
On the Skew-Bounded Minimum-Bu�er Routing Tree Problem�

Christoph Albrecht,y Andrew B. Kahng, Bao Liu, Ion M�andoiu, and Alexander Zelikovskyz

CSE Department, UCSD, La Jolla, CA 92093-0114
yResearch Institute for Discrete Mathematics, University of Bonn, Lennstr. 2, 53113 Bonn, Germany

zCS Department, Georgia State University, Atlanta, GA 30303

albrecht@or.uni-bonn.de, fabk,bliu,mandoiug@cs.ucsd.edu, alexz@cs.gsu.edu

Abstract|Bounding the load capacitance at gate

outputs is a standard element in today's electrical cor-

rectness methodologies for high-speed digital VLSI de-

sign. Bounds on load caps improve coupling noise im-

munity, reduce degradation of signal transition edges,

and reduce delay uncertainty due to coupling noise

[6]. For clock and test distribution, an additional

design requirement is bounding the bu�er skew, i.e.,

the di�erence between the maximum and the mini-

mum number of bu�ers over all source-to-sink paths

in the routing tree, since bu�er skew is one of the

main factors a�ecting sink delay skew [10]. In this pa-

per we consider algorithms for bu�ering a given tree

with the minimum number of bu�ers under given load

cap and bu�er skew constraints. We show that the

greedy algorithm proposed by Tellez and Sarrafzadeh

[10] is suboptimal for non-zero bu�er skew bounds

and give examples showing that no bottom-up greedy

algorithm can achieve optimality. The main contri-

bution of the paper is an optimal dynamic program-

ming algorithm for the problem. Experiments on test

cases extracted from recent industrial designs show

that the dynamic programming algorithm has practi-

cal running time and inserts up to 5{10% fewer bu�ers

compared to the algorithm in [10].

I Introduction

For high-speed digital VLSI design, bounding the load
capacitance at gate outputs is a standard element in to-
day's electrical correctness methodologies. Bounds on
load caps improve coupling noise immunity, reduce degra-
dation of signal transition edges, and reduce delay uncer-
tainty due to coupling noise [6].1 According to [9], com-
mercial EDA methodologies and tools for signal integrity
rely heavily on upper-bounding the capacitive loads on

�This work was partially supported by Cadence Design Systems,
Inc., the MARCOGigascale Silicon Research Center and NSF Grant
CCR-9988331.

1Such bounds also improve reliability with respect to hot-carrier
oxide breakdown (hot electrons) [4, 5] and AC self-heating in inter-
connects [8], and facilitate technology migration since designs are
more balanced.

driver and bu�er outputs (to prevent very long slew times
on signal transitions). Essentially, the load capacitance
bounds serve as proxies for bounds on input rise/fall times
at bu�ers and sinks (Tellez and Sarrafzadeh [10] formally
prove this equivalence using a simple linear model). We
assume that such capacitive load bounds are inherent to
any bu�ered routing tree design task. It is natural to
propose a minimum-bu�er formulation, so as to minimize
changes made to the routing tree in meeting the load
bounds.
Bu�ering to control slew times is also critical to early

timing analysis. With lookup-table based modeling of
gate delays and output transition times, very long input
slews tend to be propagated inaccurately, resulting in ex-
tremely slow transitions. Static timing analyses that are
based on the associated delay calculations will be utterly
compromised, and useless for driving performance opti-
mizations. Thus, early timing analysis must start with a
bu�ering solution that bounds the capacitive loads of all
bu�ers and of the source driver. Again, a minimum-bu�er
objective is appropriate.
Last, we observe that bu�ering of some large routing

trees (e.g., for clock and test distribution) is further con-
strained with respect to the bu�er skew, i.e., the dif-
ference between the maximum and the minimum num-
ber of bu�ers over all source-to-sink paths in the routing
tree [10]. This is because bu�er skew reects the actual
bu�ered clock tree skew after routing. To accurately es-
timate tradeo�s between alternative clock tree topologies
in the early stages of clock distribution design, the key
problem is to bound the number of bu�ers needed by a
given tree to satisfy given constraints on both slew rate
(input rise/fall times) and bu�er skew. Good bounds (or,
good constructions that minimize the number of bu�ers
while controlling the bu�er skew) will enable accurate es-
timation and tradeo� of such system resources as power
and area.
From the above context and assumptions, we obtain the

following problem formulation:

