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ABSTRACT
Classical floorplanning formulations may lead researchers to
solve the wrong problems. This paper points out several ex-
amples, including (i) the preoccupation with packing-driven,
as opposed to connectivity-driven, problem formulations and
benchmarking standards; (ii) the preoccupation with rect-
angular (and L or T shaped) block shapes; and (iii) the
lack of attention to algorithm scalability, fixed-die layout
requirements, and the overall RTL-down methodology con-
text. The right problem formulations must match the pur-
pose and context of prevailing RTL-down design method-
ologies, and must be neither overconstrained nor undercon-
strained. The right solution ingredients are those which are
scalable while delivering good solution quality according to
relevant metrics. We also describe new problem formula-
tions and solution ingredients, notably a perfect rectilinear
floorplanning formulation that seeks zero-whitespace, per-
fectly packed rectilinear floorplans in a fixed-die regime. The
paper closes with a list of questions for future research.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits— design aids; place-
ment and routing; F.2.2 [Theory of Computation]: Anal-
ysis of Algorithms and Problem Complexity—geometrical
problems and computations; routing and layout

General Terms
VLSI floorplanning, coarse placement, block packing and
layout, hierarchical design methodology.

1. INTRODUCTION
Classical floorplanning takes as input a set of blocks, a netlist,
and a target layout region. The (rectangular) blocks may
be hard, soft or semi-soft. Hard blocks have fixed aspect
ratio and pin locations. Soft blocks have fixed area, with
(upper- and lower-bounded) continuously variable aspect ra-
tio. Semi-soft blocks have fixed area with discrete allowed
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aspect ratio, usually corresponding to alternative block re-
alizations (e.g., allowed foldings of datapaths).1 Since the
mid-1990s, L- and T-shaped block shapes have been speci-
fiable and/or permissible; this is motivated by enforced co-
location of a datapath block with related control, or the
shape of particular types of datapath blocks. The target lay-
out region is typically specified by upper and lower bounds
on its aspect ratio, e.g., a square layout has upper bound =
lower bound = 1.

The classical floorplanning problem seeks to shape and pack
all blocks, such that no blocks overlap and the enclosing lay-
out region has minimum area while satisfying aspect ratio
constraints. This corresponds to a minimum whitespace ob-
jective. Optionally, the packing can attempt to minimize an
estimate of the wiring needed to realize the netlist connectiv-
ity. This corresponds to a minimum wirelength objective.2

With respect to wiring, early works such as [13] focused
on channeled block layouts and the associated global rout-
ing and pin assignment issues. Today, for various reasons –
fixed-die regime, presynthesis floorplanning, N-layer metal
with available over-the-block routing – channelless layouts
are the norm and the top-level routing is more or less viewed
(or more accurately, ignored) as “area-routed”.

This invited paper addresses the question, “Classical floor-
planning harmful?” The “classical floorplanning” problem
has inspired an immense literature of valuable research re-
sults. Nevertheless, “classical floorplanning” has in several
ways led researchers and practitioners to focus on the wrong
problem. Examples include (i) preoccupation with packing
driven, as opposed to connectivity driven, problem formu-
lations and benchmarking practices; (ii) preoccupation with
only rectangular (and L- or T-shaped) block shapes; (iii)
lack of attention to the fixed-die context; (iv) lack of at-
tention to the overall RTL-down methodology context, and
to whether there are any real differences between “floorplan-
ning” and “hierarchical approaches to achieving placement”;
and (v) lack of attention to achieving a holistic, scalable
approach. The main conclusion is that the problem must
be changed. The right problem formulations must match
the purpose of floorplanning (i.e., coarse placement enabling
route planning), and the context of today’s convergent RTL-
down design methodologies. Furthermore, the right formula-

1An alternative taxonomy lumps soft blocks together with
semi-soft blocks: since the layout region is row-based, block
heights are discrete and there is no such thing as a block
with continuously variable aspect ratio.
2The minimum wirelength objective is not yet consistently
addressed in either the definition or the reporting of bench-
marks in the literature.
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tions must be neither overconstrained nor underconstrained.
The right solution ingredients are those which are scalable
while delivering good solution quality according to relevant
metrics.

