
A System for Automatic Recording and Prediction of Design Quality Metrics *

Andrew B. Kahng ’ and Stefanus Mantik

’ UCSD CSE and ECE Departments, La Jolla, CA 92093-01 14
UCLA Computer Science Department, Los Angeles, CA 90095-1 596

abk@ucsd.edu, stefanus@cs.ucla.edu

Abstract

We present recent extensions to METRICS [IO] infrastructure that
allow optimization of design processes at the flow level, rather than
only at the individual tool level. As previously reported, METRICS
infrastructure allows automatic recording of design and process in-
formation. Our extensions include (i) the collection of design flow
information for use in flow optimization, and (ii) integration with
datamining tools to allow automatic generation of design and flow
QOR predictors. Our flow optimization experiments try to opti-
mize incremental multilevel FM partitioner runs in an incremental
(ECO-oriented) design flow. We also demonstrate QOR predictors
that are generated automatically from the METRICS data ware-
house by the Cubist datamining tool for industry placement, clock
tree generation, and routing tools.

1 Introduction

Time-to-market windows for the semiconductor industry are
shrinking rapidly even as product quality must continually improve
to maintain competitiveness. In this regime, it becomes important
to institutionalize continuous measurement and improvement of de-
sign quality. Our work focuses on improving quality of the design
process. To a large extent, improving today’s VLSI design process
involves tooling decisions, i.e., designers must answer such ques-
tions as “which tools should be used for the design?’, or “what flow
should be applied?”. Similar decisions must be made with respect
to design IP. Today, there is no standard infrastructure that enables
designers to make principled choices as to the tools and flows that
they use.

In [IO], we presented METRICS, a system that allows au-
tomatic recording of design process information. METRICS is
a web-based architecture based on industry-standard components
(HTTP, RDBMS, XML, Java servlet, etc.) and standardized tool
metrics (naming and semantics); it allows automatic and fair com-
parisons of both design instances and design optimization results.

1.1 METRICS Architecture

The METRICS architecture shown in Figure 1 is a specific im-
plementation of a distributed, client-server information gathering
system. The EDA tools, which are the data sources, have a thin
transmitter client embedded in script wrappers surrounding the tool
or actually embedded (as an API) inside the tool’s executable for
more flexibility. Both the wrapper mode transmitter and the API
mode transmitter allow transparent data collection within design
processes. The tools - which can be located anywhere on an in-
tranet or even the internet - broadcast in real-time as they run us-
ing standard network protocols to a centralized server which is at-

~~

* This work was supponed by a grant from Cadence Design Systems, Inc. and by
the MARC0 Gigascale Silicon Research Center,

tached to a data warehouse. The messages transmitted are encoded
in industry-standard XML format, which is straightforwardly and
robustly read, written and stored directly by data warehouses. Once
the data is stored, reports or datamining-based predictions can be
generated. These can be accessed from standard web browsers run
from any authorized remote machine. Further details of METRICS
are given in [IO].

Metrics Data Warehouse ____-
Figure I : METRICS architecture.

Extensions to the METRICS Architecture 1.2

In this paper, we focus on two recent extensions to the METRICS
architecture. First, we propose a schema that is able to capture his-
torical flow information, even for highly iterative or ECO-oriented
flows with multiple potential “backward edges”. The previous
METRICS architecture lacked information related to design flows,
and hence it was not possible to optimize design flows. Our new
schema allows us to predict, for example, how many times a certain
tool or optimization subflow must be repeated before an acceptable
result is obtained. Second, we integrate off-the-shelf datamining
techniques and assess the ability of such tools to identify variable
sensitivities, predict quality of results, estimate tool runtimes, and
in general guide designers in making correct design process deci-
sions.

Our paper is organized as follows. Section 2 reviews previous
and related works. In Section 3, we describe the schema that is
used to maintain historical flow data. Application of datamining is
then explained in Section 4. Finally, experimental results are given
in Section 5 and conclusions in Section 6.

