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ABSTRACT
Chemical-mechanical planarization (CMP) and other manufacturing steps in very deep submicron VLSI have
varying effects on device and interconnect features, depending on the local layout density. To improve manufac-
turability and performance predictability, we seek to make a layout uniform with respect to prescribed density
criteria, by inserting area fill geometries (dummy fill features) into the layout. We review previous research on
single-layer fill for fiat and hierarchical layout density control based on the Interlevel Dielectric CMP model.
We also describe the recent combination of CMP physical modeling and linear programming for multiple-layer
density control, as well as the Shallow Trench Isolation CMP model. Our work makes the following contri-
butions for the Multiple-layer Interlevel Dielectric CMP model. First, we propose a new linear programming
approach with a new objective for the multiple-layer fill problem. Second, we describe modified Monte-Carlo
approaches for the multiple-layer fill problem. Comparisons with previous approaches show that the new linear
programming method is more reasonable for manufacturability, and that the Monte-Carlo approach is efficient
and yields more accurate results for large layouts. The CMP step in Shallow Trench Isolation (STI) is a dual-
material polishing process, i.e., multiple materials are being polished simultaneously during the CMP process.
Simple greedy methods were proposed for the non-linear problem with Mm-Var and Mm-Fill objectives, where
the certain amount of dummy features are always added at a position with the smallest density. In this paper,
we propose more efficient Monte-Carlo methods for the Mm-Var objective, as well as improved Greedy and
Monte-Carlo methods for the Mm-Fill objective. Our experimental experience shows that they can get better
solutions with respect to the objectives.
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1. INTRODUCTION
Chemical-mechanical planarization (CMP) is an important step in the manufacturing of very deep submicron
VLSI, and effects the overall production yield. In order to minimize the undesirable influence of local layout
density variation on yield, we seek to improve the uniformity of the layout by inserting "dummy fill" features.
That is, we introduce electrically inactive features into unused sparse areas in the original layout, as to increase
the overall density.

Kahng et al.7 first formulated the fill problem, developed layout density analysis algorithms, and gave
a Linear-Programming based approach to the problem. In subsequent works, they also provided Monte-
Carlo/Greedy methods' and iterated Monte-Carlo/Greedy methods2 for the flat-layout fill problem, and pro-
posed the hierarchical fill problem with corresponding methods.3 Tian et al. pointed out the Mm-Fill objective
in the fill problem,13 and proposed the methods for the dual-material fill problem.'4
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Figure 1. In the fixed r-dissection framework, the n-by-n layout is partitioned using r2 (here, r = 3) distinct overlapping
dissections, each with window size w x w. Equivalently, the layout is partitioned into ! x ! tiles. Each dark-bordered
w x w window consists of r2 tiles.

All existing methods for fill synthesis are based on discretization: the layout is partitioned into tiles, and
filling constraints or objectives (e.g., minimizing the maximum density variation) are enforced or pursued for
square windows each consisting of r x r tiles. Thus, to practically control layout density in arbitrary windows,
density bounds are enforced in only a finite set of windows. More precisely, both foundry rules and EDA physical
verification and layout tools attempt to enforce density bounds within r2 overlapping fixed dissections, where
1' determines the "phase shift" w/r by which the dissections are offset from each other. The resulting fixed
r-dissection (see Fig. 1) partitions the n x n layout into tiles , then covers the layout by w x w-windows
i,j = 1,. . ., !: — 1, such that each window consists ofr2 tiles Tkj, k = i,. . . ,i +r — 1, 1 = j, .. . ,j +r —1.

Two main filling objectives are considered in the recent literature:

. (Mm-Var Objective) the variation in window density (i.e., maximum window density minus minimum
window density) is minimized while the window density does not exceed the given upper bound U;

. (Mm-Fill Objective) the number of inserted fill geometries is minimized while the density of any window
remains in the given range (L, U).t

