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Abstract

The ratio cut partitioning objective function
successfully embodies both the traditional min-cut
and equipartition goals of partitioning. Fiduccia-
Mattheyses style ratio cut heuristics have achieved cost
savings averaging over 39% for circuit partitioning and
over 50% for hardware simulation applications [15].
In this paper, we (i) show a theoretical correspon-
dence between the optimal ratio cut partition cost and
the second smallest eigenvalue of a particular netlist-
derived matriz, and (i) present fast Lanczos-based
methods for computing heuristic ratio cuis from the
eigenvector of this second eigenvalue. Resulls are bet-
ter than those of previous methods, e.g., by an aver-
age of 17% for the Primary MCNC benchmarks. An
efficient clustering method, also based on the second
eigenvector, is very successful on the “difficult” input
classes in the CAD literature. The paper concludes
with extensions and directions for future work.

1 Preliminaries

As system complexity increases, the divide-and-
conquer approach is used to keep the circuit design
process tractable. The recursive decomposition of the
synthesis problem is reflected in the hierarchical or-
ganization of boards, multi-chip modules, integrated
circuits, macros, etc. Since early decisions will con-
strain all succeeding decisions, the high-level layout
phases are critical to the quality of the final layout.
In particular, without a successful partitioning algo-
rithm, good solutions to the placement, global routing
and detailed routing problems will be impossible. As
noted in, e.g., [5], partitioning comprises the essence
of many basic CAD problems, including packaging of
designs, clustering analysis, and partition analysis for
high-level synthesis.

Because signal delays will typically decrease as we
move downward in the design hierarchy (e.g., on-chip
communication is faster than inter-chip communica-
tion), the traditional metric for the decomposition is
the number of signal nets which cross between layout
subproblems. Minimizing this number is the essence
of partitioning.

1.1 Basic Partitioning Formulations

A standard mathematical model associates a graph
G = (V, E) with the circuit netlist; vertices in V rep-
resent modules and edges in E represent signal nets.
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The vertices and edges of G may be weighted to re-
flect module area and the importance of a connec-
tion. Because nets often have more than two pins,
the netlist is more generally represented by a hyper-
graph H = (V,E’), where hyperedges in E’ are the
subsets of V contained by each signal [12]. There are
several standard transformations from the hypergraph
representation of a circuit to a graph representation,
as discussed below.

Two common partitioning formulations are: (i)
minimum-cut, where we find the partition of V into
disjoint U and W such that the number of edges
e = {u,w}, v € U and w € W, is minimized; and
(i) minimum-width bisection, which adds the con-
straint |U] = |W/|. Because minimum-cut tends to
divide modules very unevenly, research has centered
on the minimum-width bisection problem. Since this
problem is NP-complete, several heuristic approaches
have been used: top-down recursive bipartitioning [5];
bottom-up clustering and aggregation [8] [14]; and
spectral methods.

The last class of methods uses eigenvalues or eigen-
vectors of matrices derived from the undirected netlist
graph G = (V,E). Often, if [V] = n we use the
n x n adjacency matriz A = A(G), where ay, = 1 if
(v,w) € E and ayy = 0 otherwise. If G has weighted
edges, then ayy, is equal to the weight of (v,w) € E,
and by convention a,, = 0 for all v € V. If we let
d(v) denote the degree of node v (i.e., the sum of the
weights of all edges incident to v), we obtain the n x n
diagonal degree matriz D defined by Dj; = d(v;). The
eigenvalues and eigenvectors of such matrices are the
subject of the relatively recent subfield of graph the-
ory dealing with graph spectra. Early theoretical work
connecting graph spectra and partitioning is due to
Barnes, Donath and Hoffman [1] [5] [6]. More recent
eigenvector and eigenvalue methods have dealt with
both module placement and graph min-cut bisection,
and are surveyed in [12].

1.2 Ratio Cuts

In practice, requiring an exact bisection (rather
than, say, a 60% - 40% partition of module area) is
unnecessarily restrictive. In the instance of Figure 1,
even the optimal bisection will not yield a very sensi-
ble partitioning. Penalty function methods have been
used to permit not-quite-perfect bisections, but can
require rather ad hoc thresholds and penalties. This
leads to the very natural ratio cut partitioning metric,



recently introduced for CAD applications by Wei and
Cheng [15].

Minimum Ratio Cut: Given G = (V, E), find the
partition of V' into disjoint U and W such that %—H—v‘—:’]}[

is minimized, where e(U, W) is the number of edges
e={u,w},ucUandweW.