2 Previous Works

Process data collection. Johnson et al. [13, 141 used a survey-
based approach to collection and analysis of VLSI design process
data in the aviation industry. In the survey-based approach, each

0-7695-1025-6/01 $10.00 0 2001 IEEE
81

mailto:abk@ucsd.edu
mailto:stefanus@cs.ucla.edu

designer fills out a survey form at the end of each design step. The
form asks for the amount of time needed (for both conceptual de-
sign and actual implementation), the number of times a specific
task is repeated, the reason for a specific decision that the designer
takes, etc. This method of data collection is flexible in that design-
ers can use any tools they want, but it is also obtrusive and at risk
for incompleteness and inaccuracy (since designers can only enter
information that they still remember). Johnson et al. also use a
passive monitor, a background process that automatically collects
some design process data. The passive monitoring requires design-
ers to use predefined sets of tools and flows.

Data collection has also been performed for many other reasons
beyond analysis for process improvement. In [20], design data are
collected for generating a classification of such data. This classi-
fication is useful for identifying sets of benchmarks that are suit-
able for particular tools or algorithms, and for performance com-
parison of different algorithms. Various in-house project tracking
systems have been developed (at LSI Logic, IBM ASIC: Division,
Siemens Semiconductor (Infineon), Sony, Texas Instruments, etc.),
each with its own proprietary measures of designs and the design
process. Such systems (e.g., at Texas Instruments [7]:1 are often
used for tracking license activity information to assess efficiency
of tool usage. Numetrics Management Systems [18] offers survey-
based collection of enterprise-level design productivity metrics, al-
lowing companies or entire projects to compare their productivity
against entire industry sectors.
Metrics. To evaluate design quality, we must capture the right
metrics. However, there are many metrics that could be used to
measure design quality. [8] gives examples of important quality
metrics that should be captured in chip design. [15, 211 add several
other metrics for measuring design quality. Metrics are not lim-
ited to design metrics: process metrics (e.g., “how long does a tool
run?”, “what is the maximum memory used?’, etc.) and flow met-
rics (e.g., “how many times does this tool need to be repeated?”,
“which tools need to be run before others?’, etc.) also need to
be captured. Johnson et al. [l 11 call such metrics meta-data and
use them to build Markovian flow models that allow bottlenecks
and total flow completion times to be estimated [13]. CAD frame-
works p rov ide env i ronmen t s for eff ic ient des ign tool integrat ion
wherein, e.g., automated flow managers replace manually created
shell scripts [2, 3, 51 and allow more user interaction in controlling
the design flow. Within a CAD framework, flow data can be auto-
matically recorded, permitting analyses that would not be possible
with tool-only data collection.’
Datamining. Finally, datamining is important to build predictors
of design and process quality metrics. Datamining is a set of tech-
niques for identifying common rules and patterns that occur within
a given set of training data, for later classification and prediction
of analogous data. Datamining for prediction has been successful
in such wide-ranging areas as atmospheric science, data warehous-
ing, advertisement, etc. [9]. Shin et al. [I91 use datamining on
software metrics databases to extract relevant knowledge for im-
proving software quality and productivity. In the present work, we
use the commercially available CUBlSTdatamining tool [6], which
creates a piecewise linear model of a pattern that it extracts from
training data. We then apply the constructed model to test data to
verify accuracy of the predictive model (e.g., in terms of correlation
coefficient of the predictor).

3 Flow Taxonomy

Previous works establish gate count, number of routing layers, per-
centage of white space, etc. as standard metrics that contribute to
design quality. However, such metrics must be augmented by, e.g.,

‘For example, running the router before placing the clock tree is not a good flow -
but this cannot be deduced by looking only at the clock tree generation tool metrics.

number of incremental placement invocations, number of loop-
backs, etc. for us to improve the design process. In this section,
we give a general definition of a design flow and describe a schema
for tracking flow information, along with an illustrative example.

3.1 Flow Definition

A sequential designpow consists of several tasks that must be run
in sequence. A task is an atomic part of the flow, e.g., a single in-
vocation of a tool (which may contain several different algorithms)
that solves some specific problem. For example, a placement task
(or tool) may comprise multiple global placement passes, detailed
placement passes, and annealing refinement passes. A task may
also comprise actions that convert the input design or output result
between various representations.

