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Abstract- To improve manufacturability and per- 
formance predictability, we seek to make a layout uni- 
form with respect to prescribed density criteria, by 
inserting “fill” geometries into the layout. Previous 
approaches for flat layout density control are not scal- 
able due to the necessity of solving very large linear 
programs, the large data volume of the solution, and 
the impact of hierarchy-breaking on verification. In 
this paper, we give the first methods for hierarchical 
layout density control for process uniformity. Our ap- 
proach trades off naturally between runtime, solution 
quality, and output data volume. We also allow gen- 
eration of compressed GDSII of fill geometries. Our 
experiments show that this hybrid hierarchical fill- 
ing approach saves data volume and is scalable, while 
yielding solution quality that is competitive with ex- 
isting Monte-Carlo and linear programming based ap- 
proaches. 

I. INTRODUCTION 

To improve manufacturability and performance pre- 
dictability, modern design methodologies must make lay- 
outs uniform with respect to feature density criteria, by 
inserting “dummy fill” geometries into layouts. Accord- 
ing to [I], the so-called Filling Problem may be defined as 
follows: 

The Filling Problem: Given a design rule-correct lay- 
out in an n x n layout region, along with a window size 
w < n, and upper ( U )  and lower (L) bounds on the fea- 
ture density in any window, add dummy fill geometries to 
create a filled layout such that either: 

(Man- Var Objective) the variation in window density 
(i.e., maximum window density minus minimum win- 
dow density) is minimized while the window density 
does not exceed the given upper bound U ;  or 
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(Man-Fall Objective) the number of inserted fill ge- 
ometries is minimized while the density of any win- 
dow remains in the given range (L, U).’ 

Literature on dummy fill has focused on chemical- 
mechanical polishing (CMP) of spin-on glass (SOG) inter- 
layer dielectrics (ILD) [6] [S] [13]. Post-polish ILD thick- 
ness variation is kept within acceptable limits by con- 
trolling local feature density, relative to a process-specific 
“window size” (on the order of 1-3mm), that depends on 
CMP pad material, slurry composition, and other factors 
[3]. We observe that the 1999 International Technology 
Roadmap for Semiconductors [9] added copper intercon- 
nect dishing to the fundamental roadmap parameters for 
interconnect. (The 2000 ITRS will add copper intercon- 
nect thinning in CMP to the fundamental parameters.) 
So, density-mediated process variation has become a first- 
order concern for interconnects. 

Applications of dummy fill on device layers (diffusion, 
poly, thin-ox) are equally (or more) critical. Isolated tran- 
sistors are susceptible to contact overetch in reactive ion 
etch (RIE) process steps, which results in leakage. Chem- 
ical vapor deposition steps are also subject to iso-dense 
variations. CVD and etch process variation are particu- 
larly troubling with respect to today’s lightly-doped drain 
(LDD) device properties. The complex effects of these 
process variations are well-known, e.g., Garofalo et al. 
[4] document 10% error in interline capacitance result- 
ing from a 5% variation in linewidth, and 12% error in 
ring oscillator frequency solely from proximity effects. At 
the same time, it is also well-known that the uniformity 
of feature density obtained via dummy fill can mitigate 
macroscopic process proximity effects such as contact etch 
variation in reactive ion etch, and nonuniformity of chem- 
ical vapor deposition. 

Dummy fill creates a number of critical flow issues, in- 
cluding: 

‘The Min-Var objective was introduced in [5], and captures the 
“manufacturing side” of the Filling Problem by seeking the most 
uniform density distribution possible. The Min-Fill objective was 
introduced in [12], and captures the “design side” by seeking to  min- 
imize total coupling capacitance and uncertainty caused by dummy 
fill. Minimizing dummy fill has the side benefit of reducing the 
complexity of the output GDSII. 
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physical design and verification must understand 
the dummy fill in order to  estimate RC parasitics, 
gate/interconnect delays, and even device reliability; 
master cell and macro characterizations (perfor- 
mance models) must be a priori compatible with later 
insertion of dummy fill; and 
dummy fill must be consistent with design hierarchy 
SO as not to  break verification or data caDacitv. 

The first issue applies to  dummy fill on interconnect 
layers, which have non-hierarchical layouts (with excep- 
tion of memories, and logic M1 with certain combinations 
of cell library and router styles). The second issue can be 
avoided by judicious “buffer distance” rules for dummy fill 
insertion (i.e., dummy fill is restricted to  locations where 
it does not change electrical performance). In this paper, 
we focus on the third issue: dummy fill generation that is 
consistent with hierarchy-related requirements. 

