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Abstract 

We propose to i n d u c e  redundant interconneCtS for manufacturing 
yield and reliability improvement. By introducing redundant intemn- 
nects. the potential fur open faults is reduced at the cost of increased po- 
tential for ihon faults. overall, manufacturing yield and fauli tolerance 
can be improved. We focus on a post-processing, tree augmentation ap- 
proach whlch can be easily intcptcd in cumnt ph)sical design Rows. 
Our contributions are as follows: 

We formulate the problem as a vanant of the classical Z-edge- 
connectivity augmcntation problem in which we take into account 
such practical issues ai wirelength increase budget, rouung obru- 
cles, and use of Striner points. 
We show that an optimum solutinn can a l u q s  be found on the 
Hanm grid defined by the terminals and the comers of the feasible 
routing region. 
We give a compan integer pmgram formulation which, for up io 
IO0 terminal nets. is solved in practical runtime by the commercial 
optimization package CPLEX. 
We give a uell-scaling greedy algonthm which has practical run- 
time up to 1.ooO terminals. and comes on the avcragc within 1.2% 
of the optimum computed by CPLEX. 
We gtvc a comprehensive expenmentat study companng the so- 
lunon quality and runtime of our methuds with the best reponed 
m e t h d  for 2-edgeconnectivity augmentanon. including a sophis- 
ticatcd heunstic bawd on minimum-weight branchings IS] and a 
recent genetic dgonthm (141. 

Expenments on randomly generated and industry testcases show that 
our greedy augmentatiun method achieves significant increase in relia- 
bility (as meawred by the percentage of biconnected tree edges) with 
very small increxse in  wirelength. For example, on l.O(K) terminal nets 
the average percentage of hiconnectcd tree edges is 34.19% for a wre- 
length increase of only I%. md 87.73% for a wirelength increase of 
20%. SPICE simulations on industry routed nets show that non-tree 
muting ha? the additions1 benefit of reducing maximum sink delay by 
an average of 28.268 compared to Steiner muting. and by an average 
of 3.72% compiued to timing optimized routing. SPICE simulauons 
funher imply that non-tree routing has maller delay variation due to 
process vanahility. 

1 Introduction 

Ever-decreasing feature sizes allow integration of millions of gates on a 
single chip. This integration has been enabled in parl by low defect den- 
sity. However, continued reductions in defect density cannot be expected 
to continue in the near fumre. Sensitivity of parametric (performance) 

‘This wrk w% W a l l y  supponcd by Wencc  Design Syrtcmr, Inc.. the MARC0 Gi- 
g d e  Silicon Research Ccokrand NSF Grant CCR-9988331. 

yield to variability also increases as a result of performance optimiz- 
tion (sizing, etc.) design Rows. New design techniques must be applic. 
to improve manufacturing yield of large-area chips, as yield becomes e~ 
ever-greater determinant of design viability [21. 

In nanometer technologies. likelihood of back-end-of-line (BEOL: 
defects (i.e.. high-resistance via or interconnect defects) has increanec 
relative to that of front-end-of-line (FEOL) defects (i.e., device defects! 
Interconnects are now more likely to cause circuit malfunction a n d h  
performance or reliability degradation. Two types of catastrophic f~ ‘ 
arise due to BEOL defects: open circuit faults or brolcen intercom 
due to loss of mass, and short circuit faults or unintended bridgings 
tween interconnects due to augmentation of mass (Fig. 1). Manufactur~ 
ing yield is directly affected by the size of the crirical area, which is the 
union of all centers of fixed size defects that induce IC faulty behavior. .4 
typical figure of merit that measures the layout’s mbustness is obbiuec 
as the ratio of the total critical area to the layout area [31. 

In this paper we propose to introduce layout lwel redundancy b, 
conshucting non-tree interconnect topologies for manufacturing yk!. 
and reliability improvement. For easier integration within existing Rows 
we emphasize a post-pmcessing, free augmentarion approach ra!k 
than monolithic non-tree routing construction during global or detai!~ 
routing, In adding redundant wiring, the extra wire creates more critic- 
area for short faults, but the redundancy makes some wires immune i t  

open defects and thus reduces open-fault critical area. Overall, critic- 
area and manufacturing yield could improve. We observe that: 

The existing tradeoff between short- and open-fault 
in the BEOL is conducive to the approach we propos 
design methodologies and manufacturing processes. 
ity of failure (POF) due to open defects of any given size is > 3: 
higher than the POF due to short defects of identical size 131. 

e Previous methods that improve manufacturabilily or reliability L 
“decompaction” (see, e.g., [Z]) will not he as useful in the b~ 
ture due to heavy restrictions on allowed spacings and pitches : 
nanometer-scale (<1oOnm) processes. On the other hand, our 4 
proach would work well even with restricted spacings and $9 

(but would require incremental detailed routing capability). In fa< 
it can be speculated that introduction of interconnect redundanli 
improves uniformity of muting resource utilization by formic 
“functional fill” as opposed to the present ‘‘dummy fill” meth@ 
ologies. 
Tree augmentation schemes have been previ0u:;ly proposed in i: 
context of clock routing for delay and skew reduction 1161 and GI: 

ical net routing for delay optimization [lll.  However, previous - 
gorithms do not work well in our context, since m e  augmentark 
for manufacturability and reliability improvement involves d i K  
ent tradeoffs than tree augmentation for delay or skew oprimir 
tion. 