In this work we first concentrate on the Multiple-layer Interlevel Dielectric CMP (see Ref. 13) where density
variation on the higher layers should take in account density variation on the underlying layer. We propose a new
linear programming formulation for the multiple-layer fill problem and compare it with the previous formulations
showing that the new objective is more suitable for manufacturability. We also develop a modification of the
Monte-Carlo approach for multiple-layer fill. Our experiments show that this method is more efficient and yields
more accurate results for large layouts. We next concentrate on the CMP step in the Shallow Trench Isolation
(STI) model (see Refs. 4, 5, 14) where multiple materials are being polished simultaneously during the CMP
process. The model is quite involved and essentially relies on nonlinear mathematical programming. The first
attempt to solve the problem efficiently was the greedy algorithm which is known to be inefficient and unreliable
since it tends to get easily trapped in local minima. In this paper we develop Monte-Carlo algorithm for the
STI model, and experimentally show that it is not only considerably faster and more scalable, but also achieves
better filling results. The remainder of this paper is organized as follows. Section 2 is devoted to the multiple-
layer oxide CMP fill problem, where a new multiple-layer objective and the corresponding Linear Programming

tThe Mm-Var objective was introduced by Kahng et al.,6 and captures the "manufacturing side" of the Filling
Problem by seeking the most uniform density distribution possible. The Mm-Fill objective was introduced by Tiari et
al.,13 and captures the "design side" by seeking to minimize the total coupling capacitance and uncertainty caused by
dummy fill. Minimizing dummy fill has the side benefit of reducing the complexity of the output GDSII.
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formulations are proposed, and the Monte-Carlo method is extended to the multiple-layers. Section 3 reviews
the current methods for the STI fill problem and propose new methods for it. Finally, computational results
for multiple-layer Monte-Carlo and new STI fill methods are reported in Section 4.

2. MULTIPLE-LAYER OXIDE CMP DUMMY FILL
2.1. Density Models for Oxide CMP Dummy Fill
Several models for oxide planarization via CM? are reviewed in Itef. 8. In particnlar, the accurate and well
accepted model of Ref. 11 is neither computationally expensive nor difficult to calibrate. In this model, the
interlevel dielectric thickness z at location (x, y) is calculated as:

z = I ° — (f)) t < (pozi)/K
(1)

I.. zo — zi — Kt + p0(x, y)zi t > (pozi)/K

where K is the blanket polish rate, z0 is the height of oxide deposition, z1 is the height of existing features, t
is the polish time, and Po i5 the initial pattern density. The crucial element of this model is the determination
of the effective initial pattern density, p(x, y).

We seek to understand how the effective density depends on the spatial pattern density distribution in a
window. The simplest model for p(x, y) is the local area feature density, i.e., the window density is simply equal
to the sum:

i+r—1j+r—1

p(W) = i: i: area(Tkl) (2)
k=i l:=:j

where area(Tkl) denotes the original layout area of the tile Tkl. This spatial density model is due to Ref. 6,
which solved the resulting filling problem using linear programming.

A more accurate model considers the deformation of the polishing pad during the CMP process9 : effective
local density p(x, y) is calculated as the sum of weighted spatial pattern densities within the window, relative
to an elliptical weighting function:

f(x,y) = coexp{ei(x2 +y2)c2] (3)

with experimentally determined constants c0, Ci ,and e2.13 The diseretized effective local pattern density p for
a window in the fixed-dissection regime (henceforth referred to as effective density) is:

i+r—1 j+r—1

p(W) = i: : area(Tkl) . f(k- (i + r/2), 1 - (j + r/2)) (4)
k=i 1=:j

where the arguments of the elliptical weighing function f are the x- and y-distances of the tile Tkj from the
center of the window

2.2. Multiple-Layer Fill Problem
In a layout containing multiple layers, no layer except the bottom-most can assume a perfectly fiat starting
surface. Thus filling each layer optimally yet independently may result in an unacceptable planarization on the
top layers when the layers are stacked together during the manufacturing process. This motivates the following:

The Multiple-Layer Filling Problem: Solve the Filling Problem for a given multiple-layer layout so that
either:

• (Mm-Var Objective) the sum of variations in window density on each layer is minimized, or the maximum
variation in window density on each layer is minimized; or

• (Mm-Fill Objective) the number of inserted fill geometries is minimized while the density of any window
remains within the given range (Lk, Uk) for each layer k.
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2.3. Fill Synthesis for Multiple-Layer Layout
In the model proposed in Ref. 16, topographic variation of one layer attenuates through the subsequent CMP
processes, each of which is modeled as a low-pass filter based on equations (3) and (4) , accordingto the following
equation:

P0(k) = I [k + 1)Po(-i)] x J k > 1
(5)d1xf k=1

where " " is the Fast Fourier Transform (FFT) operator, P0(k) S the effective local density, zk is the step height
(i.e., the height of layer k from the first layer), dk is the local density, all for layer k, and f is the weighting
function. In the discussion below, we will not explicitly address the multiple-layer model. However, our linear
programming and Monte-Carlo algorithms have straightforward extensions for simultaneously handling multiple
layers. By mathematical induction on the layer number k and the linearity of Fourier transforms, Equation 5
can be written as13:

Pok) = [(zl/zk)j+1 x 1 (6)

Furthermore, for effective density at a location (i, i) on layer k, each term in the summation results in a multiple
circular convolution in the physical domain:

[IFFT(f(a) dj)](i,j) = [(f®f...f)®diJ(i,j)
= [f(ii —i,j1 —j) X

( {f(i,. — ia—i) X + x)})] (7)

Since the multiple convolution written as a series of summations is linear in term of Xijk ,the LP formulations
for single-layer fill problem can be easily extended for multiple layers.