Hierarchy arises in both custom and semi-custom de- 
sign flows. In custom design, hierarchy is mostly for 
management of the decomposition of the design problem. 
In semi-custom design, hierarchy is associated more with 
reuse of standard cells, whose layouts include device layers 
and local interconnect, or IP  blocks. The key observation 
is that hierarchical designs become difficult to  verify when 
flattened. Hence, hierarchical dummy filling can enable 
simpler and faster verification of the filled layout, since 
verification can still follow the original hierarchy. Hierar- 
chical filling can also decrease data volume for standard- 
cell designs. (In general, data volume is a big issue for 
dummy fill since a filling solution can consist of many 
millions of tiny geometries.) Thus, hierarchical fill gen- 
eration is an emerging requirement for future commercial 
EDA tools [lo]. 

Our present work investigates approaches and trade- 
offs inherent in filling master cells rather than individ- 
ual instances, We consider hierarchical filling as a post- 
processing step performed (on device layers) after place- 
ment. When router access to  local interconnect (salicide) 
and M1 layers is strongly restricted2 then hierarchical fill- 
ing may be performed after routing as well. Hierarchical 
filling faces obvious difficulties: 

when dummy fill is inserted into a master cell, it must 
satisfy density constraints in all contexts for instan- 
tiations of the master; 
there are many interactions or interferences at master 
cell boundaries and at  distinct levels of the hierarchy; 
solution quality in terms of either the Min-Var or 
Min-Fill objective will be worse for hierarchical solu- 
tions than flat solutions, simply because the former 
are more constrained; and 
hierarchical filling explodes the number of constraints 
in linear programming formulations, and thus cannot 
use the LP techniques which have been successful for 
flat filling [5]  [12]. 

2E.g., Cadence and Avant! gridded routers are often restricted 
to  well-defined pin availabilities at points of the routing grid. 

The main contribution of this paper is a new proposed 
hierarchical filling algorithm which mitigates these draw- 
backs. Our approach is based on hybridizing hierarchical 
filling techniques with a flat filling postprocessor, in a way 
that smoothly trades off (in a user-controlled manner) the 
efficiency of the former with the accuracy of the latter. 

The remainder of this paper is organized as follows. 
Section I1 reviews the various models for density calcu- 
lation for CMP and previous approaches for solving the 
flat Filling Problem, including linear programming for- 
mulations and the Monte-Carlo approach. We give the 
formulation of the Hierarchical Filling Problem and our 
proposed solution to it in Section 111. Finally, computa- 
tional results of our proposed hierarchical fill approach, as 
compared with results for flattened hierarchical designs, 
are reported in Section IV. 

11. PREVIOUS WORK ON DUMMY FILL SYNTHESIS 

A computationally efficient model for CMP of oxide 
planarization proposed in [8] is based on the determina- 
tion of the effective initial pattern density, and is easy to  
calibrate [ll]. An approach that unifies the two pattern 
density definitions studied in [5] and [12], enables the ap- 
plication of the same layout density control methods to  
both scenarios [l] (the pattern density is a local property 
and therefore depends a t  each point on the neighboring 
spatial pattern density). 

A standard practice in discretizing the filling problem is 
to  consider only windows (i.e., floating rectangle region of 
given size) from a fixed dissection. However, bounding the 
effective density in w x w windows of a fixed dissection 
can incur error, since other windows that are not part 
of the dissection could still violate the effective density 
bounds. Therefore, a common industry practice is to  en- 
force density bounds in r2 overlapping dissections, where 
r determines the “phase shift” wfr  by which the dissec- 
tions are offset from each other. Thus, density bounds 
are enforced only for windows of the fixed r-dissection 
(see Figure l), in the hope that  this would also control 
the density bounds of arbitrary  window^.^ 

The work of [3] considers the deformation of the polish- 
ing pad during the CMP process, while [12] uses an ellip- 
tical weighting fundion with experimentally determined 
constants. A discretized effective local pattern density p 
for a window Wij in the fixed-dissection regime (hence- 
forth referred to  as efjective window density) is defined in 
[12] as: / 

