
Copy Detection for Intellectual Property Protection of VLSI Designs�

Andrew B. Kahng, Darko Kirovski, Stefanus Mantik, Miodrag Potkonjak and Jennifer L. Wong
fabk,darko,stefanus,miodrag,wongjeng@cs.ucla.edu

UCLA Computer Science Dept., Los Angeles, CA 90095-1596

Abstract

We give the first study of copy detection techniques for VLSI
CAD applications; these techniques are complementary to pre-
vious watermarking-based IP protection methods in finding and
proving improper use of design IP. After reviewing related litera-
ture (notably in the text processing domain), we propose a generic
methodology for copy detection based on determining basicele-
mentswithin structural representations of solutions (IPs), calculat-
ing (context-independent) signatures for such elements, and per-
forming fast comparisons to identify potential violators of IP rights.
We give example implementations of this methodology in the do-
mains of scheduling, graph coloring and gate-level layout; experi-
mental results show the effectiveness of our copy detection schemes
as well as the low overhead of implementation. We remark on open
research areas, notably the potentially deep and complementary in-
teraction between watermarking and copy detection.

1 Introduction

With more functionality integrated on a single chip and shorter
design cycle times, design reuse methodologies have become a
focal point of industrial and academic activities. To enable the
reuse-based paradigm and its associated business model, intellec-
tual property protection (IPP) is an essential prerequisite: the rights
of both the IP provider (owner, creator) and the IP buyer (user, in-
tegrator) must be protected.

There are two main approaches to IPP:preventionof unautho-
rized use, anddetectionof unauthorized use. Techniques for pre-
vention, which are analogous to “locks” on the IP, include encryp-
tion, legal infrastructure, and closed infrastructures for IP dissem-
ination. Techniques for detection, on the other hand, are aimed at
discovering illegal copies of IPafter the “locks” have been bro-
ken.1 In the VLSI CAD realm, the constraint-based watermark-
ing approach to IPP has received particular attention [16]: it pre-
vents misappropriation by indelibly embedding the owner’s signa-
ture into an IP, so that if an illegal copy is found the true owner’s
rights can be established. However, the utility of watermarking is
mostly after an illegal copy of IP has been found. The question of
how to find the illegal copy in the first place – thecopy detection
problem– has not yet been addressed for VLSI CAD.

We informally define the copy detection problem as follows:
Given a library of nregisteredpieces of IP, and a new unregistered
piece of IP, determine if any portion of any registered IP is present
in the unregistered IP.This definition reflects the use model for, say,
a foundry which runs a copy detection program on any incoming
design at the level of GDSII Stream representation. Copy detec-
tion is clearly complementary to existing watermarking-based IPP

� This research was supported in part by NSF under grant CCB-9734166, by a
grant from Cadence Design Systems, Inc., and by the MARCO/DARPA Gigascale
Silicon Research Center.

1Note that in many contexts, “locks” such as proprietary reader/writer hardware,
secure networks, etc. can harm the traditional business model. This increases the
importance of detection in achieving IPP.

techniques; below, we will show that it can also be enhanced by
watermarking techniques.

1.1 Related Work

While our work gives, to the best of our knowledge, the first effort
on copy detection in CAD, there is a large body of related research
in several fields.

Research on copy detection and plagiarism started in the early
1970s mainly as a technique for preventing widespread program-
ming assignment copying [26] and to help support software reuse
[19]. Over time a number of increasingly sophisticated techniques
have been developed for programming assignment copy detection
[12, 25, 29]. Most recently, even fractal and neural network-based
techniques have been proposed for this task [23, 28].

The research closest to that presented in this paper has been
conducted in the database community, notably for text copy detec-
tion; cf. techniques developed at Stanford [5, 27] and elsewhere
[21]. A key approach is to find “signatures” (e.g., by hashing)
of syntactically meaningful fragments (e.g., words or paragraphs),
then create “term-document” or other incidence matrices that cap-
ture the presence of fragments within documents or IPs. Such in-
cidence matrices are captured for all elements of a library of regis-
tered IPs. Then, when presented with a new IP, the copy detection
system chunks the IP into fragments, and looks for matches of sig-
natures in its library.

Copy detection for VLSI CAD has been mainly performed at
the layout level, where there is a need to eliminate or reduce redun-
dant computation during VLSI artwork analysis (design rule check-
ing, layout-versus-schematic (LVS) and pattern-based parasitic ex-
traction). Techniques include isometry-invariant pattern matching
[6, 22] and fast subgraph isomorphism algorithms [24].2 Some-
what related work addresses template matching at various levels of
the design process, where a design is covered by smaller templates
available in a given library [15, 9].

A third area of related work is in string matching, which has re-
ceived a great deal of attention since the early 1970s; see [1] for an
excellent review. Several exceptionally effective algorithms have
been proposed for rapid string matching in text [4, 18, 17]. Awk
[2] is a popular and powerful programming language that greatly
facilitates development of tailored pattern scanning and processing
software. Finally, a number of copy detection techniques have been
developed in biotechnology [3] and image processing [11].