Our Manhanan Routing Tree Augmentorion (MRM) formulation I 

sembles the classical edge connecfivity augmenfafion problem (71, 
which a given subgraph muR be augmented at minimum cost into a 
edge (or more generally k-edge) connected graph.’ Finding a mlnimn~ 

‘A graph is k e d g e  connected if it w n o i  be separated by removing less ulan X edges. 
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Figure 1: An open fault is formed due to loss of mass; a short fault is 
formed due to augmentation of mass. 

cost k-edgeconnected augmentation is NP-hard even fork = 2 [41, and 
much woyk h a  been dew& to tinding good heunsucs and approxima- 
tion alponthms, sec, e g , I61 and The refercnccs therein The MRlA fur- - ~~ 

mulatiin differs from the 2-edgeconnectivity augmentation (EZAUG) 
problem in several respects: 

While E2AUG is typically formulated for graphs, MRTA has a 
strong geometric flavor. We consider routing trees embedded in 
the Manhattan plane, and allow augmenting paths between any two 
points on the embedded tree (however, augmenting paths must be 
fully contained in the feasible routing region defined by routing 
obstacles and design spacing rules). In particular, we allow aug- 
menting paths that are “parallel” to (fragments of) tree edges. 
To ensure the optimal balance between vulnerability to short- and 
open-faults, our formulation imposes a budget on the total length of 
augmentation paths and requires maximizing 2-edge connectivity 
subject to this constraint. In contrast, E2AUG requires 100% 2- 
edge connectivity regardless of the wirelength increase. 
To enable higher quality MRTA solutions, we allow augmenting 
paths with one or both ends on other augmenting paths. i.e., at 
newly created Steiner points (see Figure 2). The existing literature 
on ledge-connectivity augmentation focuses almost exclusively 
on the spanning subgraph formulation of the problem, in which the 
use of Steiner points is disallowed. 

Our main contributions are as follows: 
We show that an optimum MRTA solution can always be found 
on the Hanan grid defined by the terminals and the comers of the 
feasible routing region. 
We rive inteeer nromun formulations for the h4RTA oroblem with - . -  
and-without Steiner points. The compact integer -program for 
MRTA without Steiner points is solved in practical runtime by the 
commercial optimization package CPLEX-for testcases with up to 
100 terminals. 
We give a well-scaling greedy algorithm which has practical run- 
time up to 1,ooO terminals, and comes on the average within 1-28 
of the optimum computed by CPLEX. The runtime of our algo- 
rithm is OrND+N2KI,. where D is the runtime of Diikstra’s al- 

\ ~~~~~~~~ ~~ 

gorithm on the Hanan g d  for the terminals and the c o k e s  of the 
feasible routine region. N is the number of Hanan mid vertices on - 
the given routing tree, and K is the number of augmenting paths 
(typically a small fraction of N).  Without routing obstacles the 
running time reduces to o(N’K). 
We give a comprehensive experimental study comparing the so- 
lution aualitv and runtime of our methods with the best reoorted .~ 
methods for 2-edge-connectivity augmentation. including a sophis- 
ticated heuristic based on minimum-weieht branchings 191 and a - - .. 
recent genetic algorithm [14]. 

Experiments on randomly generated and indushy testcases show that 
our greedy augmentation method achieves significant increase in relia- 
bility (as measured by the percentage of biconnected tree edges) with 
v e j  small increase in wirelength. For example. on 1 .ooO te&al nets 
the aerage percentage of biconnected tree edges is 34.19% for a wire- 
lcnrth increase of onlv I % .  and 87.73% fur a wirelenmh increase of 

L ~. I 

20%. SPICE simulations on industry routed nets show that non-tree 
routing has the additional benefit of reducing maximum sink delay by 
an average of 28.26% compared to Steiner routing, and by an average 
of 3.72% compared to timing optimized routing. SPICE simulations 

~ 
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further imply that non-tree routing has smaller delay variation due to 
process variability. 

The rest of the paper is organized as follows. Section 2 gives the de- 
fect model, notations, and the problem formulation. Section 3 gives the 
reduction to a Hanan grid, integer program formulations, and the greedy 
MRTA algorithm. Section 4 presents experimental results comparing 
the solution quality and runtime of our methods with two of the best ex- 
isting methods for 2-edge-connectivity augmentation, as well as results 
of SPICE simulations showing that non-tree routing has improved inter- 
connect delay and process variation robustness. Finally, Section 5 gives 
directions for future research. 

