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Abstract

We propose a provably good performance-driven
global routing algorithm for both cell-based and build-
ing block design. The approach is. based on e new
bounded-radius minimum rouling tree formulation,
which simultaneously minimizes both routing cost and
the longest interconnection path, so that both are
bounded by small constant factors away from optimal.
For any given value of a parameler ¢, we consiruct a
routing tree with longest interconnection path length at
most (1+¢€)- R, and with cost at most (1+2) times the
minimum spanning tree weight, where R is the min-
imum possible length from the source to the farthest
sink. Our method generalizes to Steiner global routing
in arbitrary weighted graphs, and to the case where
varying wirelength bounds are prescribed for different
source-sink paths. Ertensive simulations confirm the
utility of the approach.

1 Introduction

With progress in VLSI fabrication technology, in-
terconnection delay has become increasingly signifi-
cant in determining circuit speed. Recently, it has
been reported that interconnection delay contributes
up to 70% of the clock cycle in the design of dense,
high performance circuits [5] [23]. Due to this trend,
performance-driven - layout design has received in-
creased attention in the past several years.

Most of the work in this area has focused on the
timing-driven placement problem. The so-called zero-
slack algorithm was proposed in [10]; fictitious facil-
ities and floating anchors methods were used in [19],
and a linear programming approach was used in [14]
and [15]. Several other approaches, including simu-
lated annealing, have also been studied [5] [17% [23].

While such techniques have been developed for
timing-driven placement, only limited progress has
been reported for the timing-driven interconnection
problem. ‘In [7], net priorities are determined based
on static timing analysis. [18] outlines a hierarchi-
cal approach to timing-driven routing. In [20], a
timing-driven global router based on the A* heuristic
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search algorithm was proposed for building-block de-
sign. However, these results do not provide a general
formulation of the timing-driven global routing prob-
lem. Moreover, these solutions are not flexible enough
to provide any trade-off between interconnection delay
and routing cost.

Recently [2] proposed a new model of timing-driven
global routing for cell-based design, based on the idea
of finding minimum spanning trees with bounded ra-
dius. An algorithm was given which constructs a span-
ning tree with radius (1 +¢€)« R using an analog of the
classical Prim minimum spanning tree (M ST) con-
struction; R is the minimum possible tree radius and
€ is a non-negative user-specified parameter. Such an
approach offers a very natural, smooth trade-off be-
tween the tree radius (maximum signal delay) and the
tree cost (total interconnection length). However, the
worst-case total wire cost using this method can be an
unbounded factor times optimal.

We therefore now propose a new method for timing-
driven global routing which is based on a provably
good algorithm that simultaneously minimizes both to-
tal wirelength and maximum delay. More specifically,
given a positive real parameter ¢ and a set of termi-
nals, our method produces a routing tree with radius
at most (1+¢)- R, and with total cost at most (1+ 2)-
times the MST cost. In other words, both the total
wirelength and the maximum delay of the routing are
simultaneously bounded within small constant factors
of their optimal values. Our method generalizes to ar-
bitrary weighted graphs, and also to Steiner routing
formulations. Exploiting underlying geometry allows
further improvement of the performance bounds, and
moreover our method generalizes to the case where dif-
ferent paths have different length constraints. This se-
ries of results is especially surprising since constructing
an MST with bounded diameter in a general graph is
F]P—complete [11], as is the Steiner problem in graphs

9].

Our construction can minimize either total wire-
length (a minimum spanning tree), or the longest
source-sink path (a2 minimum delay, or minimum ra-
dius, tree), depending respectively on whether we set
€ = 0o or € = 0. Between these two extremes, we
achieve a continuous, smooth tradeoff. In practice, our
algorithm exhibits very good empirical performance
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which confirms this smooth tradeoff between the com-
peting requirements of minimum delay and minimum
total wirelength. In the following discussion, all proofs
have been omitted for brevity; see [3] for details.

2 The Problem Formulation

A signal net N is a set of terminals, with one termi-
nal s € N a designated source and the remaining ter-
minals sinks. We define the underlying routing graph
to be a connected weighted graph G = (V, E). A net is
a subset of the nodes in this graph. A routing solution
of a net N is a tree in G, which we call the routing
tree of the net, connecting all the terminals in N.

Since the routing tree may be treated as a dis-
tributed RC tree, we may use the first-order moment
of the impulse response (also called Elmore’s delay)
to approximate interconnection delay [8] [13]. How-
ever, although both the formula for Elmore’s delay
and its approximations [13] are very useful for sim-
ulation or timing verification, they involve sums of
quadratic terms and are difficult to compute and opti-
mize during the layout design process. Thus, a linear
RC model 1s often used to derive a simpler approxima-
tion for interconnection delay (e.g., [17] [22] [2]). Here
we shall also use wirelength to approximate intercon-
nection delay in the construction of routing solutions.
In practice, a subsequent iterative improvement step,
based on a more accurate RC delay model, may be
used to enhance the routing solutions.

