. In order to capture the possible use of Steiner points as ends of
augmenting paths, we now need a 0/1 variable x, for each edge ¢ in the
Hanan grid H(PUF). The ILP sets x, to 1 if any augmenting path uses e,
and to 0 otherwise. The ILP formulation for MRTA with Steiner points
is:

maximize 3 y,,‘vt(u,v)+(W— Z JceI(e)) ()]

(uv)eT ecH(PUF)
such that
Y oxldle) < W
e€H(PUF)
2 Xe .>_ yu,V)V(uvv) € T1X E Xu,v
ecX
xe € {0,1},Yee H(PUF)
Yuy € {01 1},V(u,v) €T

where /{1, v) is the length of edge (u,v) € T, I(e) is the length of Hanan
grid edge e, and, for every {(u,v) € T, X, , is the set of all Hanan grid
cuts separating the two connected components, T, and T, of T\ {i,v).

The first constraint of (4) is again enforcing the wirelength budget.
Ensuring that y,, is set to [ only if edge (x,v) € T is biconnected re-
quires now an exponential number of constraints, The formulation is
based on the Max-Flow Min-Cut theorem, which guarantees that there
exists a path between T, and T, consisting solely of edges e with x, set
1o 1 if every cut separating T, from T, comains at least one such edge.
Finally, augmenting paths parallel 1o tree edges are handled using the
same method as in (3).

We note that, despite its exponential size, the fractional relaxation
of (4) can be solved, e.g., using the Ellipsoid algorithm {5] with a sepa-
ration oracle that runs a min-cut algorithm for each (u,v) € T to check
feasibility of any given solution.

3.3 The Greedy MRTA Algerithm

In this section we propose a greedy algorithm for the MRTA prob-
lem. Our algorithm (see Algorithm 1) iteratively adds an augmenting
path a{u,v) that maximizes the ratic Ibridgesg(u,v}/la(u,v) between
the length of bridge edges between « and v and the length of the aug-
menting path. In every step the algorithm considers only augmenting
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paths a{u,v) that fit within the remaining wirelength budget and have
tbridgesgiu,v}/la{u,v) > | (since otherwise it is better 1o simply use
augmenting paths parallel to tree edges).

In order to efficiently compute the best augmenting path in each
greedy iteration, we precompute the length of all shortest augment-
ing paths a(x,v} by running Dijkstra’s algorithm with each ¥ € TN
HV(PUF) as the source. Further, we compute bridge edge lengths
{bridgesg(u,v) by execating one depth-first search traversal of T for
each u € TONHV(PUF). Whenever an augmenting path g is added to
G, we update the set of possible augmenting path endpoints to include
Hanan vertices on a, and compute the lengths of all shortest augment-
ing paths originating at these points with ¢ HV (P UF)| more runs of
Dijkstra’s algorithm. It can be checked that the number of possible aug-
menting path endpoints does not exceed 2N throughout the algorithm,
where N = [T NHV(PUF)|. Thus, with this implementation, the greedy
algorithm runs in G{N.D+ N2K)) time, where D is the runtime of Dijk-
stra’s algorithm on H{PUF) and K is the number of augmenting paths
(typically a small fraction of N). Without routing obstacles Dijkstra’s
algorithm becomes unnecessary since l;(u,v) is given by the rectilin-
ear distance between u and v. In this case the greedy algorithm runs in
O(N?K) time.