Formally, a design flow can be represented as a directed graph
G(T , E , S, F) where T = {TI T2, . . . , T,} is a set of vertices that cor-
responds to the set of tasks that can be executed in the flow, and
E = {El 1 , E12,. . . Erin} is a set of directed edges with E;, indicat-
ing a transition from task T, to task Tj (i.e., Ti is followed by Tj) .
S E T is a special task node (with zero execution time) indicating
the beginning of the flow, and F E T is another special task node
indicating the end of the flow. If the graph is traversed from S to
F visiting each node exactly once, then we say the tasks are ex-
ecuted in sequential order. By convention, we index tasks such
that if tasks are executed in sequential order, tsrurt(T) 5 fsrur,(T,)
V i < j , where I , ~ ~ , ~ , (~) is the starting time of Ti. (Note that the 5
comparison is used instead of <; this allows extension of our model
to concurrent subprocesses in the flow. Flows containing optional
tasks can also be represented with this model.) An example of the
flow representation is given in Figure 2.

E l l

Figure 2: S a m p l e des ign flow representat ion.

Edges E;, are categorized into three types: (i) afoward edge
(j > i) indicates a transition from the current task to a new task (a
task that has may not have b e e n visited yet), (i i) a backward edge
(j < i) indicates a transition from the current task to a previously
visited task, and (iii) a selfloop edge (j == i) indicates repetition
of the current task. In a sequential flow, a forward edge typically
exists only between adjacent tasks (j = i - t I) , but other forward
edges can exist if the intervening tasks are optional. For example,
if there is an edge from Ti to Tj+2, then the transition from Ti to
7;+1 is an optional transition. On the other hand, backward edges
can be from any task to any other previous task.

In any particular execution of a given flow, backward and self-
loop transitions create an execution hierarchy as seen in Figure 3.
We call a task that is executed before the current task in the sequen-
tial order a parent task, and a task that is executed after the current
task in the sequential order a child task.2

3.2 Database Schema for Flow Tracking

The METRICS infrastructure as originally proposed in [lo] does
not track task relations within a flow. In executing any given design
flow with possible backward and self-loop transitions, we seek to

21f we remove all backward edges and all self-loop edges, then add an edge for
every parent-child pair as seen in Figure 3, the flow execution can be viewed as a tree
whose root (not shown) is connected to all first-level tasks. From this viewpoint, it is
natural to use the parent-child relationship to characterize two adjacent tasks that are
in different task “levels”.

82

A

Figure 3: Any particular execution of a given flow creates an exe-
cution hierarchy.

record the exact sequence of tasks and their (parent or child) rela-
tion to other tasks. To this end, we have added a simple system for
recording such “flow metrics” into the METRICS infrastructure.

Our proposed flow metrics (see
http://vlsicad.cs.ucla.edu/GSRC/METRICS)
include starting and completion times of the flow, the design
environment setup, the number of distinct tools used, the number
of times each specific tool is executed, etc. Two additional flow
metrics, the TASKNO and the FLOWJEQUENCE, identify
the execution order of each task and the relationship between
consecutive tasks.

0 The TASKNO represents the number of times a given current
task has been executed within the same execution of its par-
ent task. If a self-loop or backward transition to a specific
task is made, the TASKNO for that specific task is always in-
cremented. On the other hand, if a forward transition to that
specific task is made, the TASKNO is reset to one.

0 The FLOWSEQUENCE records the execution hierarchy
starting from the first task. Its value is a concatenation of
all current TASKNOs from the first task to the current task
(separated by a “/”). For example, if we are currently in task
T3 (TASKNO = 2) and the TASKNO for TI and T2 are re-
spectively 3 and 5 respectively, then our FLOW3EQUENCE
for the current task is “3/5/2”. The FLOWSEQUENCE met-
ric allows us to determine the input source of the current task,
i.e., which execution came before the current one.

3.3 Example

We illustrate the use of TASKNO and FLOWJEQUENCE metrics
in Figure 4. The flow is a standard place and route flow with clock
tree generation before routing. T I , T2 and T3 respectively corre-
spond to the placement, clock tree generation and routing tasks.
Each task has a backward edge to T I , indicating that another place-
ment run is needed (if routing after clock tree generation does not
converge). Similarly, T2 may be revisited if the routing task cannot
find a solution. Each task also has a self-loop edge for incremental
invocation, i.e., when the result of the current task is not acceptable,
the task may be repeated.