The remainder of this paper is organized as follows. Section
2 of this paper gives limitations of the classical floorplanning
formulation, along with desiderata for an improved formula-
tion. Section 3 sketches a “perfect rectilinear floorplanning
problem” (PRFP) formulation, along with an example solu-
tion flow and supporting algorithm technologies. The PRFP
seeks zero-whitespace, perfectly packed rectilinear floorplans
in a fixed-die regime, and is presented as an example alter-
native to classical floorplanning. Section 4 concludes with a
few open research questions.

2. LIMITATIONS OF CLASSICAL FLOOR-
PLANNING

A modern floorplanner must deal with (i) up to thousands of
blocks, including hard IP blocks and presynthesis RTL soft
blocks; (ii) timing and routability objectives, as well as tight
interactions with route planning and performance optimiza-
tion tools; and (iii) a fixed-die layout resource with discrete-
ness (cell row pitch) in the vertical dimension. (This is not
very different from what a placer deals with!) In this sec-
tion, we compare these modern floorplanning requirements
against the “classical floorplanning” formulation.

2.1 Obsession With Packing
The classical floorplanning literature has had an obsession
with packing (an NP-hard problem) and the minimum-whitespace
objective.3 Floorplan representations have evolved from
dual graphs (the standard representation in literatures such
as facility layout and architecture since the early 1970s [17]
[8]) to slicing trees, to sequence-pairs [37], bounded-slicing
grids [38], O-trees [18], etc. This evolution has been driven
by the quest for a complete and irredundant representa-
tion that allows efficient heuristic search for good packings.4

Since the solution spaces are so large, appropriate neigh-
borhood operators for iterative optimization metaheuristics
(e.g., simulated annealing, evolutionary optimization, or tabu
search) are also sought. We make the following observations.

• Recent “complete” representations (SP, BSG, O-tree)
require heavy coercion to deal with natural instance at-
tributes (e.g., fixed blocks, alignment constraints, and
pitch-matching constraints for datapaths). Further-
more, they suffer from combinatorial explosion when
the instance contains semi-soft blocks that have many
alternative realizations. Scalability to instances of hun-
dreds or thousands of blocks seems out of reach.

• Working with a floorplan representation, rather than
directly with a floorplan realization, has overheads in
terms of cost function evaluation and accuracy. For ex-
ample, sizing and compaction steps are required before
one can even estimate the wirelength corresponding to
a given sequence-pair.

3Published benchmarking practices and floorplanning met-
rics all focus on whitespace. We note that a more pragmatic
reaction to an NP-hard problem is to avoid it as much as
possible.
4Other, more greedy/constructive approaches such as shelf-
packing or cluster growth in combination with zone-
refinement [28] have been attempted. However, solution
quality is poor (and scales even more poorly).

• Complex objectives such as path-timing or wirelength
seem difficult to handle with, e.g., annealing of se-
quence pairs. Notice, for example, that the whites-
pace and wirelength objectives are not simultaneously
optimized by floorplan compaction.

• To handle objectives such as wirelength and path tim-
ing, one must focus on connectivity. Indeed, the cor-
rect approach must be connectivity-centric, rather than
packing-centric. Packing must be made into a sec-
ondary issue – or ideally, a non-issue.

2.2 Design Methodology Context
Floorplanning coarsely maps portions of the IC design to
portions of the IC layout region. It delivers “coarse embed-
ding” or “coarse placement” to support global interconnect
planning and performance optimizations. We observe:

• (Hierarchical) floorplanning is the natural response to
three facts of life: (i) complexity, (ii) the need for for-
ward prediction in a convergent design process, and
(iii) the fact that the only useful prediction technolo-
gies we know of are constructive predictors. When
upstream tools cannot predict downstream outcomes,
they must constructively (e.g., by floorplanning and
top-level route planning) predict, then constrain, the
downstream outcomes. Hierarchy arises because hu-
mans are limited in how many things they can think
of at once. Hence, the sequence of no-floorplanning,
physical-floorplanning, RTL-floorplanning, etc. is nat-
ural as design complexities increase.