Figure 1: Minimum-cut (albedef, cost = 10)
and minimum-width bisection (abd|cef, cost =
300) are less natural than the optimal ratio cut
(abledef, cost = 19).

The ratio cut metric gives the “best of both worlds”
in that the numerator embodies minimum-cut, while
the denominator favors an even partition (see Figure
1). Recent work shows the utility of this metric; [15]
reports average cost improvements of 39% over results
from the standard Fiduccia-Mattheyses method [7] on
industry benchmarks. The ratio cut also has impor-
tant uses in other areas of CAD: (i) in design for testa-
bility, a sparse partition will result in subcircuits that
have fewer I/O’s, thus requiring fewer test vectors; and
(i1) in hardware simulation, runtime is proportional to
the number of interconnections at a given level of the
hierarchy, so a sparse cut reduces simulation costs.
Savings of up to 70% have been achieved for such ap-
plications in a number of industry settings [15]. As the
minimum ratio cut is easily seen to be NP-complete,
multicommodity flow based approximations have been
proposed [4], but are prohibitively expensive. Wei and
Cheng [15] therefore employed the iterative shifting
and group swapping scheme of Fiduccia-Mattheyses.
The present work gives new results indicating that
spectral heuristics based on matrix eigenvalues can be
used to compute even better ratio cuts.

The remainder of this paper is organized as follows.
In Section 2, we show a new theoretical connection be-
tween graph spectra and the optimal ratio cut. Section
3 presents EIG1, our basic spectral heuristic for min-
imum ratio cut partitioning and clustering analysis.
We derive a good ratio cut partition directly from the
eigenvector associated with the second eigenvalue of
Q = D — A. Section 4 gives performance results and
comparisons with previous work, using benchmarks
from the MCNC suite as well as classes of “difficult”
clustering inputs from the literature. Section 5 con-
cludes with directions for future work.

2 A New Connection: Graph Spectra
and Ratio Cuts

Recall that two standard matrices derivable from
the circuit netlist are the adjacency matrix A and
the diagonal degree matrix D. We use the matrix
Q = D — A mentioned above, which we may view as
the discrete analog of the Laplace A operator. One
easily shows several basic properties of Q: (1) Q is
symmetric; (2) @ is non-negative definite, so that

zQz = quj:c;:cj > 0 and all eigenvalues of Q are

i

non-negative; and (3) the smallest eigenvalue of Q is
0 with eigenvector 1 = (1,1,...,1&. Defining A to be
the second smallest eigenvalue of @, we also obtain (4)

(using the notation Z’ = Z to denote summation
(1.)€E
over all edges) zQz = zDz—zAz = Z’(z;—xj)z, and
; . Qs
(5) by the Rayleigh Principle [9], A = rll’fllyli;o-lﬁj-.
Properties (4) and (5) lead directly to a relationship
between the optimal ratio cut cost and A [10}:

Theorem One: Given a netlist graph G = (V, E)
with adjacency matrix A, diagonal degree matrix D,
and |V| = n, the second smallest eigenvalue A of @ =
D — A yields a lower bound on the cost ¢ of the optimal

ratio cut partition, with ¢ > ;\T O

The % lower bound in Theorem One for the optimal
partition cost under the ratio cut metric is a tighter re-
sult than can be obtained using the early techniques of
Donath et al., which essentially rely on the Hoffman-
Wielandt inequality [12]. Also note that if we restrict
the partition to be an ezact bisection, Theorem One
subsumes the result of Boppana [2]. Given Theorem
One, our basic partitioning approach is to compute
AMQ) and the corresponding eigenvector v, then use v
to construct a heuristic ratio cut.

3 New Ratio Cut Heuristics

Practical implementation of this approach requires
closer examination of four main issues: (i) the trans-
formation of the netlist hypergraph into a graph G;
(ii) the calculation of the second eigenvector v; (iii)
the construction of a heuristic ratio cut partition from
v; and (iv) a possible post-processing stage to improve
the heuristic ratio cut. We briefly make several obser-
vations on these topics.

Hypergraph Models: We have examined two
heuristic mappings from hyperedges in the netlist to
graph edges in G. The first mapping is via the stan-
dard clique model (where a k-pin net is represented
by a complete graph on its k modules, with each edge
weight equal to 1/(k — 1)). The second mapping is
given by using the standard clique model followed by
an added sparsifying heuristic, e.g., (i) ignoring less
significant (e.g., non-critical or very large) nets, or (ii)
thresholding small Q;; to 0 until the matrix has suffi-
ciently few nonzeros.