Bounded Skew Bu�ering Problem (BSBP): Given
a (clock) net N , per-unit length wire capacitance, sink
and bu�er input capacitances, capacitive load bounds for

bu�ers and for the tree source, and an upper bound � on
bu�er skew, �nd a bu�ering of N that satis�es all bounds
while using the minimum number of bu�ers.

The BSBP was �rst formulated by Tellez and Sar-
rafzadeh [10], who suggested a greedy algorithm with run-
time O(n+ k), where n is the number of sinks in the net
N and k is the number of inserted bu�ers. In this paper,
we make the following contributions:

� We give examples showing the sub-optimality of the
Tellez-Sarrafzadeh algorithm for BSBP with non-zero
skew bounds, and further prove that no bottom-
up greedy algorithm can achieve optimality (Section
III).

� We give a non-trivial dynamic programming algo-
rithm which guarantees optimum solutions for BSBP
in O(n(� + 1)3NB2) time, where n, �, and NB
are the number of sinks, the given skew bound, and
an upper-bound on the optimum number of inserted
bu�ers, respectively (Section IV).

� We present experimental results on test cases ex-
tracted from recent industrial designs, showing that
the dynamic programming algorithm has practical
running time and inserts signi�cantly fewer bu�ers
compared to the algorithm in [10] (Section V).

II Notations and Problem Formulation

We start with a few de�nitions and notations. Let N
be a net consisting of a source r and a set of sinks S.

� A routing tree for the net N is a binary2 tree T =
(r; V; E) rooted at r such that each sink of S is a leaf
in T .

� A bu�ered routing tree for the net N is a tree T 0 =
(r; V; E;B) such that T = (r; V; E) is a routing tree
for N and B is a set of bu�ers located on the edges3

of T .

� For any b 2 B [frg, the subtree driven by b, Db,
(also referred to as the stage of b [10]) is the maximal
subtree of T which is rooted at b and has no internal
bu�ers; a bu�ered routing tree T = (r; V; E;B) has
jBj+ 1 stages including a source stage driven by the
source.

Throughout the paper we will use the following notations:

n = jSj number of sinks

2In this paper we restrict ourselves to binary routing trees. Every
routing tree can be made binary by duplicating nodes and inserting
zero-length edges.

3We assume that bu�ers have a single input and a single output
and thus are inserted only on the edges of T .

Cw = capacitance of a wire of unit length, which is as-
sumed to be the same for all wires

Cb = bu�er input capacitance, assumed to be the same
for all bu�ers4

CU = given upper-bound on the capacitive load of each
bu�er and of the source driver

cv = input capacitance of sink or bu�er v

le = length of wire segment e

ce = capacitance of wire segment e, i.e., ce = Cwle

Tv = subtree of T rooted at v

c(Tv) = lumped capacitance of Tv, i.e., c(Tv) =P
e2Tv

ce +
P

v2leaves(Tv)
cv

l(Tv) = maximum number of bu�ers on a path from v to
a sink s 2 Tv (called longest path for short)

s(Tv) = minimum number of bu�ers on a path from v to
a sink s 2 Tv (shortest path)

�(Tv) = l(Tv)� s(Tv) (bu�er skew of Tv)

Load Constraints
As noted in [10], bounded slew rate can be ensured by
upper-bounding the lumped capacitive load of each bu�er
and of the source driver. The lumped capacitive load of
b 2 B [frg is given by

c(Db) =
X

e2Db

ce +
X

v2leaves(Db)

cv (1)

Thus, to ensure bounded slew rate we require that

c(Db) � CU for every b 2 B [frg (2)