Figure 4: A simple place and route flow with clock tree generation.

The right side of Figure 4 shows an execution order of the tasks,
with task sequence S, T I , T2,T2,8 ,T2, G, T I , T2, T3,T3, T2, T3, T3, F .
Values for TASKNO and FLOWJEQUENCE for each task are
shown in Table 1 (note that Ri is used in the Table to indicate the

specific task with run number = i) . The FLOWJEQUENCE metric
enables unique reconstruction of the execution ordec3

x
T2

I
2

I
1

1
1
I
2
2
2

-
-

-

TI
111

: I lI2 2 I
2Jl
U111

3
31 1

3111l
31112
312

312J 1
312J2

Table 1: A sample flow sequence with its corresponding em
TASKNO and FLOWSEQUENCE values. R; is the run number
for the task according to the execution order.

While our discussion of flow metrics has been kept simple for
purposes of illustration, non-sequential design processes can also
be handled easily. Observe that the “sequential order” illustrated
above corresponds to a total ordering of tasks within the flow. If
a flow has concurrent processes (i.e., two or more tasks or task
subflows are independent of each other and can be executed in
parallel (or, in arbitrary order)), then the flow graph represents a
partial ordering of tasks within the flow. Our FLOWSEQUENCE
metric can be augmented to capture concurrent design processes,
essentially by adding AND, OR, XOR semantic^.^ Furthermore,
an additional identification is added to the FLOWSEQUENCE to
identify the specific branch (BRANCHNO) of the concurrent pro-
cess that corresponds to the current data. For example, if at some
point our current process are split into two or more subprocesses
for concurrent execution, then the id for the next task will incorpo-
rate the additional BRANCHNO, e.g., 211-1, 212-1, 213-1, etc. (x-I
is the TASKNO for the next task with x as the BRANCHNO.) Met-
r i c ~ are also possible for ECO flows (where the underlying design
instance is changed between consecutive task executions).

4 Usage of Datamining Tools

Datamining has been used to extract common pattems from large
datasets in many domains. These patterns are then used for predic-
tion of future datdresults. We now review recent integration of a
commercial datamining tool into the METRICS infrastructure, and
some early observations concerning this integration.

4.1 Integration with Datamining Tools
When metrics data is sent through the transmitter, the data is stored
in a centralized database. A Java interface built on top of this
database is used both for receiving the metrics and for generating
reports. In similar fashion, another Java interface is created for the
purpose of datamining. This datamining interface (DMI) enables
communication between datamining tools and the database. It also
provides an interface for users to control the datamining process
(see Figure 5).

3The relation between two tasks can be found by looking at their longest common
prefix of their FLOWSEQUENCEs. For example, the task Rlg (the last task with run
number = 13) has “3/2p’ as its longest common prefix with task Rlz. This means that
both tasks are the descendants of another task that has FLOWSEQUENCE = “3/2”,
i.e., the task R I ! . Since both task R12 and task R13 have only one extra digit (and no
more “I”), these tasks are direct descendants (i.e., children) of task R I I ,

41.e., to record how the output of a task may split into inputs of several concurrent
tasks, or how after concurrent tasks are completed their outputs are merged into a
single result that is the input to the next task.

83

http://vlsicad.cs.ucla.edu/GSRC/METRICS

Datamining Datamining
Interface Tools

Figure 5: Integration of datamining tools within the METRICS ar-
chitecture.

Our current implementation of METRICS uses CIJBIST [6] as
the datamining tool. This tool is chosen because it produces a sin-
gle absolute number as its result (e.g., number of CPU seconds,
or number of passes to reach timing closure), in contrast to tools
such as C5 or CONTIN that will only produce categories (without
building a model from those categories). CUBIST furthermore re-
turns a set of rules that define a prediction model. To run this tool,
we need to provide (i) a list of parameters with the attributes of
their values (e.g., continuous numbers, discrete values, etc.), (ii)
a dataset for training, and (iii) (for evaluation) a different dataset
for testing. The tool uses the training set for the generation of its
(piecewise-linear) rule-based predictive model, and it uses the test
set to check the accuracy of the model.