We say that the cost of a path in G is the sum of the
edge weights in the path. A shortest path in G between
two terminals z,y € N, denoted by minpathg(z,y),
is a path connecting z and y with minimum cost. For
a weighted graph G we use distg(z,y) to denote the
cost of minpathg(z,y).

Definition: The radius R of a signal net is the max-
imum cost of any shortest source-sink path.

Definition: The radius r(T) of a routing tree T is the
cost of a path in T from the source s to the furthest
sink. Clearly, »(T) > R for any routing tree T.

According to the linear RC delay model, we min-
imize the interconnection delay of a net by minimiz-
ing the radius of the routing tree, which measures the
maximum interconnection delay between the source
and any sink. On the other hand, we also want a
routing tree with small total wirelength. Without this
latter consideration, we could simply use Dijkstra’s
shortest path tree (SPT) of the net [21]. Although
the SPT has the smallest possible radius of any rout-
ing tree, there exist examples where the cost of the
SPT can be Q(|{N|) times greater than the MST cost
{2], and such high cost may increase the overall rout-
ing area and interconnection delay. To simultaneously
consider both the radius and the cost in the rout-
ing tree construction, we formulate the timing-driven
global routing problem as follows:

The Bounded Radius Minimum Routing Tree
(BRMRT) Problem: Given a parameter ¢ > 0 and
a signal net with radius R, find a minimum-cost rout-
ing tree T with radius r(T) < (1+¢)- R.
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The parameter ¢ controls the trade-off between the
radius and the cost of the tree. When ¢ = 0, we mini-
mize the radius of the routing tree and thus obtain an
SPT for the signal net; on the other hand, when ¢ = co
we minimize the total cost of the tree and obtain an
MST. In general, as ¢ grows, there is less restriction
on the radius, allowing further reduction in tree cost.

3 Bounded-Radius MST Routing

The basic idea of our provably good bounded-radius
MST algorithm is to construct a subgraph @ which
spans N and has both small total cost and small ra-
dius. Thus, computing the SPT of Q will yield a rout-
ing tree with small cost and radius, and will corre-
spond to a good routing solution. For a routing graph
G = (V, E) with V = N, our algorithm is as follows:

e Compute the shortest path tree SPTg of G, and
the minimum spanning tree M STg of G. Initial-
ize the graph @ to be equal to M STg.

e Let L be the sequence of vertices corresponding
to a depth-first tour of M STg, where each edge
of MSTyg is traversed exactly twice (Figure 1).

e Traverse L while keeping a running total S5 of
traversed edge costs. As this traversal reaches
each node L;, check whether S is greater than
€ - distg(s, L,-g. If so, reset S to 0 and merge
minpathg(s, L;) into Q. Continue traversing L
while repeating this process.

e Our final routing tree is SPTq.

L= dcpl.h-ﬁrst/v

tour of MST

Figure 1: An MST and its depth-first tour.

The formal description of the algorithm is given in

Figure 2. It is not difficult to show that for any fixed €
this algorithm produces a routing tree with radius and
total cost simultaneously bounded by small constants
times optimum.
Theorem: For any weighted graph G and parameter
€, the routing tree T constructed by our algorithm has
radius 7(T) < (1 + ¢) - R, and total wirelength given
by cost(T) < (1+ 2)- cost(MSTg).
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BRBC: computing a bounded-radius
bounded-cost spanning tree

Input: G = (V, E) (with radius R, source s € V), ¢
Output: a spanning tree of radius < (1+¢): R
and cost < (1 + 2)-cost(MST¢)

compute M STg and SPT¢

Q= MSTg
L = depth-first tour of MSTg
S=0 :

fori=1to|L]-1

S =S+ cost(L;, Li+1)

if S > e-distg(s,Li4+1) then
CSZ = OQ U minpathg (s, Liy1)

Output T = shortest path tree of Q

Figure 2: Computing a bounded-radius spanning
tree T for G = (V, E), with source s € V and
radius R, using parameter e.

Because our method yields a bounded-radius,
bounded-cost routing tree, we call this the BRBC al-
gorithm. A similar idea was recently used in the dis-
tributed computation literature in [1] for constructing
spanning trees with small diameter and small weight.

4 Bounded-Radius Steiner Routing

For building-block design the underlying routing
graph is based on the channel intersection graph [4],
and a net N is a subset of the vertices of G. Here the
BRMRT problem is actually the Bounded Radius
Optimal Steiner Tree (BROST) problem, and the
channel intersection points (i.e., nodes in V — N) are
otential Steiner points. Since the BROST problem is
NP-complete, we need a minimum-cost tree spanning
N (i.e., a Steiner tree) within G.