3The n x n-layout is partitioned into tiles Tz3, then covered by 
w x w-windows Wij , i, j = 1,. . . , E - 1, such that  each window Wij 

consists of r2  tiles T k l ,  k = 2 , .  . . , I C  + T - 1, 1 = j,. . . , j  + T - 1 (see 
Figure 1). Windows are “wrapped around” the layout, e.g., windows 
overlapping the upper (left) edge of the layout also containing tiles 
at the bottom (right) of the layout, reflecting the fact that  density 
at the edge of one die may affect CMP of the die’s neighbor on the 
wafer. 
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Figure 1: The fixed dissection approach: a layout 
is divided into r2 ( r  = 4) distinct dissections (each 
with window size w x w), into z x 5 tiles. Each 
w x w window (dark) consists of r2 tiles, and pairs 
of windows from different dissections may overlap. 

a+r-1 j+r - l  

p(WZj) = area(T~l).f(Ic-(i+r/2), 1 - ( j+~/2) )  
k=a 1=j 

where the arguments of the elliptical weighting functio6l) 
are the x- and y-distances of the tile Tk1 from the center 
of the window Waj .  More recently, the authors of [12] 
suggested a more accurate model that takes into account 
the influence of density variation in lower layers of a layout 
on the density variation in the upper layers. 

Previous algorithms for generating flat dummy fill can 
be classified into two categories: linear-programming 
(LP) based approaches [5] [12], and Monte-Carlo based 
methods [l] [2]. 

The first linear programming formulation for the Min- 
Var objective was suggested in [ 5 ] ,  where for each tile the 
computed fill amounts are constrained to  not exceed the 
actual area available for filling (slack), which is computed 
during density analysis. The Min-Fill objective for the 
Filling Problem corresponding to  the Ranged Variation 
LP formulation was proposed in [12]. Although an LP 
solution is optimal, it has several drawbacks: (1) solving 
a large LP is too time consuming (e.g., the runtime is 
O(r6)  since the number of variables and the number of 
constraints in the LP are both O ( ( z ) 2 ) ) ;  (2) the optimal 
solution for a given number of dissections is not neces- 
sarily the optimal solution for other dissections, and in 
general may result in a high floating window density vari- 
ation; and (3) when the tile size is sufficiently small the 
problem becomes an instance of integer programming and 
rounding errors become crucial. 

A Monte-Carlo method for the Min-Var objective was 
introduced in [2]. The Min-Var Monte-Carlo algorithm 
chooses a tile and increments its density by a prescribed 
fill amount, and this is repeated until the density of all 
tiles exceeds the lower bound threshold. This process is 

efficient, but has the drawback that it may insert an ex- 
cessive amount of fill. This problem can be mitigated 
by a Man-Fill Monte-Carlo approach, which attempts to  
maintain the lower bound L on window density by itera- 
tively deleting filling geometry from tiles [2]. The iterated 
Monte-Carlo method alternates the Min-Var and Min-Fill 
objectives, which tends to  monotonically narrow the gap 
between the minimum and maximum window densities. 
Such an iterated approach is reasonably fast as well as 
accurate, thus retaining the advantages of its non-iterated 
counterparts. However, this method is still beset by the 
large data volume problem associated with flat fill ap- 
proaches. 

While LP based algorithms are highly accurate, they 
tend to  be slow due to  the large number of variables. For 
flat layouts, Monte-Carlo methods are faster than LP ap- 
proaches, although typically less accurate [l] [2]. 

111. THE HIERARCHICAL FILLING PROBLEM 

The filling problem for hierarchical (standard-cell) lay- 
outs is similar to  its counterpart for flat layouts, except 
that the hierarchical structure of master cells must be pre- 
served, i.e., the same filling geometry is simultaneously 
added to  all instances of the same master cell. Here, we 
assume that we can fill the slack area of each master cell 
independently and uniformly, as is the case when the size 
of fill geometries is sufficiently small. 

The Hierarchical Filling Problem: Solve the Filling 
Problem for a given standard-cell layout so that: 

0 Filling geometries are added only to  master cells; 
0 Each cell of the filled layout is a filled version of the 

0 The increase in (hierarchical) layout data volume 

The above constraints make the LP approach for hierar- 
chical filling problem infeasible. Instead of using O( ( z)2) 
variables and constraints corresponding to  each tile and 
window in the LP formulation for flat fill, we must de- 
fine the variables and constraints for each window, each 
master cell instance, and all feasible fill positions for each 
master cell and window combination. This will greatly 
increase the number of variables and constraints (since 
the number of grids is much larger than the number of 
tiles). The LP formulation will furthermore be compli- 
cated by the transformations of master cell instances and 
the overlaps between the instances. Based on these con- 
siderations, Monte-Carlo method becomes the only feasi- 
ble approach for the hierarchical filling problem. 