Algorithm 1;  Greedy MRTA Algorithm

Input: Rectilincar feasible routing region FRR with comers F, routing tree T for P
within FRR, wirelength budget W
Output:  Set of augmenting paths A with [{A) < W

1. bridges(G)=G=T.A=0,V=TnHV(PUF)
2. Foreach u € V, compute the lengths ,{u,v) of the shortest paths from u to each
v € V by running Dijkstra’s algerithm with i as the source
3. For each node u € V, compute the length {bridgesc{u, v) of the bridges between u
and cach v € V by adepth first search traversal of T with « as the source
4. Find, among paths a(u,v) with I{A) +{;(u,v) < W, an augmenting path a(u*, v'}
maximizing ibridgesg (u,v) {I,(u,v)
5. If ibridgesg(u” v )/ {,(u" ,v*) 2 1 then
A=AUa(u",v"), G=GUa(u" v)
bridges(G) = bridges{G)\ priu* v*)
V=VYU(a(u* v INHV(PUF
For each 1 € a(u*,»* ) NHV(PUF), compute the lengths /,(u,v) of the
shortest paths from u to each v € V by running Dijkstra’s algorithm with u«
as the source
Gorto Step 3
6. Else Exit

4 Experimental Results

We compare our integer program and the greedy MRTA algorithm with
two existing algorithms:

e A greedy best-drop heuristic in [9] which selects augmentation
edges by finding minimum-weight branching in an appropriately
defined directed graph. The best-drop heuristic is reported to find
high-quality solutions for a host of connectivity problems, includ-
ing 2-edge-connectivity augmentation with no wirelength budget.3

e A penctic algorithm enhanced by using a compact edge set rep-
resentation, problem specific variation operators and a stechastic
local improvement algorithin to reduce solution space [14].

The integer program (3) was solved using the CPLEX 7.0 MIP opti-
mizer, the other three algorithms were implemented in C/C++ and com-
piled with g++ version 2. 95. All experiments were conducted on a
SUN SPARC Ultra-10 workstation with 256MB memory. For each in-
stance size n € {5, 10,50, [00,500,1000} we generated 100 instances
uniformly at random from a 10,000 x 10,000 grid. For each instance, a
Steiner minimum tree is constructed using the ER heuristic [1] and then
augmented (assuming no routing obstacles) by the four compared algo-
rithms. Table 1 shows the statistics on the number of nodes (including
wire turns), number of leaves, and total wirelength of the initial trees.

We implement three versions of the greedy MRTA algorithm:

*'We have modificd the code in [9] to enforce a specificd wirelengith budger,




#Sinks | #Nodes  #Lcaves  Length

5 5.0 3.60 14801.50
10 19.68 6.32 23926.63
20 49.63 10.85 34660.11
50 103.77 2538 54305.56
100 20199 5017 75806.31
200 41724 98.19 106486.30
500 104548 24168 167176.87
1000 2087.66  480.93 234839.26

Table 1: Initial routing statistics (averages over 100 random instances of
each size).

(a) Considering all augmenting paths a(u,v) for which u,v are either
terminals, Steiner points, or corners of edges of T

(b) Considering all augmenting paths a(u,v} for which u,v € TN
HV(PUF), ie.,all paths in (a) plus paths with one or both ends at
the projection of a terminal on an edge of 7.

{c) Considering all augmenting paths a{z, v) for whichu,v € (TUA}N
VH(PUF), i.e., ali paths in (b) plus paths with one or both ends at
the projection of a terminal on an already added augmenting path.

We also implemented versions (a) and (b) for the Best-Drop and ILP ai-
gorithms. The (c) version of the greedy MRTA algorithm gives almost
identical results to the (b} version in experiments with 1 —20% wire-
length budget and 5 - 20 terminals, and we omit its results.

Table 2 gives the number of augmenting paths, percentage of bicon-
nected tree edges, and runtime for versions (a) and (b} of the greedy
MRTA, Best-Drop, and ILP algorithms. The results show that ver-
sions (b) achieve better solution quality than versions (a); for the greedy
MRTA algorithm version (b) is better than version (a) by as much as
18.54%. Table 3 gives the results obtained by the greedy MRTA, Best-
Drop, Genetic, and ILP algorithms when there is no restriction on the
added wirelength.