• To find the most useful floorplanning formulations, es-
pecially in light of “hierarchical floorplanning is hierar-
chical coarse placement”, we should ask whether there
are any fundamental differences between the purpose
of floorplanning and the purpose of placement.5 Along
a similar vein, we should ask whether the design pro-
cess is really different depending on whether hierarchy
management is automated (within a block-based hier-
archical floorplanning tool) or manual. If the answer
to either question is “no”, then floorplanners should
probably look more like placers than packers.6

• In modern methodologies, RTL is partitioned, floor-
planned, route-planned and optimized for performance
before logic synthesis and place-and-route. Hence, area
and performance are at best crudely estimated (hope-
fully within 15%, but sensitive to block aspect ratios,
actual critical path structure after top-level routing
and pin assignment, etc.). The amount of effort spent
in addressing the resulting floorplan instances – and in
particular, their “zero whitespace” packing objectives
– must be impedance-matched to this level of accu-
racy.7

5For example, non-rectangular shapes and noisy area esti-
mates occur in floorplanning, but not in placement. How-
ever, these aspects of floorplanning instances may be side
effects of current abstractions of RT-level (timing and chip
planning) design needs.
6Advances in design and process technologies could help re-
move distinctions between floorplanning and placement. For
example, better understanding of delay sensitivity with re-
spect to sizing, and repeater library design, can together
eliminate the need for buffer block methodologies. A second
active device layer can make repeater insertion and associ-
ated floorplanning issues trivial [47].
7In addition, the modern use model for floorplanning en-
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2.3 Overconstrained Shaping
Soft floorplan blocks are created by partitioning and reclus-
tering of RT-level HDL code. Each block contains hundreds
or thousands of standard cells, and is hence very granular.
The granularity of the layout resource is even finer: cell row
pitch (a few routing tracks) in the vertical dimension, and
site width (less than a single track) in the horizontal dimen-
sion. We make several observations.

• Restricting pre-synthesis or pre-place-and-route soft
blocks to rectangular, L- or T- shapes is an overcon-
straint. Even if hard blocks and synthesized datapaths
with regular structure are present in the netlist, most
blocks will be amenable to non-rectangular shaping.8

• Even though “round” blocks with low aspect ratio help
wire estimation, this does not mean that block shapes
can have only four, six or eight sides (rectangle, L, T
respectively). Roundness of a polygonal shape, in fact,
has very little to do with the number of sides.

• No requirement for particular block shapes arises from
the downstream place-and-route tools. For example,
irregular block outlines can be handled by balance con-
straints in a partitioning-based approach (similar to
how PDEF3.0 region constraints are handled in top-
down placers today). Analytic placers can also impose
region constraints at appropriate levels of granularity
to reflect complex block shapes.

• Finally, it is not even necessary for the blocks to be
non-overlapping as long as there is sufficient cell area
assigned to all blocks. As noted in the previous foot-
note, arguably blocks should overlap and intermingle
their contents. One possible formulation is to allow
any given hierarchy block to cover its footprint with
varying “depths” (i.e., densities with respect to avail-
able sites). Then, a legal floorplan solution is one that
has total depth = 1 everywhere.9

2.4 Underconstrained Layout Region
The classical floorplanning literature treats the die area as
having constrained aspect ratio, but unbounded size. The
objective is to “find the packing with smallest containing
die”. In reality, the use of floorplanning during the chip
synthesis process almost always comes after the die size and
package have been chosen. Thus, floorplanning should be

tails partial and probabilistic information, as well as many
types of ECOs. Thus, an ideal framework should deliver
incremental and anytime [6] solutions.
8Color plots of logic hierarchy vs. final placed location in
highly optimized, flat placements show that cells of hierar-
chy blocks tend to intermingle at the block boundaries. Ac-
cordingly, terms like “amoeba placement”, “flexible block”,
etc. abound in the commercial EDA world today. For logic
that is not built into a given system-on-chip platform, hard-
IP reuse is likely to decrease because of rapid scaling and
divergent process recipes. Thus, there will be more “soft-
ness” in the part of the design that is synthesized from RTL
to layout.
9For example, two blocks with equal amounts of cell area
could be placed into adjacent disjoint regions, with each
block having depth = 1 in its respective region. An alterna-
tive would be to place each block with uniform depth = 1/2
into the union of the two regions. This idea was first pro-
posed in 1987 by Prof. T. C. Hu in the context of a “TACP”
(tentative assignment and competitive pricing) approach to
placement.

cast as a fixed-die problem, and the packing must simultane-
ously achieve zero whitespace and zero overlap for the given
choice of fixed die. Current formulations do not enforce this
constraint.