Our CUBIST integration allows users to select a variable as the
prediction target and a set of variables as the inputs for the predic-
tion. The selection can be done over the internet via an HTML
form. Once the users submit their selections, the DMI sends a
query to the database, results of which are passed to the datamining
tool. At the end, the DMI passes the datamining results to the users
through web sites. Several additional tasks can also be assigned to
the DMI, e.g., data cleanup, value transformations, variable reduc-
tions. etc.

4.2 Example Applications

The basic usage of the DMI and datamining tool integration is in
creation of predictors/estimators from collected data. Other bene-
fits can include:

0 Parameter sensitivity analysis, i.e., analysis of which input
parameters have the most impact on tool results. As datamin-
ing tools give insights on how design tools behave when cer-
tain changes are made to specific parameters, we are able to
use the design tools more effectively (e.g., preventing runtime
wastage due to tweaking of knobs that don’t matter).

0 Field of use analysis, i.e., analysis of the (runtime, capacity,
quality) limits at which the tool will break. In our interac-
tions within the METRICS community, we have found high
interest in analysis of “sweet spots”, i.e., the ranges of input
attributes for which a given tool will give best results. To
perform sweet spot analysis, we need to run the tools with
sufficiently many different input designs; whether these must
be real, or can be “mutated” from real or randomly generated,
is an open issue.

0 Process monitoring, i.e., analysis of potential or likely out-
comes of the current design process (while the process is still
running). Since tool and flow metrics are sent directly to the
database in real time, datamining tools can calculate possi-
ble outcomes and QOR metrics for the design process on-
line. Given the computed predictions, designers can decide
whether they should stop the current process (e.g., given high
likelihood of bad results) or let it run to completion. Such

process monitoring can potentially shorten the design cycle
by reducing time spent on doomed tool runs.

0 Resource monitoring, i.e., analysis of resource demands for
given tasks. We can use datamining tools to identify unsafe
resourcing conditions, e.g., if we run design tools on ma-
chines with too-small memory or disk. Again, design cycle
time can be improved by preventing runs on ill-configured
machines.

Most of these example applications require tighter integra-
tion (additional interfaces and controls) between design tools and
datamining tools. Some design checks anld resource checks can be
integrated with available CAD frameworks, e.g., the “flow man-
ager” could check if the tools will run on the given machine and if
the design inputs are in the field of use for the tools. Web-based
monitoring can also be implemented to monitor the current pro-
cess. In the next section, we present sample experimental results
from the first type of integration - using datamining tools to gen-
erate runtime and QOR predictors - which has been developed for
our METRICS architecture.

5 Experimental Results

Our METRICS data warehouse has been set up on a server with
Oracle& database, Java servlets, and Apache web server as shown
in Figure 1. Integration of the Cubist datamining tool [6] has been
performed as shown in Figure 5. Two (different types of experi-
ments are performed: (i) flow optimization, and (ii) datamining.

5.1 Flow Experiments

Our flow experiment simulates the optimization of a design pro-
cess. Our “process”, or “flow”, is built around an incremental mul-
tilevel Fiduccia-Mattheyses hypergraph partitioner which solves
the incremental netlist partitioning problem. Given an initial par-
titioning instance Ij,,j,, an initial solution to that instance Si,,;,, a
perturbation AI, and a CPU budget, we seek to optimize the use of
a V-cycling based incremental multilevel FM part i t i~ner .~ In other
words, we wish to tune the application of the incremental parti-
tioner so that it returns the best possible solution quality (in terms
of minimizing the number of nets cut) within the prescribed CPU
budget.

With this experiment, we can find the flow tuning that gives
the best final solution Sfjnal for the final instance Ifjnal. which is
derived from I;,,i, by applying the perturbation Al. The instance is
perturbed by changing the weights of various hyperedges (signal
nets). The number of nets that are reweighted is the size of pertur-
bation. For purposes of the incremental optimization, the instance
perturbation can be broken down into several smaller perturbations,
i.e., AI = 811 + 812 + . . . + 8I,, (the “breakup”), and various numbers
of multistarts can be applied to each resulting instance. The best re-
sult from the multistarts on one instance is used as the starting point
for all starts on the next instance. The quality of the result is based
on the final instance (If; , ,=[). Figure 6 illustrates the flow setup.