The results show that the greedy MRTA algorithm is the fastest of
the compared algorithms, scaling up to 1,000 sinks. For 1 —20% wire-
lengih budgets the greedy MRTA algorithm is also outperforming the
other heuristics in solution quality, finding solutions within 1-2% of the
optimum computed by CPLEX for all wirelength budgets. The much
slower Best-Drop and Genetic heuristics outperform greedy MRTA only
for unlimited wirelength budget and small number of sinks, and then by

a very small amount.

As expected, MRTA biconnectivity increases with the wirelength
budget, e.g., it increases from 34.19% under 1% wirelength budget to
87.73% under 20% wirelength budget for 1000 sink instances. Inter-
estingly, the biconnectivity also increases significantly with the num-
ber of sinks, e.g., from 1.12% for 5 sinks to 34.19% for 1000 sinks for
1% wirelength budget. Table 4 shows statistics for the first augmenting
path added by greedy MRTA, This path has a ratio between biconnected
length and wirelength increase as large as 80 for 1,000 sinks, and al-
ready achieves a significant improvement in routing reliability at a very
low wirelength increase cost.

The impact of non-tree augmentation on maximum delay and de-
lay variation due to process variability was verified by running SPICE
simulation on two sets of 14 instances each. The first set consisted of
non-critical nets extracted from a recent industry design and routed by
Cadence WarpRouter using minimum-area optimization, while the sec-
ond set consisted of randomly generated nets routed using the timing-
driven P-Tree algorithm [10] with buffer insertion disabled and identical
sink required-asrival times. Each interconnect was represented by a IT
model and driven by a 1.8V voltage source with a ramped input signai
of 150ps slew time. 50% delay from the source to each sink was simu-
lated based on 180nm ITRS predictive technology model beta version {8]
with the following parameters: uait wire resistance r = 0.0400/um, unit
wire capacitance ¢ = 0.259fF /um, sink capacitance ¢; = 63.358fF and
source driving resistance Rp = 139.434Q, In computing robustness to
process variation we assumed 100% wire width correlation. This mod-
els systematic variation sources such as lens aberrations which cover
5-10mm ranges {13, 12], i.e., ranges that are larger than those covered
today by unbuffered interconnect. We uniformly varied wire width by
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WL | FSINK | %Wl %Bl _ RATO CPU |
Budget INC CONN SEC
5 0.22 0.34 1.54545 000
10 051 058 113725 0.0

50 055 LM 243636 0.02
1% 100 036 1.32 3.66667 0.07

500 0.37 1727 466757 181
1000 Q.18 1432  79.5556 7.19
5 0.69 0.8 L17391  0.00
10 1.13 134 1.18584 0.00
50 106 3.13 295283 0.02
2% 100 148 1634 110405 0.07
500 037 1727 466757 L32
1000 018 1432 79.5556 735
5 256  3.12 1.21875 (.00
10 272 404 1.48529 0.00
50 364 3027 831393 0.2

5% 100 200 3047 145095 007
500 .37 1727 466757 185
1000 0.18 1432 79.5556 733

5 Z39 618 12638 00 |
10 563 974  LMIT8 000
50 409 3620 885086 0.02

10% 100 2,10 3047 14.5095 0.07
500 0.37 17.27  46.6757 1.85

1000 018 1432  79.5556 7.34
5 11.86 1570 132378 0.0
0 1115 27.52 246816 0.0
50 409 3620 B.85086 0.02

20% 100 210 3047 145095 007
500 037 1727 46.6757 185

1000 0.18 1432  79.5556 7.13
5 3370 5378 1.59585 000
10 1676 4693 230012 000
50 4.09 3620 8.85086 0.2

100% | 100 210 3047 145095 Q.7
500 037  17.27  46.6757 1.36
1000 0.18 1432 79.55%6  1.33

Table 4; Wirelength increase, percentage of biconnected tree edges,
Ibridgesg(i,v) /14 (1, v) ratio, and CPU runtime due to first MRTA aug-
mentation path (averages over 100 random instances).

dw = 6.67% from the nominal value, and computed unit length wire
capacitance using the formulas in [15] for parallel lines between two
planes, including area, fringe, and coupling capacitarices. The maxi-
mum 50% sink delay and its variation in percents are reported for the
two sets of test instances in Tables 5 and 6. In these tables, the results
under 0% wirelength budget correspond to the initial (area, respectively
timing-optimized) routing trees.