3. PERFECT RECTILINEAR FLOORPLAN-
NING

In this section, we describe a new perfect rectilinear floor-
planning problem (PRFP) formulation that addresses many
of the above issues. The discussion draws largely on the
presentation in [9]. The PRFP formulation entails (i) a
fixed-die, zero-whitespace layout region into which rectilin-
ear blocks must be perfectly packed; (ii) discreteness con-
straints on vertical edges in block boundaries (corresponding
to row pitch in standard-cell layouts); and (iii) rectilinear
blocks that may be continuously shaped while maintaining
fixed area.

Our premise is that no matter how good the block packer is,
there will be whitespace and overlaps in its solution. PRFP
welcomes such “global floorplanning solutions”, and turns
them into zero-whitespace, zero-overlap “detailed floorplan-
ning solutions” with minimum perturbation.

3.1 An Example PRFP-Based Flow
An example flow built around the PRFP formulation might
be as follows.

1. RTL partitioning to create blocks. Hierarchy-aware,
bus structure-aware aware, timing constraint-aware re-
cursive 2- and k-way partitioning engines can be built
from existing algorithm components in the literature.
An important open research issue addresses the inter-
action between the block definition process (i.e., the
partitioning objective and constraints) and the floor-
plan quality that is achievable with the resulting set
of blocks.

2. Global floorplanning to create a connectivity- and timing-
driven, near-legal floorplan. The result of global floor-
planning can have whitespace and overlaps. We be-
lieve that the key technologies for global floorplanning
will be based on recursive top-down partitioning, since
this affords a spatially convergent creation of the em-
bedding. At the top levels of the physical hierarchy,
packing effects are negligible. At the bottom levels
(e.g., < 10 blocks), branch-and-bound end case shap-
ing/packing can be applied to packing representations
such as O-trees.

3. Detailed floorplanning to obtain a set of rectilinear
block shapes with zero-whitespace and zero-overlap.
The detailed floorplanning solution should be as close
as possible to the global floorplanning solution, and
the complexity of block outlines should be minimized
(see the discussion of shape metrics, below). Top-level
routing and pin assignment can be performed in iter-
ation with both global and detailed floorplanning.

4. Generic standard-cell placement to achieve a legal, timing-
and routability-driven gate-level placement that re-
spects detailed floorplan block outlines (if not as region
constraints, then as “suggestions”).

This PRFP-based flow doubtless resembles existing RTL-
down methodologies. However, it is more direct in exploit-
ing the flexibility and high quality of standard-cell place-
ment (which typically follows block placement and logic
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synthesis). It is consistent with flows in which standard-
cell block synthesis and place-and-route follow after (soft-
block dominated) RTL floorplanning (i.e., PRFP serves ei-
ther as a cleanup step after traditional floorplanning, or as
the end-case optimizer for recursive partitioning-based floor-
planning). The logic synthesis and timing optimizations oc-
cur in “coarse mode” at the beginning of Step (3), and in
“detailed mode” at the beginning of Step (4). There is it-
eration. PRFP also removes unnecessary and artificial con-
straints on the floorplan solution that stem from the tradi-
tional “block packing” perspective; it reduces the pressure
on block packing algorithms and allows more connection-
centric (rather than packing-centric) approaches to be used.

3.2 Some Details of Detailed Floorplanning
We now sketch some thoughts on the PRFP-based detailed
floorplanning part of the above flow. We are given n rectan-
gles R1, . . . , Rn (some of them are overlapping) in the layout
region, as illustrated in Figure 1(a).10 The layout region is
a “global” rectangle with fixed width W and height H. We
have that the sum of the areas of rectangles is equal to the
area of the layout region (W ·H).

Turning the global floorplan into a detailed floorplan essen-
tially means that overlaps must be migrated toward whites-
pace, and vice-versa, until both disappear. This area migra-
tion (legalization) entails the following subproblems.

P1. Find all intersecting pairs of rectangles (overlapping or
touching each other); and

P2. Find all white simple rectilinear polygons (white spaces
that exist in the layout region because of overlapping
rectangles) and their areas.

Subproblem P1 can be solved in O(n2) time directly, or op-
timally in O(nlogn+s) time (where s is the number of inter-
secting pairs) by using plane-sweep techniques supported by
interval trees (see pp. 359-363 in [1]). Subproblem P2 can
be solved as follows (see pp. 13-15 and 340-347 in [1]). Using
a plane-sweep technique supported by segment trees, deter-
mine the contour of the union F of n rectangles R1, . . . , Rn,
i.e., a collection of disjoint cycles composed of (alternating)
vertical and horizontal edges. This is illustrated in Figure
1(b).