We run our experiments on 8 standard test cases in the mod-
ern partitioning literature - the ibmO1-06, ibm08 and ibmlO in-
stances of [l]. For each test case, we run 10000 different com-
binations of AI, CPU budget, number of breaks, and number of
starts (per break). Once the data are collected, we run the datamin-
ing tool to generate rules that give us the optimized flow for a
given design with the specified perturbition size and CPU bud-
get, i.e., the datamining tool will predict the number of breaks

’Such an incremental partitioner is described in 1161 and [4] (see in particular the
third and fourth pages of the latter reference). It has the advantage of retaining sbuc-
turally similar solutions from iteration to iteration; we believe that it is appropriate
for ECO-type partitioning applications, but do not specifically test this feature in our
experimental setup or process optimization.

84

(“num-inc-parts”) and the n u m k r of starts (‘hum-starts”). Table
2 shows the first five out of the 30 rules produced by CUBIST.

1

foreach testcase
foreach AI

foreach cPUhudgef
foreach breakup (n = number of parts)

Icurrmt = Itntttu/

Scurrcnr = Srnitro/
for 1 = 1 to n

I n a t = k w r m + 81,
run incremental multilevel FM panitioner

if CfUCurrenf > Cfuhudgrt then break
Icurrcnt = hlrxt
s c u r r m = sn,

on In,f to produce S,,

end for
save number of cuts

end foreach
end foreach

end foreach
end foreach

27401 < num-edges 5 34826
143.09 < cnu-time < 165.28

numinc-parts = 4
num-starts = 3

Figure 6: Flow setup for multilevel FM partitioner.

Rule

1

2

3

4

5

Condition(s) Model

num-nets 5 7332

num-nets > 2902
num-nets 5 7332

num-overlapAyr 5 0
num-cells 5 71413
opt-TDJouting = false
num-overlapAyr > 0
num-cells 5 18180
nummets > 7332

num-cells > 18180
num-pads 5 144
num-nets > 7332
opt-TDJouting = false

CPU-time = 21.9 +0.0019 num-cells
+ 0.0005 numnets + 0.07 num-pads
- 0.0002 numfixed-cells
CPU-time = 334.8 - 0.0233 numnets
+ 0.0064 numrells - 1 row-utilization
- 0.0002 numfixed-cells
CPU-time = -15.6 + 0.0888 numnets
- 0.0559 numrells - 0.0015 num-fixed-cells
- 6 num-overlap-lyr - 1 nunuoutingAyr
CPU-time = 3062.6 - 0.0532 num-cells
+0.0394 numnets - 17 row-utilization
- 160 numAayer - 0.001 1 num.fixedrells
- 9 num-routing-lyr - 4 num-overlapJyr
CPU-time = -2352.3 + 8.64 num-pads
+ 0.0128 num-cells + 45 row-utilization
- 282 num-layer + 0.0014 numnets
- 8 num-routing-lyr

perturbationdelta 5 0.1

perturbation-delta 5 0.1
num-edges 5 141 11 numinc.pans = IO

3

4

213.17 < cpu-time
0.01 < perturbation-delta 5 0.05
141 11 < num-edges 5 27401
121.38 < cpu-time 5 155.69

num-starts = 20

numinc-parts = 4
num-stans = 5

5

Table 2: CUBIST-derived rules for flow optimization experiments.
4MQ , I b I I I I I I

perturbation-delta 5 0.01
num-edges > 141 1 I
cpurime < 76.13
uerturbation.delta > 0.1

numinc-pans = 1
num-starts = 1

3m t
0

m
0

Actual CPU Time (rccr)

Figure 7: Comparison between the actual CPU of the incremental
run using the CUBIST-suggested flow, and the allotted CPU time.