Bu�er Skew Constraints
Tellez and Sarrafzadeh [10] also note that the bu�er skew
is a signi�cant factor a�ecting sink delay skew. Other
sources of sink delay skew, such as propagation delays,
have been well studied (heuristics and approximation al-
gorithms for constructing unbu�ered trees with zero- or
bounded-skew can be found, e.g., in [3, 12]). To guaran-
tee bounded sink delay skew after bu�ering we need to
ensure that the di�erence in the number of bu�ers of the
longest and shortest path from the root r to the sinks is
at most a given bu�er skew bound �, i.e.,

�(T) = l(T)� s(T) � � (3)

A bu�ering satisfying both the load constraint (2) and
the bu�er skew constraint (3) will be called feasible. In

4We assume that a single type of bu�er is used. Using a single
bu�er type is a widely accepted design strategy since it reduces
process variation sensitivity and facilitates technology migration.

this paper we consider the problem of �nding a feasible
bu�ering with minimum number of bu�ers, formally de-
�ned as follows:

Bounded Skew Bu�ering Problem (BSBP)
Given: (1) net N with source r and set of sinks S, (2)
binary routing tree T = (r; V; E) for N , (3) sink input ca-
pacitances cs, s 2 S, (4) bu�er input capacitance Cb, (5)
unit-length wire capacitance Cw, (6) load upper-bound
CU , and (7) bu�er-skew bound �,
Find: bu�ering T 0 = (r; V; E;B) of T such that:

(a) c(Db) � CU for every b 2 B [frg,

(b) �(T 0) � �, and

(c) the total number of inserted bu�ers, jBj, is minimum
subject to (a) and (b).

For every v 2 V the branch of v, denoted br(v), is
Tv[(v; parent(v)) (where parent(r) = r). For each bu�er-
ing X of a branch br(v), we denote by nb(X), l(X), s(X),
cap(X), and �(X) the total number of bu�ers, the num-
ber of bu�ers on the longest path, the number of bu�ers
on the shortest path, the residual capacitance (i.e., the
capacitance of the stage driven by parent(v)), and the
bu�er skew in the branch br(v), respectively. Also, if X
is a bu�ering of a subtree containing vertex v, we denote
by Xv the bu�ering X restricted to the branch br(v).

III Why Greedy Does Not Work

The BSBP has been previously studied by Tellez and
Sarrafzadeh [10]. In [10], a greedy algorithm is �rst pre-
sented for minimum bu�ering without bu�er skew con-
straints and then the algorithm is modi�ed to handle such
constraints. Below we describe the two algorithms for the
case of binary trees; the description in [10] is given for
arbitrary trees.
When there are no constraints on bu�er skew, the al-

gorithm in [10] starts with an empty bu�ering X = ; and
then performs the following two steps for each node u, in
bottom-up order:

1. packNode(u): while cap(Xv)+cap(Xw) > CU (where
v and w are the two children of u), add a bu�er at the
topmost position of the child branch with the largest
residual capacitance (the greedy choice).

2. packEdge(u): while cap(Xu) > CU , add a bu�er on
the edge (u; parent(u)), at the highest possible posi-
tion still meeting the load cap bound CU .

With bu�er skew constraints, packEdge remains the
same while the modi�ed packNode-BS(u) consists of the
following four steps:

1. Balance Tu as follows. If l(Xv) < l(Xw) then swap
v and w. If l(Xv) � s(Xw) > � then insert l(Xv) �
s(Xw)�� bu�ers at the topmost position of br(w).
Exit if cap(Xu) � CU .

v vuu

x x

(a) (b)

Fig. 1. A counterexample for the greedy BSBP algorithm in [10].

2. Perform packNode(u) excluding the child branches
with maximum longest path, i.e., if l(Xw) < l(Xv),
then add a bu�er at the topmost position in br(w).
Exit if cap(Xu) � CU .

3. Insert bu�ers at the topmost position of all child
branches with shortest path equal to l(u) � � (in
order to maintain bu�er skew at most � when we
insert bu�ers on the longest paths in the next step).
Exit if the load constraint is satis�ed.