By convention, any edge is directed in such a way that
we have the figure on the left while traversing the edge.
This is equivalent to saying that a cycle is oriented clock-
wise if it is the boundary of a hole (i.e., an inner whites-
pace), and counterclockwise if it is an external boundary
of a connected component. Since all rectangles are in the
layout region (global rectangle of size W ∗ H), external
boundary cycles are located inside of the global W ∗ H-
rectangle. So, the holes and the regions between the bound-
ary of the global W ∗H-rectangle and the external boundary
cycles comprise our simple rectilinear polygons of whites-
pace. (See Figure 1(c).) The time complexity of this ap-
proach is O(nlogn + p log(n2/p)), where p is the number
of edges in the contour that we find. Note that here we
can have some flexibility to shift the global W ∗H-rectangle
horizontally within a range of W − (xmax−xmin) units and

10The input does not have to consist of rectangular block
shapes. We use this for simplicity, and to emphasize that
detailed floorplanning can be applied to results of existing
block packers.

vertically within a range of H − (ymax − ymin) units (here,
xmin is the leftmost x-coordinate of the vertices of rectan-
gles, xmax is the rightmost, etc.). By slightly moving the
global W ∗H-rectangle, we may improve the distribution of
white spaces with respect to the distribution of the overlap-
ping areas. Finally, the area of a simple rectilinear polygon
with k vertices can be computed in O(k) time (e.g., [10]).

Given all this information, we can build a graph G = (V, E)
(see Figure 1(d)):

• With each rectangle associate a blue node (so, p1, ..., pn);

• With each simple white subpolygon, a white node (so,
w1, ..., wm);

• Draw an edge between pi and wj iff these polygons
share a common boundary;

• Draw an edge (pi, pj) iff Ri and Rj share a common
boundary but do not have a common inner point;

• Between each Ri and Rj which share a common inner
point (i.e., intersect each other) draw an edge (pi, pj).
Furthermore, associate with this intersection an addi-
tional red vertex sij and draw two edges (sij , pi) and
(sij , pj).

Using this graph, we can find efficient ways to migrate area
from overlap-spaces to white-spaces. A resulting iterative
greedy heuristic for area migration (legalization) might be
as follows.11

while there is a white subpolygon

do choose a white subpolygon w of largest area

using the graph G find the closest to w red vertex r

migrate area of size x = min{area(w), area(r)}

from r to w along a shortest (r, w)-path

put area(r) = area(r)− x, area(w) = area(w)− x

if area(r) = 0 then delete r from G

if area(w) = 0 then delete w from G

update the graph G

At each iteration of the algorithm, we obtain a migration
path and an amount of area to migrate from an overlap-
space to a white-space. For example, for an edge (v, u) of
the (r, w)-path connecting two blue vertices or a blue vertex
with a white vertex, x gives us the area that must migrate
from polygon pv to polygon pu (polygon pv borrows an area
of size x from polygon pu). For details, see [9]. Note that mi-
grating area of size x from an overlap-space to a white-space
can change the adjacency between vertices in the graph G

11Other approaches are discussed in [9]: flow and/or trans-
portation approaches can operate on a structure similar to
the dual graph of the floorplan; physical-analog systems can
be simulated; and geometric matching techniques can also
be used to match up overlap with nearby whitespace.
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Figure 1: (a) A global floorplanning result (rectangles); (b) the contour (defining whitespace); (c) whitespace
and overlap within the layout region; and (d) the corresponding graph.

(e.g., pi and pj are no longer neighbors, or they become
neighbors). So, after each iteration our graph can change
and we must update G.

The above approach (and other intuitive heuristics) gener-
ally entail solving the following subproblems many times
over.

P3. For two given simple rectilinear polygons Pi, Pj , that
touch each other, find their common boundary Γij - a
collection of disjoint chains composed of (alternating)
vertical and horizontal edges belonging to boundaries
of both polygons;

P4. Find a way to simplify the shape of Γij while trans-
ferring an amount of area x from Pj to Pi (without
disconnecting either of these polygons).