1.2 Contributions

Unique requirements for copy detection arise in the VLSI CAD
context, including “invariance” of various design representations
under hypergraph isomorphism, alternative spatial embedding,
scaling and rotation, renaming, etc.3 Hence, our work differs from

2LVS essentially assumes that it knows what has been copied (i.e., the schematic
into the layout), and simply verifies the isomorphism. However, in our domain we do
not knowa priori what, if anything, has been copied.

3The VLSI CAD domain also offers an interesting scale reversal when compared
to, e.g., the web-text domain. A foundry may have only thousands of registered design



those reviewed above in several key aspects, including our domain,
our algorithmic and statistical techniques, and our detection goals.
In Section 2, we propose a generic methodology for copy detec-
tion which efficiently identifies potential violations of IP rights.
Section 3 describes example implementations of copy detection in
the domains of scheduling, graph coloring and gate-level layout.
Experimental results show the effectiveness of our copy detection
schemes, as well as the low overhead of implementation. We con-
clude in Section 4 with areas for future research, including potential
synergies between watermarking and copy detection.

2 A Generic Copy Detection Methodology

Our generic copy detection methodology has the following ele-
ments.

� For the given application domain, we identify a common
structural representation of solutions (IPs), as well as what
constitutes an “element” of the solution structure. Examples
of such elements might include vertices in a netlist hyper-
graph, placed locations of edges in a custom layout, macros
in a hierarchical GDSII Stream description of layout, steps in
a schedule, and so on.

� For a given element type, we identify a means of calculat-
ing locally context dependentsignatures for such elements,
i.e., signatures that are functions of only an extremely local
neighborhood of the element.

� Optionally, to speed comparison of IPs, we identify rare
and/or distinguishing elements of a registered IP (cf. “ice-
berg queries” in [10]), and/or a hierarchy of signature types
that may lead to faster filtering of negative (no match) com-
parisons.

� We develop fast (ideally, linear in the sizes of the IPs) com-
parison methods to identify suspicious unregistered IPs, e.g.,
by rare combinations of rare signatures.

Subsequently, more detailed examination of suspicious IPs can
be performed.

3 Specific Techniques and Experiments

3.1 Example: Scheduling in High-Level Synthesis

In this subsection, we define the objectives and methods for copy
detection of programs used in system-level synthesis. An IP con-
sists of a number of high-level procedures linked in an arbitrary
fashion (e.g., DCT, vector motion compensation in MPEG). We as-
sume:

� the adversary extracts a procedure or an entire library from
the IP (e.g., DCT), and embeds the extracted code into his/her
design;

� the adversary relinks the extracted procedures in an arbi-
trary fashion but without significant modification of the actual
specification within each of the procedures; and

� the adversary may inline a procedure in the newly created
specification or conduct peephole (local) perturbations.

IPs, but each may contain many millions of syntactic fragments. By contrast, the
World-Wide Web contains millions of IPs, but each contains at most thousands of
syntactic fragments.

We adopt this set of assumptions because of common risks involved
in code obfuscation [8] and requirements for hardware-software
maintenance (e.g. patches, incremental synthesis).
The goal of the copy detection algorithm is to detect all procedures
that have been copied from the original software. To perform this
task, we have developed a copy detection mechanism operating
at both the instruction selection level and the register assignment
level; only the former is described here.

We state the problem of copy detection for high-level synthe-
sis as follows. Given a setP of registered instruction sequences
(procedures) of arbitrary lengths, and asuspected(i.e., suspicious)
instruction sequenceS, find the subsetP0 � P consisting of all in-
struction sequences (procedures)Pi 2P that occur inS(i.e.,P0 is a
maximal subset such that8Pi 2 P0, Pi 2 S).

Find probabilitypi of occurrence of each symbolai from
alphabetai 2A in a given setP of code sequences.

Select a subsetB of symbols from alphabetB � A
such that8ai 2 B , pi > 0_ pi < ε.

PoolPatterns= empty.
For eachPi 2 P

Identify locations of all symbols fromB .
Create a patternpat for eachK-tuple of symbols fromB ,
with max distanced among elements of theK-tuple (d < θ).

Add pat(symbols;distanceMatrix) to PoolPatterns.
EndFor
Select the least frequentM patterns fromPoolPatterns.
Find a subsetC � B of symbols that covers all patterns
from PoolPatternsM and has the smallest sum of
occurrence probabilities.

For eachelementc2 C
If c2 S

For eachpatternpat2 PoolPatternsM that containsc
If corresponding symbols are at locations
specified byc:distanceMatrixsignalpat is found.
The locations of symbols are verified in increasing
order of the symbol’s probability of occurrence.
If pat is found

Perform pattern matching to verify copy [17, 13].

Figure 1: Pseudo-code for software copy detection at the instruc-
tion selection level (pre-processing and detection).