4. Perform packNode(u) considering only child
branches with maximum longest path, i.e., longest
path equal to s(u) + � + 1.

The modi�ed greedy algorithm �nds the optimum so-
lution of any given tree when the skew bound � is zero.
However, contrary to the claim made in [10], the modi-
�ed greedy algorithm may give suboptimal solutions for
� � 1. There several reasons for its sub-optimality. One
reason is that child branches with maximum longest path
are considered for bu�ering after considering the other
branches, regardless of their residual capacitance. This
may cause the algorithm to return a suboptimal solution,
e.g., when the skew bound � is so large that the bu�er
skew constraint never becomes a constraint (in this case
the optimum is found by always choosing the branch with
the largest residual capacitance in packNode).
Figure 1 shows another small instance for which the

Tellez-Sarrafzadeh algorithm fails to �nd the optimal
bu�ering. In this instance we have � = 1, Cw = Cb = 0,
and sink input capacitances are given by cu = CU and
cx = cv = 3

4CU . Figure 1 (a) shows the solution com-
puted by the greedy algorithm and Figure 1 (b) shows the
optimal solution which has one less bu�er. This instance
points to a more basic reason for the sub-optimality of
the modi�ed greedy algorithm: the optimum bu�ering of
a given tree may be suboptimal when restricted to sub-
trees.
A natural question prompted by the example in Figure

1 is whether or not there exists a bottom-up algorithm
that computes a �xed number of solutions for each branch
and still guarantees global optimality. Below, we give
two series of examples showing that the answer to this
question is negative.

u u uv vu v v

a

Fig. 2. Proof of Claim 1.

Claim 1 To guarantee optimality, every bottom-up
bu�ering algorithm may need to compute branch bu�er-
ings with m;m + 1; : : : ;m + k bu�ers respectively, where
m is the minimum number of bu�ers for the branch, and
unbounded k.

Claim 1 follows from the example in Figure 2, in which
� = 1 and Cw = Cb = 0. Each pair of sibling leaves
contains a \u" leaf and a \v" leaf, with capacitances of
cu = CU and cv, respectively, where cv2

d�2 < CU and
cv(2

d�2 + 1) > CU and d is the depth of Ta.
The minimum number of bu�ers for each of the two

branches into a is 2d�2, since bu�ers are only required by
the \u" leaves. If we start with minimum-number bu�er-
ings for both branches into a, we will have to insert a
bu�er right below a on one of them (in order to meet
the load constraints). This in turn triggers the insertion
of a very large number of bu�ers upstream due to the
skew constraint. The optimum overall solution is to in-
sert bu�ers right above 2d�2 of the \v" leaves. This leads
to bu�ering one of the branches into a with at least 3

22
d�2

bu�ers.

Claim 2 To guarantee optimality, every bottom-up
bu�ering algorithm may need to compute branch bu�er-
ings with longest path equal to l; l + 1; : : : ; l +� � 1, re-
spectively, where l is the minimum longest path.

Claim 1 follows from the example in Figure 3, in which
there are n = � \u" leaves, each with capacitance
cu = CU � �, and one additional \v" leaf, with capaci-
tance cv = �. Assume that the wire capacitance Cw and
bu�er input capacitance Cb are both 0. In this case, any
optimum bottom-up bu�ering algorithm must compute
the n bu�erings shown in the �gure, with longest paths of
n; n�1; : : : 1 bu�ers, respectively. None of these solutions
is dominated by the others since those with smaller longer

v

u u

u

v

u u

u

u

v

u u

Fig. 3. Proof of Claim 2.

path have larger residual capacitance, and, depending on
the upstream tree topology, each of them may be the only
way to complete the optimal solution.

IV Dynamic Programming Algorithm

In this section we give a dynamic programming algo-
rithm for the bounded skew bu�ering problem. The dy-
namic programming technique has been applied in the
past to timing-driven bu�er insertion (see e.g., [1, 7, 11]),
but its application to BSBP presents speci�c challenges.