2 Problem Formulation 

Our problem formulation is based on the following defect model: 
Uniform defect distribution. We assume that ‘manufacturing de- 
fects are uniformly distributed across the die area. In particular, 
since we are concerned with routing reliability of large global nets, 
the uniform defect distribution allows us to ignore defects at the 
nodes of the routing (which have negligible probability of occur- 
rence), and consider only defects that affect its edges. 
Single-defect faults. The Occurrence Probability of a fault caused 
by multiple defects is orders of magnitude smaller than the occur- 
rence probability of a fault caused by a single defect. We there- 
fore concentrate on reducing routing vulnerability to single defect 
faults, and measure routing vulnerability to open faults by the total 
length of bridges (i.e., muting edges whose removal disconnects 
the net) of the routing. 
Open faults only. For current design methodologies and man- 
ufacturing processes (e.g., damascene copper electroplating) the 
prevailing error mechanism is void formation (open faults). As 
noted in [3], the probability of failure @OF) due to open defects 
of a given size is > 3x higher than the POF due to short defects 
of identical size. In particular, design rule correctness guarantees 
that there will be no short fault induced by a defect of size smaller 
than the minimum spacing between interconnects and routing ob- 
stacles. In this paper we concentrate on reducing vulnerability to 
open faults by adding redundant wires. Vulnerahility to short faults 
is maintained within desired limits by imposing an upper-bound on 
the amount of added wires. 

We use the following notations throughout the paper : 
1. P = set of terminals for the given net 
2. T ( P )  = given routing tree over terminals of P 
3. p ~ ( u , v )  = the unique path in tree T between 11,” E T 
4. =(U,”)  = augmenting path, assumed to be a shortest path between 

U and U within the feasible routing region (i.e., avoiding the given 
routing obstacles) 

5. A = set of augmenting paths 
6. G = T UA = augmented routing graph 
7. bridges( G) = set of all bridge edges of G an edge ( U ,  U) is a bridge 

8. I(G) =total length of routing graph G 
9. I (A)  = total length of augmenting paths 

of G if its removal disconnects G 

IO. Ibridges(G) = total length of bridge edges of G in our defect 
model the probability of failure due to open faults for the routing 
G is proportional to Ibridges(G) 

11. l,(u,u) =lengthof augmentingpatha(u,u) 
12. Ibridgesc(u,u) = I ( p ~ ( ~ , u ) n b r i d g e s ( G ) )  = total lengthofbridge 

13. FRR = rectilinear feasible routing regionZ 
edges on path p ~ ( u , v )  

’The feasible muting region FRR is formed by enlarging the neighbaring wires and mut- 
ing obstacles by the minimum design spacing rules. The ivjtial routing T ai well as tbe 
avgmenting paths A musf be within tbe FRR to guarantee design a l e  F O ~ ~ S I .  



Bridges 

Bridges 

Figure 2 Initial routing vee T and a set of augmenting paths. Remaining 
bridges are shown as thin lines. 

14. F = set of comer vertices of the rectilinear feasible routing region 

15. H ( P U F )  =HanangridoverthepointsinPUF,obtainedhytaking 

16. H V ( P U F )  =thesetofverticesofH(PUF) 
17. N = ITnHV(PUF)I = number ofHanan grid points on the routing 

The problem of maximally increasing the reliability to open faults by 
adding a bounded amount of wire redundancy to an already routed net is 
formulated as follows: 

Manhattan Routing ' h e  Augmentation (MRTA) Problem 
Given: 

FRR 

the union of vertical and horizontal lines through the points 

treeT 

1. Rectilinear feasible routing region FRR, 
2. Rectilinear Steiner routing tree T within FRR, and 
3. Wirelength budget W. 

Find  Set of augmenting paths A within the FRR such that: 
(a) Total length of augmenting paths is at most W ,  i.e., l (A)  5 W, and 
(b) Total length I (T)  - lbridges(G) of edges of T which are non- 

bridges in G = T U A  is maximum. 

3 Exact and Heuristic Algorithms for the MRTA Problem 

We begin this section by showing that, despite the seemingly continuous 
solution space (due to the flexibility in choosing endpoints of augment- 
ing paths), an optimum solution can always be found on the Hanan grid 
defined bv the terminals and the comers of the feasible routing region. 
Based on-thts result. in Secuon 3 2 we give acompact integer hnearpro- 
eram OLP) formulatron for the MRTA prublcm in uhxh Steiner points - 
are disallowed, and an UP with exponentially many constraints for the 
MRTA problem with Steiner points. Finally, in Section 3.3 we describe 
an efficient greedy MRTA heuristic. 

3.1 Reduction to Hanan Grid 
Theorem 1 There exists an optimum MRTA solution with all augment- 
inn oath embedded on the Hanan arid defvrpd by terminals and comers -. - .  
of the rectilinear feasible routing region. 