To test the predictor, we take a particular (test case, delta,
CPU time) instance of the flow, and see what the predictor says
should be the value of #breaks (‘hum-inc-parts”) and #startshe&
(“num-starts”). We then examine (1) whether the prescribed con-
figuration uses about the right amount of CPU time, and (2)
whether the prescribed configuration gives a better result than plain
from-scratch multistart optimization of instance [f inal for the given
CPU time (we equalize the “actual” CPU times so that the from-
scratch optimization uses the same actual time that the incremental
optimization takes). Figure 7 shows the comparison between the
actual time it takes to run the prescribed configuration, versus the
allotted CPU time. The average difference between the number of
weighted cut nets of the incremental run with the prescribed con-
figuration and the number of weighted cut nets of the from-scratch
optimization is -12.59 with standard deviation of 99.14 (i.e., the

prescribed incremental run on average gives a better result than
from-scratch optimization).

0 ,

0 5” I o a y) IsMO 2” 25” 3”
A m a l CPU Tim (iecs)

Figure 8: QPlace predicted CPU time versus actual CPU time.

The prediction result for QPlace CPU time is shown in Figure
8. This plot shows that the datamining tool produces a reasonably
accurate model. The correlation coefficient between the predicted
values and the corresponding actual values is 0.82 with the aver-
age (and relative) absolute error being 560.9 secs (0.24). However,
the accuracy obtained may depend on the data that are selected for
training. To check this dependency, we perform datamining runs on
three different configurations for the training set and test set. The
configurations are:

61n practice, this model will change as new data are collected. In general, (i) as
more data are collected, the more accurate the models become, and (ii) the most recent
data are more correlated to the current design.

85

(C)
Figure 9: Predicted QPlace wirelength versus actual wirelength:
(a) random, (b) distinct, and (c) representative cases.

1. the random case, where we randomly select runs assigned to
the training set from all runs of all test cases, and leave all
remainined (unselected) runs for the test set;

2. the distinct case, where we split the test cases into two distinct
sets, the training set and the test set, and assign their runs
accordingly; and

3. the representative case, which is similar to the distinct case
except that we move exactly one run for each test case in the
test set to the training set - i.e., for each test case, there is at
least one representative run in the training set.

We run each configuration for predicting the placement wirelength.
Results for each configuration are shown in Figure 9. The correla-
tion coefficients for the random, distinct, and representative cases
are 1 .OO, 0.48, and 0.82 respectively.

i

Figure 10: Plot of the predicted values against the actual values for
(a) max insertion delay, (b) min insertion delay, (c) max skew, and
(d) routing violation.

From the results in Figure 9 we see that the datamining tool
needs to have at least one representative run for the design in order
to produce an accurate prediction. In other words, if the current
data does not have any tool run on designs that are similar to the
current design, one may need to run the tools on the current design
at least once to “sensitize” the datamining tool to the new design.
This requirement may be due to our use of a rule-based datamining
method instead of a formula-based one such as linear regression.
However, it is clearly a weakness in our current implementation,
since new designs are typically quite different from any previous
ones. We believe that other prediction methods such as regressions
must be used in conjunction with datamining. Finally, datamining
results for CTGen and WarpRoute are shown in Figure 10.

6 Conclusions and Ongoing Work

We have extended the METRICS system of [IO] to include the abil-
ity to record and optimize design flows, as well as generate predic-
tors via integrated datamining capability. Our model for sequential
design flows allows the METRICS system lo keep track of tool in-
vocations within a given flow, even with arlbitrary backward edges
or self-loops in the task sequence. Extensions to concurrent tasks
and ECO flows are possible. With the integration of datamining
tools, different predictors (CPU time, field of use, etc.), monitors,
as well as flow optimizations become possilble. Metrics transmittal
and recording remains transparent to designers, and the web-based
architecture supports reporting, datamining, and other data analysis
from any authorized machine on the intemet.

We have also presented several example applications that use
our new extensions. In particular, after rescording design metrics
from a Cadence SLC flow with more than 200 real designs, we are
able to generate rule-based result estimators for placement, clock
tree generation, and routing tools. These estimators give almost
perfectly accurate predictions as long as there is at least one repre-
sentative run in the training set for each design case. Although the
accuracy is promising, representative runs are typically not avail-
able for new designs. Thus, our ongoing research seeks to augment
current datamining tools with other estimat:ion methods in order to
yield a more robust prediction methodology.