Input: Net N with source r and set of sinks S, binary
routing tree T = (r; V; E) for N , input capacitances cs, s 2
S, bu�er input capacitance Cb, unit-length wire capacitance
Cw, load upper-bound CU , bu�er-skew bound �, and upper
bound NB on the number of bu�ers in an optimal solution
Output: Minimum size feasible bu�ering of T

For each u 2 V , L(u) ;
For each sink s 2 S do EdgeBu�ering(;, s)

For each u 2 V � S, in bottom-up order (postorder), do

(1) Let v and w be the children of u

(2) For each X 2 L(v) and Y 2 L(w), l(X) � l(Y), do

(a) Let Z be X [Y with maxf0; l(X)� s(Y)g bu�ers
added at the top of br(w)

(b) For i = 0; : : : ;minfmaxf0; s(X) � s(Y)g; l(X) �
l(Y)g do

Let Zi be Z with i bu�ers at the top of br(w)

EdgeBu�ering(Zi, u)

(3) Remove from L(u) bu�erings with more than NB

bu�ers

(4) For each bu�ering with parameters (nb; l; s), remove
from L(u) all bu�erings with parameters (nb + k; l +
k; s+ k), where k � 2

Return the bu�ering X 2 L(r) with minimum nb(X)

Procedure EdgeBu�ering(X, u)

While cap(X) > CU , add a bu�er on edge (u; parent(u))
at the highest position meeting the load cap bound CU

L(u) L(u) +X

If cap(X) > Cb, then L(u) L(u) + X 0, where X 0 is X
with an additional bu�er just below parent(u))

Fig. 4. Dynamic programming BSBP algorithm.

We start by introducing a few more de�nitions. A
bu�ering X of br(v) is said to be redundant if it con-
tains a topmost bu�er whose deletion does not increase
the residual capacitance. Let X and Y be two bu�er-
ings of the same branch. We say that Y dominates X
if nb(Y) � nb(X), l(Y) � l(X), s(Y) � s(X), and
cap(Y) � cap(X). In other words, if Y dominates X ,
then we can always replace X with Y without loosing
feasibility or increasing the number of bu�ers.
The algorithm (see Figure 4) computes for each node

v 6= r a set L(u) of feasible bu�erings for br(v). The
set L(u) is constructed by considering all combinations of
bu�erings from L(v1) � L(v2), where v1 and v2 are the
two children of u. To keep the size of L(u) bounded the
algorithm eliminates redundant bu�erings and bu�erings
using more than NB bu�ers, where NB is a given upper-
bound on the number of bu�ers in an optimal bu�ering.

An upper-bound NB can be computed in linear time by
running the algorithm of Tellez and Sarrafzadeh [10] with
skew-bound set to zero (recall that the algorithm in [10]
is guaranteed to �nd the optimum when � = 0).

Lemma 1 For each bu�ering X of br(u) there exists k �
0 and bu�ering Y 2 L(u) such that X is dominated by Y
with k bu�ers added at the top.

Proof. The proof is by induction on the depth of u.
The claim is trivially true if u is a sink, i.e., a leaf of T .
Assume that u 2 V �S. Let v1, v2 be the two children of
u, and let Xi, i = 1; 2, be the restriction of X to br(vi).
By induction, there exist ki � 0 and Yi 2 L(vi), i = 1; 2,
such that we can replace Xi by Yi with ki bu�ers added
on edge (vi; u) just below u.
If each branch br(vi) has at least 2 bu�ers at the top

then we can replace the top bu�er from each branch with
a single bu�er on (u; parent(u)) just below parent(u). By
repeating this procedure we may assume that one of the
branches, say br(v1), has at most one bu�er at the top.
We claim that the resulting bu�ering Z of br(v1) is in
L(v1). Indeed, if Z does not have a bu�er at the top, then
Z = Y1. Otherwise, Z is either Y1 or Y1 with one bu�er at
the top, and in the latter case procedure EdgeBu�ering
ensures that Z 2 L(v1).
Finally, when Algorithm 4 combines Z 2 L(v1) with

Y2 2 L(v2), steps (2a) and (2b) generate bu�erings with
all feasible skews. ut

Lemma 2 For each node u of T , the set L(u) computed
by Algorithm 4 contains at most 2(� + 1)NB bu�erings.