Proof. If both ends of an augmenting path are Hanan grid vemces then 
clearly the whole augmenting path (which is a shortest path within the 
given rectilinear feasible routing region) can be routed along the Hanan 
mid. Assume that an outimum MRTA solution G = T U A  has a non- - -  
Hanan augmenting path a ending at a point p which is not a Hanan grid 
vertex. Let I and r be the vertical Hanan mid lines immediatelv to the ~~~~~~~ ~~~ 

~ 

left and right of p ,  and let h be the horizontal line through p. There are 
two cases to consider: 

~ 
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(i) (U) 

Figure 3: (i) If augmenting path a connects two parallel ed::es, then I(G) 
remains constant when a slides horizontally, and for at leas4 one direction 
Ibridges(G) does not increase. (ii) Otherwise. a can be re-embedded 
along the Hanan grid lines. 

(i) If the augmenting path a has the other end strictly ktween 1 and r 
on a horizontal edge of G, then, by optimality, it fo'llows that a is 
a straight line segment. Sliding a horizontally does not change the 
total length I (C) ,  and there exists a horizontal sliding: direction (ei- 
tiier sliding towards 1 or sliding towards r )  which dw% not increase 
the bridge length Ibridges(G). By sliding a in this direction we 
obtain another optimum solution with strictly shorkr augmenting 
path length not embedded on the Hanan grid (Fig. 3li)). 

(ii) Otherwise, let q be the first point, starting from p .  where a crosses 
again 1 U h U r (such a point must exist, since eveiy augmenting 
path creates a cycle with the rest of 0. The portion $of a between p 
and q can be re-embedded as an L shape along the Hman grid (Fig. 
3(ii)). Again, this gives an optimum solution with strictly shorter 
augmenting path length not embedded on the Hank  grid. 

The theorem follows by repeating the above transformations (and the 
symmetrical vertical transformations) until all augmenting edges are 

0 
Remark. Notice that Theorem 1 does not guarantee that all augmenting 
path endpoints are Hanan grid vertices. It is easy to see that, due to the 
wirelength budget, endpoints which are not Hanan grid vertices may be 
required. However, Theorem 1 implies that this happens only when the 
augmenting path is parallel to an edge of the augmented Wee T .  

completely embedded on the grid. 

3.2 Integer Program Formulations 
Theorem 1 implies that the optimum MRTA can be found by consider- 
ing only augmenting paths which are shoes t  paths between arbitrary 
vertices on the Hanan grid H(PU F ) ,  plus, possibly, augpenting paths 
which are parallel to (partial) tree edges. 

We first give the U P  formulation for MRTA without Steiner points. 
In this version of the problem augmenting paths a(u,v) which are not 
parallel totreeedges connectpointsu,vE T n H V ( P U F ) .  Toformulate 
the MRTA problem as an integer program, we first assign to each pair of 
vertices u,v E T n HV(P  U F )  a 0/1 variable qv indicating whether or 
not a(u, w )  is an augmenting path, i.e., 

Also, we assign to each edge (U,.) E T a 0/1 variable yU," indicating 
whether or not (U, v) is contained in a cycle of T U A ,  i.e., 

(2) 

Removing any edge (U,.) E T separates T into two rubuees, Tu and 
T,, such that T = Tu U T ,  U (u,v). Since Steiner points e-e disallowed, it 
follows that (u,v) iscontained in acycle of T U A  if andonly ifA contains 
an augmenting path between Tu and Tv, i.e., iff there exist i E Tu and 
j E T, such that a(i ,  j) E A. Using this observation, we can reformulate 
MRTA as the following integer program: 

1 : (U,.) 6 bridges((;) 
.YU," = [ 0 : (U,.) E bridges((;). 



where I (u,Y)  is the length of edge (U,.) E T and [,,(U,.) is the length of 
the augmenting path between U and Y. 

In ILP (31, the first constraint enforces the wirelength budget, while 
the following constraints ensure that only edges of T that are bicon- 
nected are counted in the objective function. Augmenting paths parallel 
to (fragments off tree edges are handled implicitly by the addition to the 
objective function of the term W - C , V E T ~ v ( P U ~ ~ , v l o ( u , v ) ,  which 
represents the wirelength budget left unused after ding "'regular" aug- 
menting paths. 

Similar to ILP (3), the ILPformulation for MRTA with Steiner points 
uses 011 variables yU," indicating whether or not (u,v) E T are bicon- 
nected. In order to capture the possible use of Steiner points as ends of 
augmenting paths, we now need a 011 variable x, for each edge e in the 
HanangridH(PUF). TheILPsetsx. to 1 ifanyaugmentingpathusese, 
and to 0 otherwise. The ILP formulation for MRTA with Steiner points 
is: 

maximize y.,,l(u,v)+ w -  x e l ( e ) )  (4) 
("'.")ET ( rEH(PUF) 

such that 

x e W  5 w 
c x, t Y",",V(U,V) E T,X EX"," 

rEH(PUF) 

.EX 
x, E {O,l),Ve€H(PUF) 

YU,V E {O,l},V(u,v) ET 

where l (u,v)  is the length of edge (U,") E T, l (e)  is the length of Hanan 
grid edge e, and, for every (U,.) E T ,  Xu," is the set of all Hanan grid 
cuts separating the two connected components, Tu and Tv, of T \ (U,.). 