Our proposed hierarchical filling algorithm (see Figure 
2) starts by computing the slack for all master cells (cell 
overlaps are possible and must be addressed carefully, as 
detailed below). We then create buffer zones around mas- 
ter cells to avoid overfilling the regions near master cell 

corresponding original master cell; and 

does not exceed a given threshold. 
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boundaries. Master cells are then filled in a Monte-Carlo 
fashion, according to a priority scheme where master cells 
that are more severely underfilled receive higher priority 
for filling at each iteration. This process continues un- 
til all master cells are filled past the lower bound density 
threshold or the slack in all underfilled master cells is ex- 
hausted. 

Monte-Carlo Hierarchical Fillin Alg orithm 
Input:Aierarchical-fixed-&section, buffer 

distance, w x w window, upper bound U on . _ _  
window density 

Output:-HierarchiFal layout with filled master cells 
1. For each Master Cell M ;  in the lavout Do 
2. Partition the Master Ckll Mq actordina to  the 

iven rid size 

Mark fhe status of erid “OccuDied” if it is 

v 

3. 
4. 

fior a f  rids in the Master Cell Do 

covered by the orinrnal featuris 
or the sub Master-Cell 

5. For all instances Ij.of the Master Cell Mi Do 
6. If the instance Ij is overlapped with features 

or instances of other Master Cells Then 
7. Update the status of rids which are covered 
8. Calculate the Drioritv of the  Master Cells 
9. While the s u m  of priority > 0 Do 

10. 

11. 

12. 

13. 

14. Discard the insertion 
15. Lock slack grid position 
16. 

Use the Monte-Carlo method to select one 
Master Cell Mi 
Randomly select a slack grid position in 
the master cell 
For each corresponding position of the grid 
in all instances of the Master Cell Mi Do 

If the insertion causes any window density 
to  exceed the upper bound U Then 

Go over all other grids in master cell covered 
bv the exceeded window and lock them 

17. Else 
18. 
19. 
20. 

Increase the fill area of the Master Cell 
Add the fill geometry into the Master Cell 
Update the relevant windows’ densities 

Figure 2: Monte-Carlo Hierarchical Filling Algorithm. 

A. Slack Computation for  Hierarchical Layouts 

For each master cell, dummy fill may be inserted only 
into the slack (i.e., free) area of a master cell, not into its 
subcells. Computing the slack of a master cell proceeds by 
first determining the number of grid positions inside the 
bounding box of the master cell, while excluding all posi- 
tions that overlap with either a “bloated” feature (Le., a 
forbidden buffer zone around each feature) or a “bloated” 
subcell. However, slack area computation is complicated 
by the fact that instances of master cells may overlap. 
Such overlaps can occur between the master cell instance 
and the features, or between two or more master cell in- 
stances (see Figure 3). In general, overlaps may have a 
very complicated structure. We distinguish the following 
cases: 

(1) The overlap between a master cell instance and a 
feature. 

(2) The overlap between two instances of different master 

(3) The overlap between more than two instances of dif- 

(4) The overlap between two or more than two instances 

For each region of master cell overlap we must deter- 
mine which master cell “owns” that intersection region. 
In other words, it is necessary to  assign the space available 
for filling to  the slack of a single master cell. We resolve 
the LLownershipl’ problem by fixing an order of all mas- 
ter cells starting from the global master cell (containing 
entire layout) down to individual features. The hierar- 
chy can be represented as the acyclic directed graph H 
with the set of nodes consisting of all master cells and 
individual features. The graph H has an arc from the 
master cell A to  the master cell or the feature B if B 
participates in the definition of A. The topological order 
of the graph H is an order of its nodes in which the be- 
ginning of any arc is later than its end in respect to  this 
order. The topological order of the graph H is obtained 
by breadth-first-search traversing of H starting from the 
global master cell. The containment-based topological or- 
dering of the hierarchy corresponds to  the topological or- 
der of the graph H .  Then no master cell later in the order 
may use in its definition master cells appeared earlier in 
the order. Every time when we have an intersection of 
master cell instances, we check which of the master cells 
appears later in the topological order and assign the in- 
tersection area to  this master cell. This way we correctly 
resolve the overlap cases (1-3). Unfortunately, the case 
(4) cannot be resolved in this manner because hierarchy 
cannot distinguish different instances of the same master 
cell. Thus, we exclude the overlapping regions from the 
slack of the master cell thus leaving the them unavailable 
for fill. 

cells. 

ferent master cells. 

of the same master cell. 