Proof. Consider a feasible bu�ering X with parame-
ters (nb; l; s) and a feasible bu�ering Y with parameters
(nb + k; l + k; s + k), k � 2. Then Y is dominated by a
redundant bu�ering obtained from X by adding k bu�ers
at the topmost position, and hence Y is removed by step
(4) of the algorithm. Thus, L(u) contains at most two
non-redundant bu�erings with parameters (nb + i; l + i)
for every �xed nb�l and skew � 2 f0; : : : ;�g. The lemma
follows by observing that all bu�erings remaining in L(u)
satisfy nb � l � nb � NB, where the last inequality is
ensured by step (3) of the algorithm. ut

Theorem 1 Algorithm 4 returns a feasible bu�ering with
the minimum number of bu�ers, OPT. The running time
of the algorithm is O(n(� + 1)3NB2), where n, �, and
NB are the number of sinks, the given skew bound, and
the given upper-bound on OPT.

Proof. Correctness follows from Lemma 1. The run-
ning time follows by observing that, for each of the n� 1
vertices u 2 V � S, the algorithm needs O((� + 1)3n2)
time to compute the set L(u). Indeed, the time needed

by steps (2a) and (2b) is O((� + 1) � jL(v1)j � jL(v2)j),
where v1 and v2 are the two children of u, and by Lemma
2, jL(vi)j = O((� + 1)NB) for i = 1; 2. Step (3) re-
quires O((� + 1)3n2) time since at the end of step 2 the
size of L(u) is O((� + 1)3n2). Finally, step (4) can be
implemented in O((�+1)3n2) by using radix sort to lex-
icographically order all bu�erings in L(u) with respect to
(nb� l; l�s), and then removing all dominated bu�erings
in one traversal of the sorted list. ut
Remark. We conjecture that Lemma 2 can be
strengthen by showing that the set L(u) has size at most
4n(� + 1). This will imply that the runtime of Algo-
rithm 4 is O((� + 1)3n3 + OPT). In practice, signi�-
cantly shorter lists L (and hence signi�cantly improved
runtime) is achieved by deleting from the lists L all domi-
nated bu�erings (note that Steps (3) and (4) only remove
bu�erings with more than NB bu�ers or those dominated
by bu�erings with k � 2 bu�ers added at the top).

V Experimental Results

Both our dynamic programming algorithm and the
greedy algorithm of [10] have been implemented in C. Ta-
ble I gives the results obtained by running the two algo-
rithms on 5 testcases from [2]. In all experiments the ini-
tial tree was computed using the Greedy-DME algorithm
[3]. The unit wire capacitance was Cw = 0:177fF=�m,
bu�er input capacitance was Cb = 37:5fF , and sink in-
put capacitance varied between 2:04fF and 200fF .
The �rst observation is that, although slower than the

greedy algorithm of [10], the dynamic programming has
very practical runtime (all testcases �nish in less than one
second on a SUN Ultra 60 running SunOS 5.7). As ex-
pected, both algorithms �nd the optimum solution when
a bu�er skew bound of 0 is imposed. For non-zero skew
bounds the dynamic programming algorithm is almost al-
ways strictly better than the greedy algorithm { the num-
ber of saved bu�ers is often in the 5{10% range.
Table I also shows that a signi�cant reduction in the

number of inserted bu�ers can be achieved with a small
increase in bu�er skew, e.g., when going from zero bu�er
skew to a bu�er skew of 1. For comparison, we have also
included in the table a lower bound on the number of
bu�ers, which is the minimum number of bu�ers needed
to meet the load cap constraints while disregarding bu�er
skew constraints.5 In all but one case, the lower bound is
matched by the optimum bu�ering with � = 4, and often
it is matched with a bu�er skew as small as 2.