References

[I] C. 1. Alpert, “The ISPD98 Circuit Benchmark Suite”, Inrl. Symp. on Physical
Design, 1998.

[2] K. 0. ten Bosch, P. Bingley, and P. van der Wolf, “Design Flow Management
in the NELSIS CAD Framework”, Proc. ACM/IEEE Design Automation Con$-
1991,pp.711-716.

[SI F. Bretschneider, C. Kopf, and H. Lagger, “Knowledge-Based Design Flow
Management”, Pmc. IEEE Intl. Conf on Computer-Aided Design, 1990, pp.
350-353.

[4] A. E. Caldwell, A. B. Kahng and 1. L. Markov, “Improved Algorithms for Hy-
pergraph Bipartitioning”, Proc. A.siu and South Pucifc Design Automation Conf,
Jan. 2000, pp. 661-666.

[5] A. Casotto and A. Sangiovanni-Vincentelli, “Automated Design Management
using Traces”, IEEE Truns. on Computer-Aided Design of Integrated Circuit
andSystemr, vol. 12, August 1993, pp. 1077-1095.

[6] http://www.rulequest.com/cubist-info.htm1
[7] S. Baeder, Notes from DAC% Birds of a Feather meeting, personal communi-

curion, 2000.
[8] A. H. Farrahi, D. I. Hathaway, M. Wang, and M. Sarrafiadeh, “Quality of EDA

CAD Tools: Definitions, Metrics and Directions”, Proc. IEEE Intl. Symp. on
Quality Electmnic Design, March 2000, pp. 395-405.

191 U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to
Knowledge Discovery: An Overview”, Advances in Knowledge Discovery und
Datu Mining, AAA1 Press, 1996, pp. 1-34.

[IO] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik and B. Thielges,
“METRICS: A System Architecture for Design Process Optimization”, Pmc.
ACM/IEEE Design Automation Conf, June 2000, pp. 705-710.

[I I] E. W. Johnson and J. B. Brockman “Towards a IModel for Electronic Design
Process Refinement”, Computers in Industq, vol(:lO), 1996, pp. 27-36.

[12] E. W. Johnson, J. B. Brockman, and R. Vigeland, “Sensitivity analysis of itera-
tive design processes”, Pmc. of Intl. Con$ on Computer Aided Design, San Jose,
1996, pp. 142-145.

[I31 E. W. Johnson, Analysis und Refinement of Iterai’ive Design Pmcerres, Ph.D.
Thesis, Computer Science and Engineering Dept., Univ. of Notre Dame, 1996.

(141 E. W. Johnson and J. B. Brockman “Measurement1 and Analysis of Sequential
Design Processes”, ACM Transaction on Design Automation of Electmnic SJS-
rems, Vol. 3(1), January 1998, pp. 1-20.

[I51 M. Keating, “Measuring Design Quality by Menisuring Design Complexity”,
Pmc. IEEE Inrl. Symp. on Quality Electronic Design, 2000, pp. 103-108.

[16] G. Karypis and V. Kumar, “hMetis: A Hypergraph Partitioning Package Version
I . S . usermanual, June 23, 1998.

[I71 G. Karypis and V. Kumar, “Multilevel k-way Hypergraph Partitioning”, Pmc.
ACM/IEEE Design Automution Con$, 1999, pp. 343-348.

[I81 http://www.numetrics.com
1191 M. Shin and A. L. Goel, “Knowledge Discovery and Validation in Software Met-

ncs Databases”, Proc. of SPIE Data Mining and K,vowledge Discovery: Theory
Tools. und Technology, April 1999, pp. 226-233.

[20] N. Whitaker, “Classification of Electronic Design Data”, Comp. Science Dept.
Tech. Report, University of Manchester, Documen!. No. STEED/TI/OZ/Z, 1998.

[21] G. Ben-Yaacov, L. Bjork, and E. P. Stone, “Advancing Customer-Perceived
Quality in the EDA Industry”, Pmc. IEEE Inrl. Symp. on Quolip Elecrmnic
Design, March 2000, pp. 41 1-414.

86

http://www.rulequest.com/cubist-info.htm1
http://www.numetrics.com