2.3.1. Linear Programming Approaches for Multiple Layers
Tian et al.13 extended the linear programming formulations (LPO) to address multiple layers with the objective
of minimizing the sum of density variation over all layers:.. . KMinimize: >1k=1 (Hk — Lk)
Subject to:

O<Lk<po(i,j,k)<Hk<(L) i,j=O,...,—1,k=1,...,K (8)
Zk w

0 Xjjk slack(Tk) i,j = 0, . . . , (9)

Considering only the sum of variations on all layers in the objective function can not guarantee that the filling
on each layer will satisfy the Mm-Var objective. It is possible that the density variation of one of the layers
will be too large to be manufactiirable. Moreover, a bad polishing result on an intermediate layer due to
nonpianarization can potentially cause problems on later (upper) layers. So it is more reasonable to ensure that
the density variation on each layer is actually less than the bound required by the CMP process.

Based on these considerations, we propose a new linear program formulations (LP1) for multiple-layer fill
with the objective of minimizing the maximum density variation across all layers:

Minimize: M
Subject to:
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•)S ll4 
:p3LI: U! SB1L IP JO SThTSUOp JO fflflS M4 S? )JflS °ll JO ASUp ujop OM 'Apnui saoA uo 

uoiisod uus UAq sp jo uinno s pv ujp 'siAj uo SUOi?U?A Aisup jo mns 
q1 znrnupn o s! oJMIM wqoid j JJc?I—Idn1nm 1Oj UflOU11 11TJ pqisid q (Asup 

'..!) uuo SUUJOiUT pu 'flIA uoud si o uipiox oji ssooip uopui wTpiop 
Ill; 1I-Iu!s JOJ T •JU UT pflpOJUi SIJ SM uqoid jjj dJATD '-T poqm oi-uoj qj 

.mT!JoIv md oj-uoj, ij-odijnj, : inij 
INM pua 

JOd pU[ 
JI pua 

7 aA1 uo )T3OrT 

dooj jix siuoud BTI ipd [CJ[i]/zjfQvaiyydv7S7m pu [C][z][7]/zjjQvaiypv/s pd [C][J[7]d71 ow inj IIT:J PSUI 
JOLT pua 

JI pua 
dool ix uBql punoqiddn T4 OUI I! uuoqqou OTJ SSfl [C][i][7]7t uo uoisu jj 

ocE unbs (T + 'j) x (T + 'ij) rn [u][u1I[7Ii1 u1oqqu A1A io 
uqj 0 < JI 
ocE 2d11V7dO1 O aflv7uiooq = j iO[ 

Auoud s 04 UIpJOXM? ('.,)SLL ps O 
UtMpS A!Jo!id uit o: upiox Luopui soj Ou SJll?OJ Auiiunp isu AToAaJ // 

ocE (o < siuoud jo urns) ajqp& 
o spis OT JO A!Jo1id ndino3 

JOd pU[ 

=+ 
[C][z][7]/ijfQvaiyydv7s =+ 
[(J[z][7]d7zjjQuff7ui Asup OATpOJJO Ai%Iflmfl pUl? 

aI1? ps s nduio3 
ocE 7 ioA1 uo [C][z]d7z ipio .io 

ci 01 flv7wooq =7 
sopqo iMTtO Jo 'sj1cij u o SUOITflA 2c4sup JO TITUS 

pz!U1!UpU o pdsu qu SJici Pin o1d1nm noA :ndnO 
z!S OJUT?OJ cU1TUnp pU 'SiJcT TdTJnm qi noA :nduj 

mw!JoIv IIiktI I3'F JaI-Id!InIAT 

sqoddi psq OI13-OUOJ AU UTSfl mqoid pj iAj-o1djnm 
oq supp o 'uoS uj Aijnb UOiflIOS USiOM Ill' UTpUflOJ T4 () pu 'UTfflUSUOJ TUI 
oo si inqoad a1n uiAIoS (i) :spqJp UHUI o Aq spoqm PqdT 'T pij U! no puiod sy 