Figure 3: Computing master cell intersections: the 
dark features and patterned subcells may either com- 
pletely or partially overlap with a given master cell. 

B. A Hybrid Hierarchical / Flat Filling Approach 

Pure hierarchical filling may tend to  result in some 
sparse or unfilled regions (e.g., due to  overlaps between 
different instances of master cells and features or due to 
the interactions among the “bloat” regions around master 
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cells), which could yield an unacceptably high layout den- 
sity variation. A natural and simple solution is to apply 
a post-processing “cleanup” phase, i.e., apply a standard 
flat fill algorithm to the output of the hierarchical phase. 
However, a purely flat fill approach, even when applied as 
a secondary post-processing phase, may greatly increase 
the resulting data volume and runtime, negating the ben- 
efits of using a hierarchical approach in the first place. 

We propose a new algorithm for mitigating this draw- 
back, by combining hierarchical filling techniques with 
a flat filling approach, in a way that smoothly trades 
off the respective efficiency and accuracy of these two 
approaches. In our proposed method, varying a user- 
controlled parameter yields a smooth tradeoff among so- 
lution quality, data volume, and runtime, as confirmed 
by our computational experience. Our three-phase hybrid 
hierarchical-flat filling approach is summarized as follows: 

1. A purely hierarchical fill phase; followed by 
2. A split-hierarchical phase, where certain master cells 

that were deemed to be underfilled in phase 1, would 
be replicated so that distinct copies of the same mas- 
ter cell may be filled differently than other copies of 
the same master cell; and finally, 

3. A flat fill “cleanup” phase (say, Monte-Carlo based), 
which will fill any remaining sparse or unfilled regions 
that were not processed satisfactorily during the first 
two phases. 

The overall goal with this strategy is to quickly fill as 
much of the layout as possible in phases 1 and 2 while 
keeping the fill output data volume relatively low, and 
then further improve and tune the resulting filled layout 
using a flat filling approach in phase 3 on the (presumably 
small number of) remaining sparse or unfilled areas. 

In particular, phase 2 consists of repeatedly splitting 
master cells located in regions which were determined to 
be underfilled during phase 1, as follows. Given a top- 
down containment-based topological ordering of the n 
master cells, i.e. C1, C2, C3, . . . , Cn-2 , C,-l, C,, where 
a master cell Ci can only contain master cell Cj iff i < j ,  
a master cell Ci may be split into two master cells Ci,l 
and Ci,2 and any Cj containing master cell Ci is then 
modified to point to either the copy Ci91 or Ci,2 (say, 
randomly chosen). More generally, rather than perform- 
ing only two-way splits, we can perform k-way splits (see 
Figure 4). 

Varying the parameter IC (which controls the split fac- 
tor) from 1 (pure hierarchical) to infinity (pure flat), 
yields a smooth tradeoff between solution quality, data 
volume, and runtime. As k is increased, the solution qual- 
ity asymptotically approaches that of flat fill. If the result 
of hierarchical filling does not satisfy the technological 
constraints, then we recommend foregoing the original hi- 
erarchy in favor of a more uniform filling. This can be 
implemented by storing in the original cell library differ- 
ent filled versions of each master. Such a scheme will not 

necessarily slow down verification, since having fixed per- 
manent structure, they can be “pre-verified” , and thus 
dramatically improve the uniformity of hierarchical filling 
without a large runtime increase. 

orithm k-Way Master Cell Spl itting Alg 
Input: Kerarchical layout, and a spIitting parameter k 
OutDut: New hierarchical layout with new copies 

of master cells 
For i = 1 to n Do 

Create k new copies of Ci, namely Ci,llCi,z, ... Ci,k 
For an master cell C’ containing in the master cell c; I30 

For all 1 5 j 5 k Do 
put an arc from the master cell Ci,j to C’ 

For any master cell C which contains master cell Ci Do 
Replace Ci inside C with copy Ci,j for 
random j,  15 j 5 k 
In hierarchy H ,  replace the arc (C, Ci) with (C, Ci,j) 

Output resulting new hierarchical layout 

Figure 4: Improving the hierarchical filling approach by 
splitting master cells k-ways: each master cell is replaced 
with k distinct masters, each of which may be filled inde- 
pendently and differently. 

Following the approach of [l], our implementation has 
the following capabilities: grid slack computation; dough- 
nut area computation; wraparound window density anal- 
ysis and synthesis; and compressed fill insertion. 