Resalts for non-critical nets (Tables 5) show that non-tree augmenta-
tion continuously reduces maximum source-to-sink delays in most of the
instances in our experiments (except ner10). An average of 28.26%, and
maximum of 62.15% delay reduction can be achieved (for net12) with
20% wirelength budget. Non-tree augmentation also decreases process
variation effect in most non-critical instances (except net4). An average
of 13.79%, and maximum of 28.86% delay variation reduction is ob-
served (for net12) when comparing nominal wire width w and w — dw
wire width. Resulis for timing-optimized interconnect trees (Tabie 6)
show that non-tree augmentation still decreases the maximum source-
to-sink delay by an average of 3.72% and a maximum of 39.04%. How-
ever, in some instances maximum source-to-sink delay can increase by
as much as 6.47% due to non-tree angmentation. Non-tree augmentation
decreases process vasiation in afl the timing-optimized instances, with an
average of 3.24%, maximum of 12.17% and minimum of 0.08%.

An explanation of the above results is that non-tree augmenting paths
can decrease interconnect source-to-sink delay by forming shorter con-
nections, but can also increase interconnect delay due to increased ca-
pacitance. The probability for non-tree augmentation to form a shorter
connection between the source and a critical sink is smaller in timing-
optimized interconnect, which results in smaller imprcvements in max-
imum delay and delay variability. In general cur non-tee augmentation
scheme achieves better improvements in interconnect dzlay and variabil-
ity for non-critical, area-optimized intercontects.



Groedy(a) Greedy(b) Best-Drop(a) Best-Drop(b) ILP(a) ILP(b)
WL | #Sinks 1 #AUG %BlI CPU #AUG %BI CPU [#AUG %BI CPU {#AUG %BI ~CPU #AUG %BI CPU | #AUG %BI  CPU
Incr. EDGE CONN SEC EDGE CONN SEC |EDGE CONN SEC |EDGE CONN SEC EDGE CONN SEC{EDGE CONN SEC

5 045 112 000 063 212 000 045 112 004 051 112 0.09 0.01 112 000015 212 000
10 |166 107 0.00 276 185 000 |L56 101 288 (203 101 2771 1006 107 000040 185 000
20 {282 131 00 474 218 005 {276 107 10293 (500 204 6976.65|028 132 0011125 219 018
50 1475 201 008 7.54 286 123 |- - - - - 151 204 038 (- - -
1% | 100 1604 279 042 946 3184 11.59
200 |569 17.73  1.59 - -

- - 243 28  297]- - -

500 |85 2057 1508 |- : A
1000 11126 3419 7812 |- -

5 (079 212 000 107 314 000 (076 212 007 0% 231 0.l16 Q01 212 000016 314 000
10 1220 221 000 333 329 000 (212 204 396 (267 204 3770 {043 221 000]058 329 000
20 (342 292 001 516 426 006 (346 214 12956|4.00 364 5843.05]063 293 002]179 428 025
50 [|545 481 009 785 611 1.27 |- - - - - - 1.94 491 0421- - -
2% | 100 |5.6F 1949 0.38 924 218 1123 |- - - - - - 200 1957 310 |- - -
200 |7.15 3377 197 - - - - - - - - - - - - - - -
500 [10.23 4234 17.79 |- - - - - - - - - - - - - - -
1000 116.28  45.14 11215 |- - - - - - - - - - - - - -
5 [148 556 000 i78 631 000 (149 014 1165 532 030 006 556 000[020 631 0.00
10 128 635 000 396 829 0.0 A E X 4837 |041 636 000 (L]0 832 00
20 1407 925 001 6.25 11.69 0.07 |4.56 16372 (7.00  8.00 6591.95|142 956 003 (237 1210 0.29