II!J iP'TE-Id!IflJAI .ioj qoidd oh -UOJAJ 'i' (CT) = — = P o 

(TI) )I''T I(ir—H) 1=/ 
(oT) ()> H ('C'i)Od 

Proc. SPIE Vol. 4692 425



The Monte-Carlo algorithm (see Fig. 2) takes the original maximum density to be the upper bound for each
layer. It then randomly chooses a tile stack according to its priority value, selects a layer in the stack, and
increments the tile's density and the tile stack's density by a prescribed fill amount, assuming that the insertion
is permitted with respect to the objective.

The probability of choosing a particular tile stack TS3 is referred as the priority of that tile stack. Note that
the priority of a tile stack TS3 is zero if and only if either TS3 has already achieved the density upper bound U,
or the slack of TS2 is less than the prescribed fill area. Tiles with zero priority are said to be locked. Following
Ref. 1, the priority of a tile stack is chosen to be proportional to U-EfJDen(T), where BfJDen(T) is
the effective density of the tile stack

During the algorithm's execution, after choosing which tile stack to fill next, we also need to decide into
which layer the dummy features should be inserted. We consider three different ways to choose the insertion
layer. The first method is to choose the bottom layer first, and then try an upper layer if the current layer is
not feasible. The second method is to select the top layer first, and then try a lower layer if the current layer
is not feasible. For these two approaches, once no layer is suitable for fill, the tile stack will be "locked" and
will not be subsequently selected for any more filling. The third approach is to randomly choose one layer for
fill, and then to try the upper layer or the lower layer with equal probability. Here, a tile stack is "locked"
when no slack area remains in it. Our experimental results indicate that the second method described above
outperforms the other two approaches.

A variant of the Monte-Carlo approach is the deterministic Greedy algorithm. Unlike the Monte-Carlo
approach, at each step the Greedy algorithm adds a prescribed amount of fill into a tile with the highest priority.
The experiments show that the run times of this Greedy approach are slightly higher than Monte-Carlo's, due
to the requirement of finding a tile with the highest priority, rather than a random tile.

As analyzed in Ref. 2, we can also implement the Iterated Monte-Carlo and Greedy methods for the multiple-
layer fill problem, which alternating the Mm-Var and Mm-Fill objectives, resulting in a monotonic narrowing
of the density variation (see Fig. 3). Such iterated methods are still very fast and retain all the advantages of
the non-iterated Monte-Carlo and Greedy counterparts, but offer improved accuracy.

Figure 3: The Iterated Monte-Carlo and Greedy multiple-layer fill approach.

Iterated Monte-Carlo and Greedy Filling Algorithms
Input: n x n multiple-layer layout with 1 layers, fixed r-dissection, w x w window,

density upper bound U1 on each layer
Output: Filled multiple-layer layout
Repeat forever

Run Mm-Var Monte-Carlo (Greedy) Algorithm with the upper window densities U1
If resulting sum of density variations equals the previous solution Then Exit repeat
Else

While there exist an unlocked tile stack Do
Choose an unlocked tile stack TS randomly, according to its priority
Choose a layer
If the deletion does not deteriorate the solution Then

Delete a dummy feature from the layer
Else

Lock the tile stack
Update the priorities of the tile stacks

End If
End While

End If
End Repeat
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Figure 4. Shallow Trench Isolation process and parameters. (a) nitride deposition; (b) etch; (c) oxide deposition; (d)
chemical-mechanical polishing; (e) nitride stripping; (f) STI parameters.

3. SHALLOW TRENCH ISOLATION DUMMY FILL
In integrated circuits, devices such as transistors are fabricated on a common piece of silicon. Without proper
device isolation, these devices may interact with one another in undesirable ways. The need for a scalable
CMOS isolation technology is critical in order to advance into the 0.25 m 256Mbit DRAM generation and
beyond. The geometric characteristics of ideally scalable isolation technology are (i) an abrupt transition from
active MOSFET regions to isolation regions, (ii) independence of isolation width and depth, and (iii) planarity.4
Shallow Trench Isolation (STI) becomes the isolation technique of choice because it leads to higher device density.
The process sequences for STI is the following. First, a thin pad oxide (200-600 A) is thermally grown on the
silicon wafer followed by the deposition of a relatively thick silicon nitride layer (1500-2000 A). The nitride film
is then patterned and etched in the isolation regions. A thin thermal oxide film is then grown to passivate the
side-walls before filling the trenches with oxide. The deposited film is then polished until the nitride, which
acts as a polish stop, is exposed. The nitride and the underlying pad oxide are then etched to expose the active
device areas (see Fig. 4).
3.1. STI CMP Model
The basic idea of Stine's model11 for oxide CMP is that when polishing the initial raised areas of the layout,
the polishing rate of the up area is inversely proportional to the effective feature density. The down areas are
not polished at all while there exist local step height differentials. Once the up areas are completely removed,
the down areas begin to be polished. However, local pad compression has been observed in recent experiments,
where at a certain step height, the pad touches both the top areas and the down areas, at which point the
polishing rate changes. The model proposed by Grillaert5 shows that the polishing rates for both the top and
bottom areas of the step are:

dH I —K/p t < t dHd I 0 t < tc
13dt —K — (1 — p)e_(t_tc)/T t > tc dt —K + pe_(t_tc)k t > te

where the contact height h is the local step height at which the pad starts to touch the down area of the steps,
te S the contact time, K is the blanket polishing rate, p is the local effective density, and 'r = . Smith1°
pointed out that h is a function of density and space and can be calculated as h =a1 + a2e1'.

The model for a dual-material polishing was first studied by Grillaert5 for STI, and was extended to copper
CMP by Tugbawa et al.15:

_____

(1)
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dH/dt = —K[1 + ---] dHd/dt = —Kd[1 —] (14)

where H3 = H — Hd, K is the blanket polishing rate for the material at the top areas, and Kd is the blanket
polishing rate for the bottom areas. Equation (14) assumes that the pad is touching both surfaces, i.e., H < h.

3.2. STI Dummy Fill Problem
Based on the above model, Tian et al.14 derived the following equations for the STI CMP process under the
assumption that the oxide profile is deposited conformally onto the underlying trench profile, and the side walls
of both the deposited oxide and the underlying trenches are straight. Some STI parameters: oxide deposition
thickness (zo), total initial step height (zi), and the thickness of nitride film (Ha), are shown in Fig. 4 (f). The
height of oxide surface after t >t is:

H0(p,t) = z0 — K0t — (1 — p)h(zi/hc — e_(t_tT) (15)

where K0 is the blanket polishing rate for oxide, and the contact time is calculated as t =p(zi — h)/K0.
Let t1 be the time at which all the oxide above the nitride layer has been polished, that is, H0(p, ti ) =0.

At t = t1, the local step height is h = hce(t1_t)/T.
After that, both nitride atop silicon and oxide in the trenches are polished together. Integration of Eq. (14)

with the initial condition H(t = 0) = H gives the nitride surface height as:

H(p,t) =H — (1+ (1 P)KT2Kt 1 p)Kr2 (h — Kr2)(1 — e_tIT2) (16)
ph ph

where is the blanket polishing rate for nitride, r2 =( + K(1—P))_1 , and K = K0 —

Let t2 be the time at which the nitride layer is cleared. Because different locations may reach the end point
in nitride at different times, Tian et al. proposed the nonlinear equation for the height difference between a
location (i, ) with the minimum density and a location (i', i') with the maximum density as

H(i,j, i',j') = H—(1+ (1 p(i',j'))Kr)Kt(i,j, p(i',j')Kr(hK)(1_t(iii'i')/T2)
p(i ,j )h p(z ,3 )h

(17)

where Lt(i,j,i',j') is the nitride polishing time oflocation (i',j') as /.\4(i,j,i',j') = ti(i,j) +t2(i,j) —ti(i',j').

3.3. Monte-Carlo and Greedy Approaches for STI Fill
Equation (17) shows that the STI post-CMP variation can be controlled by changing the feature density distri-
bution using dummy features insertion.'4 The STI Fill problem then seeks to minimize the maximum height
variation /.H for the Mm- Var objective, or else to minimize the total amount of inserted fill, while respecting
the given lower bound for the Mm-Fill objective. Tian et al.'4 formulated the problem as the non-linear pro-
gramming problem and proposed Greedy methods for the Mm- Var and Mm-Fill objectives. In their Mm-Var
Greedy methods, a dummy feature is always added at a location having the smallest effective density. The
iteration terminates when there is no feasible fill position left in the layout. For the Mm-Fill objective, this
method concludes once the given bound for LiH is satisfied. Obviously, this Mm- Var Greedy method is not
guaranteed to find a global minimum. Actually, our computational experience shows that it is difficult for the
simple Greedy method to avoid a local minima, since it is deterministic. Also, for the Mm-Fill Greedy method,
simple termination when the bound is first encountered is not sufficient to yield optimal or even near-optimal
solutions.