VI Conclusions and Future Research

In this paper we have addressed the problem of �nd-
ing the minimum-bu�ered routing of a given tree under

5This lower bound can be computed by running the dynamic
programming algorithm with a very large �, but we used the much
faster (linear time) algorithm given in [2].

bu�er load and skew constraints. We have shown that
a greedy algorithm previously proposed for this problem
in [10] may fail to �nd the optimum solution, and we
have proposed an exact dynamic programming algorithm.
Experimental results on test cases extracted from recent
industrial designs show that the dynamic programming
algorithm has practical running time and inserts signi�-
cantly fewer bu�ers compared to the greedy algorithm of
[10].
Our future research will address

(i) multi-constraint formulations, in which, e.g., input
capacitance and fanout must be upper-bounded si-
multaneously,

(ii) minimum inverter insertion in a given tree subject to
sink polarity constraints, in addition to inverter load
and skew constraints, and

(iii) simultaneous tree construction and bu�ering under
given bu�er load and skew constraints.

References

[1] C. Alpert and A. Devgan. Wire segmenting for improved
bu�er insertion. In ACM/IEEE Design Automation Con-
ference, pages 588{593, 1997.

[2] C. Alpert, A.B. Kahng, B. Liu, I.I. M�andoiu, and A.Z.
Zelikovsky. Minimum-bu�ered routing for slew and reli-
ability control. In Proceedings IEEE-ACM International
Conference on Computer-Aided Design, 2001 (to appear).

[3] M. Edahiro. Delay minimization for zero-skew routing.
In Proceedings IEEE-ACM International Conference on
Computer-Aided Design, pages 563{567, 1993.

[4] P. Fang, J. Tao, J.F. Chen, and C. Hu. Design in hot-
carrier reliability for high performance logic applications.
In IEEE Custom Integrated Circuits Conference, pages
525{532, 1998.

[5] C. Hu. Hot carrier e�ects. In N.G. Einspruch, editor,
Advanced MOS Device Physics, pages 119{160. Academic
Press, 1989.

[6] A.B. Kahng, S. Muddu, E. Sarto, and R. Sharma. In-
terconnect tuning strategies for high-performance ICs. In
Proc. Conference on Design Automation and Test in Eu-
rope, February 1998.

[7] J. Lillis, C.-K. Cheng, and T.-T. Lin. Optimal wire sizing
and bu�er insertion for low power and a generalized delay
model. IEEE J. Solid-State Circuits, 31:437{447, 1996.

[8] S. Rzepka, K. Banerjee, E. Meusel, and Chenming Hu.
Characterization of self-heating in advanced vlsi inter-
connect lines based on thermal �nite element simula-
tion. IEEE Transactions on Components, Packaging, and
Manufacturing Technology, Part A,, 21:406{411, 1998.

[9] L. Sche�er. Personal communication, April 2000.

[10] G.E. Tellez and M. Sarrafzadeh. Minimal bu�er inser-
tion in clock trees with skew and slew rate constraints.
IEEE Transactions on Computer-Aided Design, 16:333{
342, 1997.

[11] L.P.P.P. van Ginneken. Bu�er placement in distributed
RC-tree networks for minimal Elmore delay. In Proc.
IEEE Intl. Symp. Circuits and Systems, pages 865{868,
1990.

[12] A.Z. Zelikovsky and I.I. M�andoiu. Practical approxima-
tion algorithms for zero- and bounded-skew trees. In Pro-
ceedings 12th ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 407{416, 2001.