Numerical Methods: With regard to algo-
rithm implementation, it may at first appear that



eigenvalue computations are too complicated to be
practical. However, there are significant algorithmic
speedups based on our need to calculate only a sin-
gle (the second-smallest) eigenvalue of a symmetric
matrix. Furthermore, netlist sparsity due to fanout
bounds and design styles allows us to apply the block
Lanczos algorithm [91] We use an adaptation of an
existing Lanczos implementation [13] to compute the
second-largest eigenvalue and the corresponding eigen-
vector of the matrix Q' = A — D (this is equivalent to
computing the negative of the second-smallest eigen-
value of Q = D— A, and is preferable because of faster
convergence to largest eigenvalues). The numerical
code is portable Fortran77; all other code in our sys-
tem is written in C.

Deriving a Ratio Cut: We have considered
a number of heuristics for constructing the ratio cut
partition from the second eigenvector v; results below
are for our EIG1 method, which sorts the v; and then
determines the splitting rank r, 1 < # < n — 1, that
yields the best ratio cut cost when nodes with rank
> r are placed in U and nodes with rank < r are
placed in W. The cost of evaluating all n — 1 splitting
ranks, i.e., n — 1 distinct partitions, is asymptotically
dominated by the Lanczos computation. With these

jacent components of the sorted eigenvector as delim-
iters of natural circuit clusters, and “local minimum”
(with respect to the ratio cut metric) partitions of the
sorted eigenvector may also delineate clusters.

4 Experimental Results

4.1 Ratio Cut Partitioning

In this section, we present computational results
using the EIG1 algorithm. We partitioned the MCNC
Primaryl and Primary2 standard-cell and gate-array
benchmarks, applying Lanczos code to the netlist and
then using actual module areas in selecting the best
split of the sorted eigenvector. Table 1 compares re-
sults with Rcut1.0 output [15] (further benchmark re-
sults are reported in [10]). On average, the EIG1 re-
sults are 17.6% better. The EIG1 results are com-
pletely unrefined: no local improvement has been per-
formed on the eigenvector partition. Also note that
the results in [15] are already an average of 39% bet-
ter than Fiduccia-Mattheyses output in terms of the
ratio cut metric (comparing the best of 10 Rcutl.0
runs to the best of 20 F-M runs).

implementation decisions, our algorithm EIG1 is as Test W-C(RCuwt1.0) | H-K (EIGI) | H-K/ W-C
follows: problem Areas/Cutsize Areas/Cutsize Ratio
PrimGAT | 502:2920 7 11 751:2681 / 15 989
PrinGA2 | 24535885 / 89 | 2522:5852 / 78 355
Prim5C1 | 1071:1682 / 35 | 588.2166 / 15 602
Algorithm EIGI PrimSC2 | 2332:5374 / 89 | 23615345 / 78 859

Input H = (V, E’) = netlist hypergraph

Transform each k-pin hyperedge of H into a
clique in G = (V, E) with uniform edge
weight lel;

Compute A, D associated with G;

Compute second-largest eigenvalue of Q' = A — D
by Lanczos algorithm (= —A\(Q));

Compute eigenvector v associated with A(Q);

Sort components of v;

Find best splitting point for indices (modules)
using ratio cut metric.

Figure 2:
EIG1.

High-level outline of Algorithm

_ As shown in the next section, EIG1 generates ini-

tial partitions which are already significantly better
than the output of RCutl.0, the iterative Fiduccia-
Mattheyses style algorithm of Wei and Cheng [15].
In fact, using the single sorted eigenvector we often
find many partitions that are better than the Fiduccia-
Mattheyses result.

Clustering Is “Free”: A bonus from our ap-
proach is the observation that clustering is “free” with
the spectral computation, since the second eigenvec-
tor v contains both partitioning and clustering infor-
mation. In Section 4 below, we demonstrate that the
sorted second eigenvector by itself can effectively iden-
tify natural clusters in the classes of “difficult” inputs
proposed in Bui et al. [3] and Garbers et al. [8]. It
1s also reasonable to interpret large gaps between ad-

Table 1: Comparison with [20] of ratio cut val-
ues on MCNC Primary benchmarks (area sums
are rounded to integers).