The Monte-Carlo algorithm for the Mm-Var objective, first introduced in Ref. 1, iterates by randomly
choosing a tile and incrementing its effective density by a prescribed fill amount. The probability of choosing a
particular tile is referred to as the priority of that tile. Both the Monte-Carlo and Greedy algorithms are
suboptimal for the Mm-Var objective, and although they are both fast in practice, the resulting density variation
may be significantly larger than the optimum. Iterated methods proposed in Ref. 2 result in a monotonic
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narrowing of the gap between the upper density bound U and the minimum density L. Such iterated methods
are still very fast and retain all the advantages of the non-iterated Monte-Carlo and Greedy counterparts, yet
offer improved accuracy (see Table 5).

For the Mm-Fill objective, our method first finds a solution that optimizes the Mm- Var objective or satisfies
the given lower bound, and then modifies the solution with respect to the Mm-Fill objective. Thus, the
first objective (density variation) can hopefully be traded off towards a significant improvement in the second
objective (the amount of inserted fill). To implement this strategy with either the Monte-Carlo or Greedy
methods, we use the Fill-Removal phase to iteratively delete an inserted dummy feature from a tile, randomly
chosen according to its priority. It is natural to choose a priority symmetrical to the priority in the Mm-Var
Monte-Carlo algorithm. Thus, the Mm-Fill Monte-Carlo/Greedy algorithm deletes fill geometries from unlocked
tiles which are randomly chosen according to the priority scheme, i.e., proportional to /.H— /.H(i, j, max, jrnax).
No filling geometry can be deleted from a tile (i.e., is locked) if and only if it either has zero priority or
else all fill previously inserted into has been deleted (see Fig. 5).

STI Mm-Fill Monte-Carlo/Greedy Algorithm
Inpnt: 72 X n filled layout, fixed r-dissection, w x w window,

height difference bound LH
Output: Filled layout with minimized amount of inserted fill area

satisfying the bound LH
Run the Mm-Var Monte-Carlo/Greedy algorithm
Compute the removal priority of each tile
While there exist an unlocked tile Do

Choose an unlocked tile randomly, according to its priority
Delete a fill geometry from
Update the tile priorities

End While
Output resulting layout

Figure 5: The STI Mm-Fill Monte-Carlo/Greedy Algorithm.

4. COMPUTATIONAL EXPERIENCE
In this section, we compare the performance of the Monte-Carlo methods and Greedy methods on the multiple-
layer and STI fill problems. All experiments in this work are performed using part of a metal layer extracted
from an industry standard-cell layoutt (Table 1). Benchmark Li is the M2 layer from an 8,13i-cell design;
benchmark L2 is the M3 layer from a 20,577-cell design; benchmark L3 is the M2 layer from the same 20,577-
cell design as L2; benchmark L4 consists of two metal layers from an 8,i3i-cell design; and benchmark L5 and
L6 consists of two metal layers from the same 20,577-cell design as L2.

Table 1: Parameters of four industry test cases. In this coordinate system, 40 units is equivalent to 1 micron.

testcase Single-layer Test Cases Multiple-layer Test Cases

L test case Li L2 L3 L4 L5 L6
layout size n i25,000 ii2,000 ii2,000 i25,000 ii2,000 ii2,000

# rectangles k 49,506 76,423 i33,20i 99,0i2 209,624 i52,846

tOur experimental testbed integrates GDSII Stream input, conversion to CIF format, and internally-developed geo-
metric processing engines, coded in C++ under Solaris. We use CPLEX version 7.0 as the linear programming solver.
All runtimes are CPU seconds on a 300 MHz Sun Ultra-iO with 1GB of RAM.
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4.1. Multiple-layer Fill
Table 2 shows the performances of the two LP formulations proposed by Tian et al. and by us respectively for
the different multiple-layer fill objectives. The experiments indicate that the LP formulations with objective to
minimize the sum of density variations on all layers can not also minimize the maximum density variation at
the same time.