Testcase � = 0 � = 1 � = 2 � = 3 � = 4 Lower
#sinks CU Greedy DP Greedy DP Greedy DP Greedy DP Greedy DP Bound

500
34

0.01
34

0.03
31

0.00
26

0.03
27

0.00
25

0.05
27

0.01
25

0.06
27

0.01
25

0.07
25

1000
19

0.01
19

0.01
17

0.01
14

0.02
15

0.00
12

0.05
16

0.00
12

0.06
16

0.01
12

0.08
12

330 2000
8

0.01
8

0.01
7

0.00
6

0.02
7

0.00
5

0.05
7

0.00
5

0.06
7

0.01
5

0.07
5

4000
5

0.01
5

0.01
4

0.01
3

0.03
3

0.00
3

0.04
3

0.00
3

0.05
3

0.01
3

0.07
3

8000
2

0.01
2

0.01
1

0.01
1

0.03
1

0.00
1

0.05
1

0.01
1

0.06
1

0.01
1

0.07
1

500
101
0.02

101
0.03

91
0.01

87
0.04

90
0.01

83
0.06

89
0.01

81
0.09

88
0.01

81
0.09

81

1000
46

0.01
46

0.02
45

0.01
41

0.04
45

0.01
38

0.06
43

0.01
38

0.07
42

0.01
38

0.09
38

830 2000
25

0.01
25

0.02
23

0.01
20

0.05
24

0.01
19

0.07
23

0.01
19

0.09
23

0.01
19

0.10
19

4000
11

0.01
11

0.02
9

0.01
9

0.04
9

0.01
9

0.06
10

0.01
9

0.07
10

0.01
9

0.08
9

8000
5

0.01
5

0.02
5

0.01
4

0.04
4

0.01
4

0.06
4

0.01
4

0.08
4

0.01
4

0.09
4

500
105
0.03

105
0.07

90
0.03

84
0.13

87
0.02

79
0.21

87
0.03

79
0.27

85
0.02

78
0.33

78

1000
53

0.03
53

0.05
46

0.03
42

0.11
43

0.03
40

0.19
43

0.03
39

0.26
44

0.03
39

0.31
39

1900 2000
26

0.02
26

0.05
23

0.03
20

0.12
22

0.03
19

0.19
21

0.03
19

0.24
21

0.03
19

0.29
19

4000
14

0.03
14

0.05
12

0.03
10

0.11
11

0.03
9

0.17
11

0.03
9

0.24
11

0.03
9

0.29
9

8000
6

0.03
6

0.05
4

0.03
4

0.12
4

0.03
4

0.17
4

0.03
4

0.23
4

0.03
4

0.28
4

500
133
0.04

133
0.09

121
0.03

105
0.16

115
0.03

102
0.26

116
0.03

100
0.36

116
0.03

99
0.43

99

1000
62

0.03
62

0.06
54

0.03
50

0.15
52

0.03
48

0.24
52

0.03
47

0.33
52

0.04
47

0.40
47

2400 2000
29

0.03
29

0.06
26

0.03
24

0.15
26

0.04
23

0.22
25

0.03
23

0.31
25

0.04
23

0.39
23

4000
16

0.04
16

0.07
15

0.04
12

0.14
15

0.04
10

0.22
14

0.04
10

0.31
14

0.04
10

0.38
10

8000
9

0.03
9

0.07
8

0.04
5

0.14
7

0.04
5

0.22
7

0.04
5

0.30
7

0.04
5

0.37
5

500
266
0.04

266
0.14

238
0.03

211
0.33

229
0.04

204
0.60

226
0.03

198
0.82

227
0.04

196
1.02

196

1000
125
0.03

125
0.10

117
0.04

104
0.27

109
0.03

99
0.50

106
0.04

98
0.71

106
0.04

98
0.87

97

2600 2000
64

0.03
64

0.10
55

0.04
50

0.29
52

0.03
49

0.50
52

0.04
48

0.69
52

0.04
48

0.86
48

4000
34

0.03
34

0.10
30

0.04
26

0.28
29

0.04
23

0.50
28

0.04
22

0.70
28

0.04
22

0.88
22

8000
15

0.04
15

0.11
15

0.04
12

0.28
13

0.06
11

0.48
13

0.04
11

0.66
13

0.05
11

0.81
11

TABLE I Number of buffers (boldface) and runtime for the dynamic programming and greedy BSBP algorithms.