The CPU times required by our algorithm were very
competitive with those cited in [15 . For example, the
eigenvector computation for PrimSC2, using our de-
fault convergence tolerance of 10~*, required 83 sec-
onds of CPU time on a Sun4/60, versus 204 seconds of
CPU for 10 runs of RCutl.0. All of our experiments
indicate that the spectral approach is well-suited to
partitioning of cell-based designs as well as other large-
scale partitioning applications in CAD where the input
is an unweighted netlist hypergraph, e.g., partition for
testability or hardware simulation [10].

4.2 Clustering

Finally, straightforward interpretation of the sec-
ond eigenvector yields good clusterings on the two
classes of “difficult” inputs in the literature. The first
type of input is given by the random graph model
GBui(2n,d, b), developed by Bui et al. [3] in analyzing
graph bisection algorithms. Here, the random graphs
have 2n nodes, are d-regular and have minimum bisec-
tion width almost certainly equal to b. We analyzed
random graphs with between 100 and 800 nodes and
with parameters (2n,d, b) as in Bui’s experiments (Ta-
bleI, p. 188 of [3]8 In all cases, the second eigenvector
immediately yielded the correct clustering. The sec-
ond type of input is given by the Ggar(n, M, Pint, Pest)
random model of Garbers et al. [8], which prescribes



n clusters of m nodes each, with all edges inside clus-
ters independently present with probability pin; and
all edges between clusters independently present with
probability p.;;. We tested a number of 1000-node
examples of such clustered inputs, using the same val-
ues (1, M, Pint, Pest) as in Table 1 of [8]. In all cases,
quite accurate clusterings were immediately evident
from the eigenvector, with most clusters completely
contiguous in the sorted list, and occasionally pairs of
clusters being intermingled. Sample results for both
input types are reproduced in [10].

5 Extensions and Conclusions

Many research questions are still under investiga-
tion. A promising speedup entails using condensing
[3] to reduce prob%em size by finding a random max-
imal matching on the graph, then using the edges of
the matching to condense node pairs into single nodes.
After solving the condensed problem, nodes can be
re-expanded and an iterative improvement stage may
follow. Although there is the drawback of yielding
a denser input to the eigenvector computation, the
sparsifying heuristics mentioned above may be applied
so that a net speedup is still obtained. A second
variant weakens convergence criteria in the Lanczos
implementation, reducing the accuracy of the eigen-
vector calculation; preliminary experiments indicate
that for, e.g., the PrimGA2 benchmark, we can speed
up our standard Lanczos computation by a factor of
between 1.3 and 1.7 without loss of solution quality.
Parallel implementations of the Lanczos algorithm on
medium- and large-scale vector processors are also of
interest. With any variant, the ratio cuts may be im-
proved with standard iterative techniques; this is also
under investigation. Finally, following Wei and Cheng,
we may apply EIG1 to other CAD applications suc
as design for testability and the mapping of logic for
hardware simulation. The results in Section 4 suggest
that for applications where the Fiduccia-Mattheyses
type of ratio cut heuristic has already been successful,
our spectral construction will provide further improve-
ments.

In conclusion, we have presented new theoretical
analysis showing that a second-eigenvalue construc-
tion yields good partitions under the ratio cut metric.
Sparse matrix techniques lead to effective, paralleliz-
able algorithms which are competitive with the fastest
current methods for circuit partitioning. On standard-
cell and gate-array industry benchmarks, our solu-
tion quality was significantly improved over that of
RCut1.0 [15). Because the result is derived from a
single deterministic execution of the algorithm, multi-
ple runs are not required.

No previous work applies numerical methods to ra-
tio cut partitioning, since the mathematical basis of
ratio cuts has only recently been developed. From
a historical perspective it is intriguing that spectral
methods have not been more popular for other prob-
lem formulations such as bisection or k-partition, de-
spite the early results of Barnes, Donath and Hoffman
and the availability of standard packages for matrix
computations. We speculate that this is for several
reasons. First, advances in numerical methods and

VLSI CAD have followed disjoint paths; only recently
have large-scale numerical computations become rea-
sonable tasks on workstation platforms. Second, early
theoretical bounds and empirical performance of spec-
tral methods for bisections were not generally encour-
aging. Finally, it has only been with growth in prob-
lem complexity that possible scaling weaknesses of it-
erative approaches have been exposed. In any case,
we believe that the spectral approach to partition-
ing, first developed by Barnes, Donath and Hoffman
twenty years ago, merits renewed interest in the con-
text of a number of basic CAD applications.
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