Table 2. The performance of the LP formulations under the objectives of minimizing (i) the sum of density variations,
and (ii) the maximum density variation, on all layers. Notation: L/W/r: layout / window size / r-dissection; LPO:
the linear programming formulations with objective to minimize the sum of density variations on all layers; LP1 : the
linear programming formulations with objective to minimize the maximum density variation across all layers; Sum Var:
the sum of density variations on all layers; maxDenVar: the maximum density variation across all layers; CPU: the run
time; Area: the number of inserted dummy features.

test case LPO LP1
L/W/r SumVar maxDenVar CPU Area SumVar maxDenVar CPU Area

L4/16/4 0.2690 0.1696 42.0 20921 0.2875 0.1666 37.6 19609

L4/16/8 0.6626 0.4696 44.2 14769 0.6626 0.4696 43.2 14330

L4/8/4 0.6626 0.4696 42.7 14769 0.6626 0.4696 43.1 14330

L4/8/8 0.9031 0.6346 157.3 9959 0.9455 0.6255 137.7 10133

L5/16/4 0.3436 0.2420 101.0 38152 0.3843 0.1932 69.8 38241

L5/16/8 1.0585 0.5531 283.3 34942 1.0621 0.5393 671.9 33376

L5/8/4 1.0585 0.5531 279.7 34942 1.0621 0.5393 655.7 33376

L6/16/4 0.5986 0.4080 91.3 65578 0.6333 0.3737 71.0 62113

L6/16/8 1.6116 1.1155 13322.0 67178 1.6584 1.0903 6622.0 65576

L6/8/4 1.6116 1.1155 12617.0 67178 1.6584 1.0903 6649.0 65576

Table 3 compares the sum of density variations on all layers and the associated run times for the linear
programming method (LPO), Greedy method, Monte-Carlo (MC) method, Iterated Greedy (IGreedy) method
and Iterated Monte-Carlo (IMC) method. Our results show that the accuracy of the Monte-Carlo/Greedy
methods is very high. When the window size is small and/or the number of fixed dissections is large, the LP
method becomes impractical for multiple-layer fill problem1 , while the Monte-Carlo/Greedy methods are still
fast. On the other hand, the rounding error inherent in the LP method make its performance worse than the
Monte-Carlo/Greedy methods on the large test cases.

Table 3. The performance of LPO, Greedy, MC, IGreedy and IMC for the sum of density variations across all layers.
Notation: L/W/r: layout / window size / r-dissection; SumVar: the sum of density variations across all layers; CPU:
the run time. The data in bold denotes the best results.

test case LPO Greedy MC IGreedy IMC
L/W/r SumVar CPU SumVar CPU SumVar CPU SumVar CPU umVar CPU
L4/16/8 0.6626 33.1 0.6420 36.3 0.6285 36.6 0.6285 37.7 0.6285 33.9

L4/16/5 0.5435 30.7 0.5541 32.2 0.5535 33.0 0.5535 31.1 0.5535 30.5
L4/8/8 0.9031 140.1 0.7794 48.1 0.7766 36.2 0.7762 74.7 0.7762 34.5
L4/8/5 0.8351 33.4 0.7882 35.4 0.7804 32.7 0.7804 39.1 0.7804 30.7
L5/8/8 2.2118 8093.0 2.0526 102.8 2.0913 65.4 2.0526 111.7 2.0716 67.6

L5/8/5 1.3494 8879.0 1.3450 65.0 1.3943 54.2 1.3252 79.6 1.3476 59.3

Table 4 shows the performance of the Linear Programming method (LP1), Greedy method, Monte-Carlo
method, Iterated Greedy method and Iterated Monte-Carlo method with respect to the maximum density

For example, the LPO method does not report results for the test case L6/8/5 after running for more than 12 hours.
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variation objective across all layers. The Monte-Carlo and Greedy methods yield better solutions than LP on
these test cases within shorter run times.

Table 4. The performance of LP1, Greedy, MC, IGreedy and IMC on the maximum density variation across all layers.
Notation: L/W/r: layout / window size / r-dissection; MaxDen: the maximum density variation on all layers; CPU:
the run time. The data in bold denotes the best results.

test case LP1 Greedy MC IGreedy IMC
L/W/r MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU

L4/16/8 0.4696 34.8 0.4459 36.3 0.4454 36.6 0.4454 37.7 0.4454 33.9
L4/16/5 0.3638 36.5 0.3638 30.2 0.3635 33.0 0.3635 31.1 0.3635 32.5

L4/8/8 0.6255 120.8 0.5437 48.1 0.5410 36.2 0.5406 74.7 0.5406 34.5
L4/8/5 0.5897 33.2 0.5576 35.4 0.5497 32.7 0.5497 39.1 0.5497 30.7
L5/8/8 1.2174 761.3 1.1081 102.8 1.1089 65.4 1.1081 111.7 1.1081 67.6