The first constraint of (4) is again enforcing the wirelength budget. 
Ensuring that yU," is set to I only if edge (U,.) E T is biconnected re- 
quires now an exponential number of constrainW. The formulation is 
based on the Max-Flow Min-Cut theorem, which guarantees that there 
exists a path between Tu and T, consisting solely of edges e with xe set 
lo 1 if every cut separating Tu from T, contains at least one such edge. 
Finally, augmenting paths parallel to tree edges are handled using the 
same method as in (3). 

We note that, despite its exponential size, the fractional relaxation 
of (4) can be solved, e.g., using the Ellipsoid algorithm 151 with a sepa- 
ration oracle that runs a min-cut algorithm for each (U,") E T to check 
feasibility of any given solution. 

3.3 The Greedy MRTA Algorithm 
In this section we propose a greedy algorithm for the MRTA prob- 
lem. Our algorithm (see Algorithm 1) iteratively adds an augmenting 
path a(u,v)  that maximizes the ratio lbridgesc(u,v)/l.(u,v) between 
the length of bridge edges between U and Y and the length of the aug- 
menting path. In every step the algorithm considers only augmenting 

paths a(u,v) that fit within the remaining wirelength budget and have 
lbridgesG(u,v)/l.(u,v) >_ 1 (since othetwise it is bener to simply use 
augmenting paths parallel to free edges). 

In order to efficiently compute the best augmenting path in each 
greedy iteration, we precompute the length of all shortest augment- 
ing paths B(U,V) by running Dijkstra's algorithm with each U E T n 
HV(PU F )  as the source. Further, we compute bridge edge lengths 
IbridgesG(u,v) by executing one depth-first search traversal of T for 
each U E T n H V ( P U F ) .  Whenever an augmenting path a is added to 
G, we update the set of possible augmenting path endpoints to include 
Hanan vertices on a, and compute the lengths of all shortest augment- 
ing paths originating at these points with lanHV(PUF)I  more runs of 
Dijkstra's algorithm. It can be checked that the number of possible aug- 
menting path endpoints does not exceed UY throughout the algorithm, 
where N = ITf lHV(PUF)I .  Thus, withthis implementation, thegreedy 
algorithm runs in O ( N D + N z K ) )  time, where D is the runtime of Dijk- 
sua's algorithm on H ( P U F )  and K I S  the number of augmenting paths 
(typically a small fraction of N).  Without routing obstacles Dijkstra's 
algorithm becomes unnecessary since I.(u,v) is given by the rectilin- 
ear distance between U and v. In this case the greedy algorithm runs in 
~ ( N ~ K )  time. 

Algorithm 1: Greedy MRTA Algorithm 

nput: Rectilinear feasible muting *&ion FRR with comes F ,  muting mc T for P 
within FRR, wirrlength budget W 
htput: SU of augmenting paths A with i(A) 5 W 

as L e  S O W  

Go IO step 3 
6. EheExil 

4 Experimental Results 

We compare our integer program and the greedy MRTA algorithm with 
two existing algorithms: 

A greedy best-drop heuristic in 191 which selects augmentation 
edges by finding minimum-weight branching in an appropriately 
defined directed graph. The best-drop heuristic is reported to find 
highquality solutions for a host of connectivity problems. includ- 
ing 2-edge-connectivity augmentation with no wirelength budget." 
A genetic algorithm enhanced by using a compact edge set rep- 
resentation, problem specific variation operators and a stochastic 
local improvement algorithm to reduce solution space [141. 

The integer program (3) was solved using the CPLEX 7.0 MIP opti- 
mizer, the other three algorithms were implemented in C/C++ and com- 
piled with g++ version 2 .  95. All experiments were conducted on a 
SUN SPARC Ultra-IO workstation with 256MB memory. For each in- 
stance size n E {5,10,50, r00,5CO,IWO} we generated IM) instances 
uniformly at random from a 10,ooO x 10,WO grid. For each instance, a 
Steiner minimum uee is constructed using the ER heuristic [l] and then 
augmented (assuming no routing obstacles) by the four compared algo- 
rithms. Table 1 shows the statistics on the number of nodes (including 
wire m s ) ,  number of leaves, and total wirelength of the initial trees. 

We imolement three versions of the greedy MRTA algorithm: 
'We have modifid the code in I91 to enforce a specif id wirelcngth budge. 
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#Sinks I #Nodes #Leavss hnglh I 

40.63 10.85 34660.11 
103.77 25.38 54305.56 
207.99 50.17 75806.31 
417.24 98.19 l(M486.30 
1045.48 241.68 167176.87 

IOW 2087.65 480.93 234839.26 

Table 1: Initial routing statistics (averages over 100 random instances of 
each size). 