IV. COMPUTATIONAL EXPERIENCE 

Our experimental testbed integrates GDSII Stream in- 
put and internally-developed geometric processing en- 
gines, coded in C++ under Solaris. Our experiments were 
performed using part of a metal layer extracted from hi- 
erarchical GDSII from an industry custom-block layout. 
Table 1 lists the attributes of our three test cases, i.e., 
layout size and number of  rectangle^.^ 

I Test Cases I 

Table 1: Parameters of test cases. 

Table 2 compares the minimum window density, data 
volume (i.e., the number of fill geometry references in the 
resulting GDSII output file), and the number of dummy 
fill features (i.e., the number of fill geometries on the re- 
sulting layout after flattening) for five heuristics: (i) hi- 
erarchical, (ii) flat, (iii) 2-way splitting, (iv) hybrid of 
hierarchical and flat, and (v) hybrid of the hierarchical, 
splitting and flat approaches. For each test case, we ran 

41n the given coordinate system, 40 units is equivalent to  1 
micron. 
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all the five filling heuristics on both the spatial density 
model and the effective density model, with the window 
density upper bound equal to the original maximum win- 
dow density. 

H+S+F 
Flat 

. _.. 

4374 I17500 I 0.421 I/ 7234 120829 I 0.383 
13974 1 13974 I 0.527 11 23415 I23415 1 0.443 

Testcaw 3 
OrgLayout 

Hier 
H+F 
H+S 

~ ._.. ~ _ _  - 

0.000 0.091 
4995 22566 0.071 4449 20320 0.157 
7472 25043 0.532 9461 25332 0.371 
9690 23622 0.102 8575 22990 0.159 

H+S+F 1 1  12212 I26144 I 0.540 11 13285 I25700 1 0.394 
Flat 11 17695 117695 I 0.547 11 31204 I31204 I 0.483 

Table 2: The Hierarchical, Flat and Hybrid Filling Ap- 
proaches. Notation: OrgLayout: original layout; Spatial 
Den: spatial density model; Effective Den: effective den- 
sity model; data: data volume, i.e., the number of fill 
geometry references in resulting GDSII output file; # fill: 
number of real dummy fill features on the resulting lay- 
out; MinDen: minimum window density of the layout; 
Hier: hierarchical filling approach; H+F: hierarchical + 
flat filling approach; H+S: hierarchical + 2-way master 
cell splitting filling approach; H + S f F :  hierarchical + 2- 
way master cell splitting + flat filling approach; Flat: flat 
filling approach. 

Table 2 indicates that the Flat Monte-Carlo approach 
obtains the best-quality result (i.e., highest minimum den- 
sity) but results in the largest data volume. On the other 
hand, the Hierarchical Monte-Carlo approach saves on 
data volume but yields low-quality results. The hybrids 
of hierarchical and flat fill approaches produce substan- 
tially improved results, with only a modest increase in 
data volume. Finally, we observe that the IC-way Master 
Cell Splitting approach smoothly trades off between per- 
formance and data volume, i.e., it provides better results 
than the pure Hierarchical Fill approach and less data 
volume than the pure Flat Filling approach. 

v. CONCLUSIONS AND FUTURE DIRECTIONS 

In conclusion, we have addressed the hierarchical filling 
problem in layout density control for CMP uniformity. We 
presented a practical approach to hierarchical fill synthe- 

sis, which trades off runtime, solution quality, and output 
data volume. Distinct copies of a master cell are allowed 
to be filled differently, which improves the solution quality 
in a user-controlled manner. Our system also generates 
filling geometries in compressed GDSII format, which re- 
duces the resulting fill data volume. Experiments indi- 
cate that this new hybrid hierarchical filling approach is 
scalable, efficient, and highly competitive with previous 
Monte-Carlo and LP-based methods. 

Ongoing research includes developing alternate pure- 
hierarchical filling heuristics, and developing more robust 
hierarchy manipulators for in-memory layout representa- 
tions, in order to enable smoother tradeoffs between solu- 
tion quality and data volume. We also seek to make our 
fill solutions reusable, so that fill solutions can be stored 
in a library along with the master cells, and would not 
have to be recomputed from scratch in cases where a cell 
is used in a context that has different density constraints. 
However, the reusability methodology can be only applied 
to master cells which are neither overlapped with other 
master cells, nor routed over. One way of achieving such 
“unrollable” solutions is to produce and store a fill solu- 
tion in a “monotone” manner, so that successively longer 
prefixes of a fill solution would still constitute valid fill 
solutions in lower density contexts. 
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