L5/8/5 0.6886 524.0 0.6857 65.0 0.7050 54.2 0.6698 79.6 0.6746 59.3

4.2. STI Fill
Our experiments for the STI fill problem ran on metal layers from industrial designs, with parameters typical
of industry STI processes. We compare the performances of different Monte-Carlo and Greedy methods for
both the Mm-Var and Mm-Fill objectives. Table 5 shows the post-fill layout height difference from the Greedy,
Monte-Carlo, Iterated Greedy, and Iterated Monte-Carlo methods. The data indicates that for the Mm-Var
objective, the performance of the Monte-Carlo (MC), Iterated Greedy (IGreedy) and Iterated Monte-Carlo
(IMC) methods are all better than the simple Greedy approach. For example, The Iterated Monte-Carlo
method can improve over the simple Greedy approach by 30% for L1/32/8.

Table 5. Methods for Shallow Trench Isolation (STI) Fill under the Mm-Var objective. Notation: origLH: the
original height difference of the layout; L\H: the post-fill height difference of the layout; L/W/r: layout /window size /
r-dissection; CPU: the run time. The data in bold denote the best results.

test case Greedy MC IGreedy 1MG
L/W/r orig LiH LH CPU LiH CPU LH CPU LH CPU
L1/32/4 695.2 305.3 3.2 335.0 3.2 304.5 3.5 290.2 3.4
L1/32/8 999.6 426.1 3.8 325.8 3.4 407.4 7.1 307.2 4.2

L2/28/4 801.8 487.9 5.1 374.0 5.2 487.9 5.7 348.0 5.6
L2/28/8 1124.6 569.8 5.7 536.1 5.2 546.3 10.1 482.7 6.6

L3/28/4 1095.2 577.8 8.5 563.2 8.3 577.8 8.9 563.2 9.1

The performances of the simple Greedy Mm-Fill method, Monte-Carlo Mm-Fill method, Greedy Mm-Fill
method with a fill removal phase, and Monte-Carlo Mm-Fill method with a fill removal phase are compared in
Table 6. Our results indicate that the simple Greedy Mm-Fill method does not yield near-optimal results. For
example, the solutions of the simple Greedy Mm-Fill method for test case L2/28/8 are at least 50% away from
optimal, as compared with the results from the Monte-Carlo method with a fill removal phase.

5. CONCLUSION AND FUTURE RESEARCH
In this paper, we reviewed recent works on the multiple-layer and STI fill problems. For the multiple-layer fill
problem, we presented a new linear programming approach with a new objective, as well as modified Monte-
Carlo approaches. For the STI fill problem, we addressed the shortcomings of the current methods and proposed
Monte-Carlo/Greedy methods for both the Mm-Var and the Mm-Fill objectives. Our experiments indicate that
the Monte-Carlo methods are efficient for the multiple-layer fill problem, and that the improved STI methods
can yield better solutions with respect to the objectives we studied.
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Table 6. Methods for Shallow Trench Isolation (STI) Fill with Mm-Fill objective. Notation: origL\H: the original
height difference of the layout; fina1LiH: the post-fill height difference of the layout; Greedyl: the Greedy method, which
terminates after satisfying the given height difference bound; MCI: the Monte-Carlo method, which terminates after
satisfying the given height difference bound; Greedyll: the Greedy method with a fill removal phase; MCII: the Monte-
Carlo method with a fill removal phase; L/W/r: layout / window size / r-dissection; Area: the amount of inserted
dummy features; CPU: the run time. The data in bold denote the best results.

test case Greedyl MCI Greedyll MCII

L/W/r orig All final AJ1 Area Cpu Area CPU Area CPU Area CPU

L1/32/4 695.2 395.1 10336 3.1 12003 3.1 8962 3.2 9141 3.2

L1/32/8 999.6 462.7 22091 3.9 20679 3.4 15615 3.6 14754 3.4

L2/28/4 801.8 526.2 7491 4.8 15164 4.9 7593 5.1 6543 5.1

L2/28/8 1124.6 639.8 16808 5.7 26114 5.5 8367 5.9 7142 5.5

L3/28/4 1095.2 563.2 24274 8.2 27114 8.0 16628 8.6 16142 8.5

Ongoing research includes further study of the multiple-layer fill objectives, and more powerful Monte-Carlo
methods for the multiple-layer fill problem. We are also pursuing a CMP simulation tool to check the feasibility
of our STI fill methods.
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