50 {548 3417 009 837 3555 132
5% | 100 {723 4695 048 1148 48.16 13.67
200 11042 5574 232 - - -
500 (1828 35981 3154 |- - -
1000 £31.91 61.29 218.11 |- - - - - -

5 (212 1130 000 231 1224 000 j2.11 939 020 [226 1044 041 013 1130 0001031 1230 000
10 1358 1441 0.00 448 1795 000 (392 1084 7.1 (448 12.04 6173 091 1446 001 |1.67 1811 0.02
20 {426 3053 001 598 3556 006 (498 2368 173.12]600 2825 S51675|152 3LI5 004249 3632 033
50 |660 5695 011 976 5858 151 |- - - - - - 296 5804 058 (- - -
10%| 100 [10.05 6587 0.66 1422 6676 1669 |- - - 555 67.00 581
200 [1599 7133 4.28 - - - - - - - -

197 3495 046 |- -
335 4790 352 |- -

5]
b
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500 |3328 7356 5677 |- - - -
1000 _[62.14 7449 42091 |-

5 }230 2390 0.00 266 2721 000 (258 2141 024 1279 2361 0.50 036 2330 0.00]066 2720 0.00
10 1370 3813 0.0¢ 507 439 001 |41 3287 709 (458 3597 5841 132 3901 001193 4510 003
20 545 6494 001 749 6692 008 |621 5830 19586600 61.11 S5879.0812.15 66.64 005 (336 6854 047

S D

50 110,12 7796 016 3794 79.13 548 |- - - - - - 510 7956 093
20%| 100 [1705 8329 110 123.99 83.88 13399

200 |34.08 B85.86 898 - - -

500 [82.16 8715 137.62 |- - -
1000 [164.74 8773  1093.20)- - -

T
o
R
[
]
]

s

Table 2: Comparison of greedy MRTA, Best-Drop, and CPLEX ILP (all results are averages over 100 random instances). (a) versions use only terminals
or Steiner points of T as endpoints of augmentation paths, (b) versions can use all Hanan grid vertices that are on tree edges.

Greedy(a) Best-Drop(a) Genetic(a) 1LP(a}
WL | #4SINKS [ #AUG  %WL CpU #AUG ®HBWL CPU | #AUG %WL CPU | #AUG %wL CPU
Budget EDGE INC  SEC EDGE INC  SEC EDGE INC SEC EDGE INC SEC
5 376 7833 0.00 133 7190 0.26 352 7786 0.01 1.07 7786 0.00
10 6.46 59.70  0.00 597 58.19 754 6.10 57.97 052 1.79 5797 Q.01
20 1053 4682 0.03 10.25  45.77 22671 | 9.81 4559 4.43 3.21 45,58 007
50 2620 40.16 041 - - - 20,85 3944 3735 | 733 38.64 098
100% | 100 S110 3627 326 - - - 3948 3930 181081330 351F 821
200 10049 34.10 2612 - . . - . - - - -
500 24563 3285 40545 |- - - - - - - - -
1000 484.47 3227 3160.24 | - - - - - - - - -

Table 3: Comparison of greedy MRTA, Best-Drop, Genetic, and ILP algorithms for unlimited wirelength budget (averages over 100 random instances).
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WLB 0% 1% 5% 20%
netl | 15511 £4.13% | 1564.3 [ 1478.9 | 873.3 £ 3.78%

net2 | 366.3+3.55% | 3747 | 3272 | 345.1+289%
net3 | 839.6% 3.96% | 8693 | 8363 | 6272 % 3.61%
netd | 2829+ 2.84% [ 2825 | 306.7 | 26294 3.05%
nets | 1002.0 £ 3.79% | 1002.7 | 971.2 | 7780 % 3.47%