(a) Considering all augmenting paths a(u,v)  for which u,v are either 
terminals, Steiner points, or comers of edges of T. 

(b) Considering all augmenting paths a(u,v) for which u,v E T n 
H V ( P U F ) ,  i.e., all paths in (a) plus paths with one or both ends at 
the projection of a terminal on an edge of T. 

(c) Consideringallaugmentingpathsa(u,v) for whichu,vE (TUA)n 
V H ( P U F ) ,  i.e., all paths in (b) plus paths with one or both ends at 
the projection of a terminal on an already added augmenting path. 

We also implemented versions (a) and (b) for the Best-Drop and ILP al- 
gorithms. The (c) version of the greedy MRTA algorithm gives almost 
identical results to the (b) version in experiments with 1 - 20% wire- 
length budget and 5 - 20 terminals, and we omit its results. 

Table 2 gives the number of augmenting paths, percentage of bicon- 
nected tree edges, and runtime for versions (a) and (b) of the greedy 
MRTA, Best-Drop, and ILP algorithms. The results show that ver- 
sions (b) achieve bener solution quality than versions (a); for the greedy 
MRTA algorithm version @) is bener than version (a) by as much as 
18.54%. Table 3 gives the results obtained by the greedy MRTA, Best- 
Drop, Genetic, and U P  algorithms when there is no restriction on the 
added wirelength. 

The results show that the greedy MRTA algorithm is the fastest of 
the compared algorithms, scaling up to 1,Mx) sinks. For 1 - 20% wire- 
length budgets the greedy MRTA algorithm is also outperforming the 
other heuristics in solution quality, finding solutions within 1.2% of the 
optimum computed by CPLEX for all wirelength budgets. The much 
slower Best-Drop and Genetic heuristics outperform greedy MRTA only 
for unlimited wirelength budget and small number of sinks, and then by 
a very small amount. 

As expected, MRTA biconnectivity increases with the wirelength 
budget, e.g.. it increases from 34.19% under I %  wirelength budget to 
87.73% under 20% wirelength budget for loOa sink instances. Inter- 
estingly, the biconnectivity also increases significantly with the num- 
ber of sinks, e.g., from 1.12% for 5 sinks to 34.19% for IMw) sinks for 
1% wirelength budget. Table 4 shows statistics for the first augmenting 
path added by greedy MRTA. This path has a ratio between biconnected 
length and wirelength increase as large as 80 for 1,000 sinks, and al- 
ready achieves a significant improvement in routing reliability at a very 
low wirelength increase cost. 

The impact of non-tree augmentation on maximum delay and de- 
lay variation due to process variability was verified by running SPICE 
simulation on two sets of 14 instances each. The first set consisted of 
non-xitical nets extracted from a recent industry design and routed by 
Cadence WarpRouter using minimum-area optimization, while the sec- 
ond set consisted of randomly generated nets routed using the timing- 
driven P-Tree algorithm [IO] with buffer insertion disabled and identical 
sink required-anival times. Each interconnect was represented by a lI 
model and driven by a 1.8V voltage source with a ramped input signal 
of l5Ops slew time. 50% delay from the source to each sink was simu- 
lated based on 180nm ITRS predictive technology model beta version [SI 
with the following parameters: unit wire resistance r = 0.040R/flm, unit 
wirecapacitancec=0.259fF/pm, sinkcapacitancec, =63.358fF and 
source driving resistance Rb = 339.434R. In computing robustness to 
process variation we assumed 100% wire width correlation. This mod- 
els systematic variation sources such as lens aberrations which cover 
5-1Omm ranges [13, 121, i.e., ranges that are larger than those covered 
today by unbuffered interconnect. We uniformly varied wire width by 

Table 4 Wirelength increase, percentage of biconnected tree edges. 
rbridpesc(u,v)/r.(u,Y) ratio, and CPU runtime due to first MRTA aug- 
mentation path (averages over 100 random instances). 

dw = 6.67% from the nominal value, and computed unit length wire 
capacitance using the formulas in [I51 for parallel lines between two 
planes, including area, fringe, and coupling capacitances. The maxi- 
mum 50% sink delay and its variation in percents are reported for the 
two sets of test instances in Tables 5 and 6. In these tables, the results 
under 0% wirelength budget correspond to the initial (area, respectively 
timing-optimized) routing trees. 

Results for noni-ritical nets (Tables 5 )  show that nom-tree augmenta- 
tion continuously reduces maximum source-to-sink delays in most of the 
instances in our experiments (except net IO). An averagc: of 28.26%. and 
maximum of 62.15% delay reduction can be achieved (for netl2) with 
20% wirelength budget. Non-uee augmentation also decreases process 
variation effect in most noncritical instances (except ner4). An average 
of 13.79%. and maximum of 28.86% delay variation reduction is ob- 
served (for nerl2) when comparing nominal wire width w and w - dw 
wire width. Results for timing-optimized interconnect trees (Table 6) 
show that non-tree augmentation still decreases the maximum source- 
to-sink delay by an average of 3.72% and a maximum of 39.04%. How- 
ever, in some instances maximum source-to-sink delay can increase by 
as much as 6.47% due to non-tree augmentation. Non-eee augmentation 
decreases process variation in all the timing-optimized instances, with an 
average of 3.24%* maximum of 12.17% and minimum of 0.09%. 