Subproblem P3 can be directly solved in O((|Pi|+|Pj |)log|Pi|)
time. Subproblem P4 is the key to delivering a reasonable
detailed floorplanning result via area migration: it enables
chains of “area borrowing” between regions. Addressing P4
first requires a formal objective that captures “simplicity”
of a shape. To this end, we know that for a fixed area, the
perimeter of an object increases as it becomes more irregu-
lar in shape. Hence, we can use the perimeter of a polygon
as a measure of its shape irregularity. (For example, the
perimeter of a rectilinear object is minimized if the object
is square-shaped.) Subproblem P4 is thus formalized as [9]:

Given two simple rectilinear polygons P1 and P2 that touch
each other, and their common boundary Γ12. We assume

P1

P2

Figure 2: Two polygons with common boundary.

that Γ12 is connected, i.e., it is a chain of (alternating) ver-
tical and horizontal edges belonging to boundaries of both
polygons (see Figure 2). If Γ12 is not connected, then we
can work on each connected part separately.

We seek to redraw the common boundary Γ12 so as to define
two new polygons P ′1 and P ′2 in such a way that the length
of the new common boundary Γ′12 is minimized, subject to

• both P ′1 and P ′2 are simple rectilinear polygons;

• P1 ∪ P2 and P ′1 ∪ P ′2 are equal;

• area(P1) = area(P ′1) + x, area(P2) = area(P ′2) − x,
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where x is a given value; and

• area(P1∩P ′1)

area(P1)
≥ c, where c is a given constant.

Although this problem is NP-hard [9], it appears to be amenable
to effective heuristics within a PRFP-based flow. Notice
that the variant of the problem when x = 0 is also of in-
terest since we may want to improve the boundary between
two polygons without borrowing any area (simply to make
the shapes of polygons more regular); see also [24].

4. CONCLUSIONS AND OPEN QUESTIONS
In this paper, I have tried to marshal support for a some-
what extreme and provocative title, “Classical Floorplan-
ning Harmful?”. Of course, classical floorplanning has pro-
vided great benefits to researchers and designers alike, and
any attempt to box its rich literature into a “strawman”
is bound to displease some. Nevertheless, there are indeed
several ways in which “classical floorplanning formulations”
have diverged from real-world physical chip implementation
requirements. The PRFP-based flow shows that it is possi-
ble to remain purely connectivity- and timing-driven until
very late in the “floorplanning” game, and that packing can
be made into a virtual non-issue. The question of whether
this is still floorplanning, or simply a retargeting of top-down
placement, is more than a matter of semantics: it highlights
the need to identify unique and differentiating aspects of
floorplanning within today’s convergent, performance-driven
spatial embedding methodologies.12

I will conclude with a few research directions.

• Flexibility metrics. Intuitively, flexibility in a floor-
planning instance should capture the amount of cor-
relation between minimum-wirelength solutions and
minimum-whitespace solutions. Given the same block
netlist and areas, a more flexible variant of the floor-
planning instance (e.g., with more allowed shapes for
each block) should be packable with less whitespace
than a less flexible variant, while achieving the same or
better wirelength. Alternatively, flexibility indicates
the length scale at which localization starts to interact
with packing. Interesting metrics have been proposed
in [5] and [45], but finding a good metric with strong
empirical validation is still open.

• Shape metrics. As detailed floorplanning turns a global
floorplan into a perfect, zero-whitespace, zero-overlap
solution, it should change the initial solution as little
as possible. Thus, one possible objective function is
the sum of shape distances between the original and
final shapes. Since two-dimensional shapes are spec-
ified by the planar curves forming their boundaries,
it is natural to seek a formal measure of how similar
two given curves are to each other. There is a rich
literature, encompassing the Hausdorff metric [2], the
Frechet metric [3], similarity measures that are invari-
ant under similitude transformations [20] [4], Fourier
descriptors [26] [33], tree matching [35], etc. However,
none of these metrics satisfies even simple desiderata

12The methods proposed for achieving global floorplans
are essentially placement methods: recursive partition-
ing, and/or analytic placement with appropriate spreading.
These appear to have better scalability than iterative-search
methods, and better solution quality than greedy methods
such as cluster-growth or certain zone-refinement variants.

for our PRFP context. An ideal shape metric should
distinguish between changes of aspect ratio, penalize
complex shapes, encourage blocks to remain as close
to their original locations as possible, and be quickly
computable [9].

• Partitioning objectives that yield friendly floorplanning
instances. As noted above, no research has yet ad-
dressed the interaction between the block definition
process (i.e., the RTL partitioning objective and con-
straints) and the floorplan quality that is achievable
with the resulting set of blocks. However, this issue
must be understood for the best solutions to remain
attainable as far down into the design process as pos-
sible.
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