Recall that in applying the BRBC algorithm to gen-
eral graphs, the only reason we use the MST is to ob-
tain a reasonably short tour of the vertices. Given any
approximate Steiner tree 7', we can construct a rout-
ing tree with radius within (14 ¢€)-r(7T), and with cost
within (14 2) - cost(T). Our algorithm uses a heuris-

tic [16] [24] to build a Steiner tree T in the underlying
routing graph having cost within a factor 2 of optimal.

We construct and traverse the depth-first tour of 7',

adding to T the shortest paths from the source to the
appropriate vertices of the tour. Finally, we compute
the SPT in the resulting graph and output the union
of the shortest paths from the source to all terminals
in N (which includes intermediate non-terminal nodes
on the shortest paths as Steiner points). Thus the cost
of the tour will be at most 4 times the optimal Steiner
tree (Topt) cost, and the resulting routing tree cost is

at most 2+ (1 + 2) times optimal.

5 Further Extensions

If we are routing in a metric space and are allowed
to introduce arbitrary Steiner points to reduce the
routing cost/diameter, we can slightly modify the ba-
sic algorithm to introduce Steiner points on the tour
L whenever S = 2¢- R. From each of tliese Steiner
points we construct shortest paths to the source and
add them to Q as in the original algorithm. Thus,
each node in the traversal of L will be within e- R of a
Steiner point, i.e., within (1 + €) - R of the source. In
this case, we can show that the same radius bound is
maintained, while the cost of the routing tree will be
bounded by 2 (1 + 1) - cost(Topt).

In addition, well-known results which bound the
S’:ﬁ '5:;' ratio in various geometries [12] [6] can be used
with the above scheme to yield even better bounds
whenever the edge weights correspond to a metric. For
example, in the Manhattan plane, it is easy to show
that the cost of the tree produced by our algorithm
will be bounded by 2 - (1 + 1) times optimal, while
in the Euclidean plane, the tree cost will be bounded
by 72; - (1 + 1) times optimal. Our method readily
generalizes to accomodate different length constraints
¢; for different terminals.

6 Experimental Results

The algorithms were implemented in ANSI C; code
is available from the authors upon request. The BRBC
algorithm for spanning tree routing was tested on a
large number of random nets generated from a uni-
form distribution in the grid. Results are summarized
in Figure 3, which clearly shows the tradeoff between
routing cost and maximum delay. As ¢ decreases, both
the cost and radius curves shift monotonically from
that of the MST to that of the SPT.

Radius, as fraction of MST radius

Figure 3: The smooth tradeoff between total
routing cost (right) and maximum signal delay
(left) produced by the BRBC algorithm. The
performance envelope lies between the SPT and
the MST, and the parameter ¢ determines the

exact tradeoff.

2242




The BRBC algorithm for Steiner tree routing was
tested on the channel intersection graphs of random
block layouts in the grid; these were generated by
adding a fixed number of non-overlapping blocks, with
length, width and lower-left coordinates all uniformly
distributed. The simulations confirm the tradeoffs in-
herent in the bounded-radius routing approach. In
practice, the efficiency of implementation and the
provably good output provide compelling reasons to
adopt the BRBC algorithm.

7 Conclusions

We have proposed a new, provably good general al-
gorithm for timing-driven global routing. This method
is based on a routing tree construction where both the
total wirelength and the maximum delay of the routin
are bounded by constant factors away from optimal.
Our approach readily extends to Steiner tree routing
in arbitrary weighted graphs, and to the case where
distinct wirelength bounds are prescribed for differ-
ent source-sink paths. Extensive simulations confirm
that our approach gives very good performance, and
indeed exhibits a smooth tradeoff between the com-
peting requirements of minimum delay and minimum
total wirelength.

Based on our methods for constructing bounded-
radius routing trees, the global routing procedure will
work as follows. We route all nets, one by one, ac-
cording to their priorities. For each net, we construct
a bounded-radius MST or bounded-radius minimum
Steiner tree. The parameter ¢ is either given by the
user or computed based on an estimation of the timing
constraints for the net. Different values of ¢; can be
used within a single net to reflect timing constraints in
various input-output paths. The cost of each edge in
the routing graph is a function of wirelengths, chan-
nel capacities, and the distribution of current channel
densities. After routing each net, we update the edge
costs in the routing graph. After all nets are routed,
we may compute the timing-critical paths and, if nec-
essary, further reduce the interconnection delay by re-
routing some critical nets based on more accurate dis-
tributed RC delay models.

There are several remaining open problems, such
as determining the complexity of computing the min-
imum cost bounded-radius spanning tree in the Man-
hattan plane, or the complexity of choosing an MST
with minimum radius when the MST is not unique.
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