An explanation of the above results is that non-tree augmenting paths 
can decrease interconnect source-to-sink delay by fomung shorter con- 
nections, but can also increase interconnect delay due to increased ca- 
pacitance. The probability for non-tree augmentation to form a shorter 
connection between the source and a critical sink is smaller in timing- 
optimized interconnect, which results in smaller improvements in m a -  
imum delay and delay variability. In general OUT non-Oee augmentation 
scheme achieves bener improvements in interconnect d<:lay and variabil- 
ity for non-critical, area-optimized interconnects. 
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Sinks 

5 
10 
20 
50 
100 
2W 
5W 
1wO 

5 
IO 
20 
50 
IW 
2W 
5W 
IwO 

5 
IO 
20 
50 
100 
2W 
5W 
IMO 

5 
10 
20 
50 
IW 
2W 
5W 
1wO 

5 
IO 
20 
50 
100 
2W 
500 
IWO 

Table 2: Comparison of greedy MRTA. Best-Drop, and CPLEX ILP (all results are averages over I00  random instances). (a) versions use only terminals 
or Steiner points of T as endpoints of augmentation paths, @) versions can use all Hanan grid vertices that are on tree edges. 

GnedY(4 G U d Y ( b )  Bert-Drnp(a) Bert-Dmp(b) ILP(a UP@) 
XAUG %Bl CPU #AUG %Bl CPU UAUG CBI CPU #AUG CBI CPU XAUG %B1 CPU #AUG %B1 CPL 
EDGE CO” SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC 
0.45 1.12 0.W 0.63 2.12 0.W 0.45 1.12 0.04 0.51 1.12 0.09 0.01 1.12 O.WO.15 2.12 0.W 
1.66 1.07 0.W 2.76 1.85 0.00 1.56 1.01 2.88 2.03 1.01 27.71 0.06 1.01 0.W0.40 1.85 0.00 
2.82 1.31 0.01 4.74 2.18 0.05 2.76 1.01 102.935.00 2.04 6976.650.28 1.32 0.01 1.25 2.19 0.18 
4.15 2.01 0.08 1.54 2.86 1.23 - 1.51 2.04 0.38 - - 
6.04 2.79 0.42 9.46 3.84 11.59 - - 2.43 2.86 2.91 - - 
5.69 11.73 1.59 - . .  
8.59 29.51 15.08 - 
11.26 34.19 78.12 - 
0.19 2.12 0.W 1.01 3.14 0.03 0.76 2.12 0.07 0.90 2.31 0.16 0.01 2.12 0 .W0.16  3.14 0.W 
2.20 2.21 0.00 3.33 3.29 0.W 2.12 2.04 3.96 2.67 2.04 37.70 0.13 2.21 0.000.58 3.29 O.W 
3.42 2.97 0.01 5.16 4.26 0.06 3.46 2.14 129.56 4.W 3.64 5843.05 0.63 2.93 0.02 1.79 4.28 0.25 
5.45 4.81 0.09 7.85 6.11 1.27 - 1.94 4.91 0.42 - - 
5.61 19.49 0.38 9.24 21.18 11.23 - - 2.00 19.57 3.10 - - 
7.15 33.11 1.97 . . .  
10.21 42.34 17.19 - . .  
16.28 45.14 112.15 - - . .  
1.48 5.56 0.W 1.78 6.31 0.00 1.49 5.09 0.14 1.65 5.32 0.30 0.06 5.56 O.WO.20 6.31 0.W 
2.89 6.35 0.W 3 %  8.29 0.W 2.99 5.37 5.40 3.46 5.52 48.31 0.41 6.36 0.03 1.10 8.32 0.0 
4.07 9.25 0.01 6.25 11.69 0.07 4.56 6.36 163.72 7.W 8.00 6691.95 1.42 9.56 0.03 2.37 12.10 0.29 
5.48 34.11 0.09 8.37 35.55 1.32 - 1.97 34.95 0.46 - - 
7.23 46.95 0.48 11.48 48.16 13.67 - - 3.35 47.90 3.52 - . 
10.42 55.74 2.82 - . .  
18.28 59.81 31.54 . . .  
31.91 61.29 218.11 . - . .  
2.12 11.30 0.00 2.31 12.24 0.00 2.11 9.89 0.20 2.26 10.44 0.41 0.13 11.30 0.W 0.31 12.30 0.W 
3.58 14.41 0.W 4.48 17.95 0.W 3.92 10.84 7.11 4.48 12.04 61.73 0.91 14.46 0.01 1.67 18.11 0.02 
4.26 30.53 0.01 5.98 35.56 0.06 4.98 23.68 173.12 6.W 28.25 5516.15 1.52 31.15 0.04 2.49 36.32 0.33 
6.60 56.95 0.11 9.16 58.58 1.51 - 2.96 58.04 0.58 - - 
10.05 65.87 0.66 14.22 66.16 16.69 - - 5.55 67.W 5.81 - - 
15.99 71.33 4.28 - . .  
33.28 73.56 56.71 . . .  
62.14 74.49 420.91 - - . .  
2.30 23.90 0.00 2.66 21.21 0.W 2.58 21.41 0.24 2.79 23.61 0.M 0.36 21.90 0.03 0.66 21.20 0.00 
3.10 38.13 0.00 5.07 43.96 0.01 4.11 32.67 7.19 4.58 35.97 58.41 1.32 39.01 0.01 1.93 45.10 0.03 
5.45 64.94 0.01 1.49 66.92 0.08 6.21 58.30 195.86 6.00 61.11 5879.08 2.15 66.64 0.05 3.36 68.54 0.47 
10.12 77.96 0.16 31.94 19.13 5.48 - 5.10 79.56 0.93 . - 
17.05 83.29 1.10 123.99 83.88 133.99 - - 10.56 84.44 8.62 . - 
34.08 85.86 8.98 - . .  
82.16 87.15 131.62 - - . .  
I M J ~  87.73 10~3.20 - - . .  