netf | 7875+ 381% | 7943 | 5208 ; 44281 3.17%
net? | 514.6x3.50% | 514.1 | 3183 | 2735+ 293%
net8 | 2352+ 298% | 2365 | 228.3 | 185.2% 2.70% |
netS | 1602.9 +3.99% | 1593.0 { 1633.4 | 1359.5 + 3.81%

netlQ | 888.3% 3.72% | 8734 | 889.1 | 944.7 % 3.60%
netl] | 420.1+3.81% | 416.3 | 249.6 | 219.1 £2.28%
netl2 | 642.8 £4.05% | 648.0 | 6054 | 243.6 + 2.88%

neti3 | 426.64 3.76% | 4159 | 4092 | 402.6:+ 3.48%
netld | 562.5 % 351% | 558.4 | 5455 | 263.4 £ 2.66%

Table 5: Maximum SPICE sink delays (ns) and delay variations (per-
cents) under dw = 6.67% wire width variation for 14 nets with 52-56
sinks extracted from an industry design. Initial trees are constructed us-
ing Cadence WarpRouter using minimum-area optimization.

WLB 0% 1% 5% 20%

netl | 495.6 1.20% | 498.5 | 502.8 | 4542 £ 1.18%
net2 | 1799+ 098% | 177.9 | 179.3 | 187.3 £ 0.98%
net3 | 2089+ 1.11% | 290.8 | 292.9 § 293.2 + 1.10%
netd | 85.0+0.70% | 843 | 838 | 857 0.66%
netS | 4923 £ 1.15% | 5027 | 491.9 | 524.2 4+ 1.14%
net6 | 577.8 = 1.20% | 545.1 | 438.8 | 352.2 £ 1.05%
net? | 259.6 %+ 1.01% | 257.2 | 257.4 | 254.7 £ 0.99%
net8 | 1279+ 0.82% | 128.7 [ 129.8 | 134.5 £ 0.82%
net9 | 499.9 x 0.98% | 463.5 | 465.0 | 422.5 + 0.89%
netl0 | 415.7 & 1.03% | 409.5 | 414.7 | 420.4 £+ 1.02%
netll | 6931 085% | 698 | 66.3 | 66.1+0.80%
netl2 | 1219+ 1.14% | 1229 ! 1245 | 123.8 % 1.12%
netld | 1964 £ 1.15% | 197.9 | 199.7 | 203.7 + 1.14%
netld | 2252+ 1.01% | 210.3 | 200.8 | 209.0 4 0.97%

Table 6: Maximum SPICE sink delays (ns) and delay variations (per-
cents) under dw = 6.67% wire width variation for 14 randomly gener-
ated nets with 15 sinks each. Initial trees are constructed using the P-Tree
algorithm [10} with identical sink required-arrival times.
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5 Conclusions and Future Work

In this paper we have proposed the introduction of redundant intercon
nect as a post-routing optimization for manufacturing yield, reliabilir\-
and process variation robustness improvement. We have formulated th:
problem as a variant of the classic NP-hard 2-edge connectivity augmen
tation (in a Manhattan plane and under a given wirelength budget) anc
proposed both practical integer program formulations and a well-scalii:,
greedy algorithm which comes within 1-2% of the optimum on the aver
age. We have presented experimental results on both randomly generates
and industry testcases with up te 1,000 terminals showing that:

e Our methods outperform best known 2-edge connectivity augmesn
tation algorithms in both solution quality and runtime for the prac
tically relevant wirelength budgets.

. ngmﬁcant increase in reliability (as measured by the percemage Qi
biconnected tree edges) and simultaneous decreases in 1
sink delay and delay variation due to process variability can &
achieved with very small increases in wirelength.

Our ongoing research efforts include algorithms for biconnectivity
augmentation of buffered trees, simultaneous augmentation of multicic
routed nets, and chip-level evaluation of the proposed augmentation al
gorithms.,
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