. .  

. .  

Table 

WL 
Budget 

IW% 

G d Y ( 4  Bsst-Dmp(a) Genctis(a) m a )  
#SINKS #AUG %WL CPU TAE CWL CPU U AUG %WL CPU #AUG BWL C P U ~ ~  

EDGE RiC SEC EDGE INC SEC EDGE INC SEC EDGE INC SEC 
5 3.16 78.33 0.W 3.35 77.90 0.26 3.52 77.86 0.01 1.01 17.86 0.00 
10 6.46 59 .100 .W 5.97 58.197.54 6.10 57 .970 .52  1.79 57.970.01 
20 10.93 46.82 0.03 10.25 45.77 226.71 9.81 45.59 4.43 3.21 45.58 0.07 
50 26.20 40.16 0.41 . - 20.85 39.44 31.35 1.33 38.64 0.98 
IW 51.10 36.27 3.26 - 39.48 39.30 181.08 13.30 35.11 8.21 
2W 1W.49 34.10 26.12 - 
5W 245.63 32.85 405.45 - - 
IC03 484.41 32.27 3160.24 - - 

I random instances). 
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5 Conclusions and Future Work 

Table 5: Maximum SPICE sink delays (ns) and delay variations (per- 
cents) under dw = 6.67% wire width variation for 14 nets with 52-56 
sinks extracted from an industry design. Initial trees are constructed us- 
ing Cadence WarpRouter using minimum-area optimization. 

WLB I rn 1 S L ~  I 20% 
mII I 4 9 S 6 1  120% I4983 I 502 8 I 4542 I 1.18% 
net2 179.9 i 0.98% 177.9 179.3 187.3 i 0.98% I ne; 1 85.0 i 0.70% 1 84.3 1 83.8 1 85.7 i 0.66% I nco 2 9 8 . 9 i i . i m  290.8 ~ 2 . 9  2 9 3 . 2 i i . i r n  

492.3f 1.15% 502.7 491.9 524 .2 i  1.14% 
I net6 I 577.8 i 1.20% I 545.1 I 438.8 I 352.2 & I.OS% I 

Table 6: Maximum SPICE sink delays (ns) and delay variations (per- 
cents) under dw = 6.67% wire width variation for 14 randomly gener- 
ated nets with 15 sinks each. Initial uees are conswcted using the P-Tree 
algorithm [IO] with identical sink required-anival times. 

In this paper we have proposed the introduction of reduridant intercor. 
nect as a post-routing optimization for manufacturing yield, reliability 
and process variation robustness improvement. We have formulated :L: 
problem as a variant of the classic NP-hard 2-edge connectivity augme- 
tation (in a Manhattan plane and under a given wirelength budget) m r  

proposed both practical integer program formulations and a well-scdin: 
greedy algorithm which comes within I-2% of the optimum on the aver 
age. We have presented experimental results on both randomly genera!b 
and industry testcases with up to 1,ooO terminals showin): that: 

Our methods outperform best known 2-edge connectivity augme:: 
tation algorithms in both solution quality and runtime for the prac 
tically relevant wirelength budgets. 
Significant increase in reliability (as measured by the percentage oi 
biconnected tree edges) and simultaneous decreases in ma:xiw~: 
sink delay and delay variation due to process variability can E-: 
achieved with very small increases in wirelength. 

Our ongoing research efforts include algorithms for biconnectivity 
augmentation of buffered trees, simultaneous augmentation of multi& 
routed nets, and chip-level evaluation of the proposed augmentation a! 
gorithms. 
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