To address this problem, we have developed an algorithm that
uses probabilistic bounded search to identify copies. The algorithm
is described in the pseudocode of Figure 1. We define a set of sym-
bolsA, the alphabet, which corresponds to the machine instruction
set. Letpi be the frequency of occurrence of symbolai 2 A in a
given setP of code sequences. The algorithm initially determines
the value ofpi for all ai . Then, a subsetB � A of symbols from
the alphabet is selected such that for each symbolbi 2 B the prob-
ability of its occurrence is greater than zero and smaller than a pre-
determined constantε (0 < pi < ε), whereε is the bound for the
probabilistic search.

For each procedurePi 2P, the algorithm identifies the locations
of all symbols fromB. We consider “signatures” based onK-tuples
of symbols fromB. In particular, we find allK-tuples for whichd,
the maximum distance between any two elements of theK-tuple, is
less than a prescribed valueθ. The algorithm then creates a pattern
pat for each suchK-tuple. Due to the possibility of basic block
reordering, the distance between two symbols is computed accord-
ing to the distance in the dynamic execution. In addition, due to
possible instruction reordering, symbols are not searched at exact
distances, but within a neighborhood (of cardinalityN) of the exact
location.4 Parametersε, K, N, andθ are selected such that all pro-

4The value of parameterN determines the sensitivity of the copy detection pro-
cess. Larger values enable the algorithm to handle greater perturbations by instruction
reordering, but increase runtime since more patterns are generated.



cedures fromP contain at least one pattern. The probability that a
specific pattern appears in a code sequence is:

Probfpat� Sg= ∑K
i=1 ∏i

j=1(1� (1� pcj2pat)
N)

All identified patterns are stored in a pool of patterns,
(PoolPatterns). Each pattern is represented using its symbols and
the matrix that specifies the distances between symbols. To reduce
the sample of IP code selected for comparison, the algorithm selects
a set ofM least frequent patterns fromPoolPatternsthat cover all
procedures fromP; this is called theconstrained PoolPatternsset.
The algorithm also identifies a subsetC � B of symbols that cover
all patterns from the constrainedPoolPatternsand has the smallest
sum of symbol occurrence probabilities.

Finally, the suspected sequence of instructions is sequentially
parsed for symbols fromC . If a symbolc 2 C is found, all pat-
terns that containc are matched using their distance matrices for
occurrence of the remainder of their symbols. The remaining sym-
bols are searched in the order of their occurrence probabilities. If
a specific pattern is identified inS, the algorithm performs an exact
pattern matching of all procedures that containpat andS to verify
the copy detection signal [17], or else performs nonexact pattern
matching using thediff utility program [13].

Application Suspected IP Proc- PFA CPU time
Code Size edures detection

JPEG encoding 391 24 3:3�10�7 1.8s
JPEG decoding 379 24 1:8�10�8 1.2s
PGP encryption 443 36 2:1�10�9 3.2s
MPEG decoding 114 17 5:2�10�11 2.9s
G.721 encoding 26 4 9:1�10�5 0.0s
GSM encoding 98 8 8:1�10�7 0.7s

Table 1: Effectiveness of the copy detection mechanism for behav-
ioral specifications.

Experimental Confirmation

We have performed a set of experiments to evaluate the ef-
fectiveness of the copy detection mechanism for behavioral
specifications. We use the standard multimedia benchmark
applications [20], Sun’s UltraSparc instruction set and its
instruction-set simulator SHADE [7]. In the preprocessing
step, for the set of applications shown in Table 1, we identify
the distribution of occurrence of instructions as well as the
required distance matrices for all established patterns. Since the
volume of data is large, we have stored detailed histograms at
http://www.cs.ucla.edu/~leec/mediabench/applications.html.
Because the performance of the copy detection mechanism is
by and large based on the statistical analysis of the IP code, the
approach performs lengthy explorations in the pre-processing step
with an objective to increase the performance of the algorithm (i.e.,
lower Probfpat � Sg). While the pre-processing step took, on
the average, 46 hours for a single application, the actual detection
process required in all experimental cases is less than 10 seconds.
Table 1 shows the obtained results for the detection process.
Column 1 shows the name of the application; Column 2 shows the
size of the suspected code and the number of procedures; Column
3 shows the number of “original” procedures; Column 4 shows the
cumulative probability of false alarmPFA; and Column 5 shows
the CPU time for the detection process. For all IP procedures,
the probability of detection was 100%. As presented in Table 1,
the probability of a false alarm, accumulated for all considered

patterns, quantifies the performance of the algorithm because it is
proportional to the number of negative tests due to exact pattern
matching.

3.2 Example: Graph Coloring

We have developed a similar copy detection strategy for graph col-
oring. The graph coloring problem has many applications in CAD
and software compilation, mainly related to resource assignment
problems. The copy detection algorithm for solutions to the graph
coloring problem contains two subprocedures. The first subproce-
dure identifies the coloring pattern and the structure of a subgraph
S of the interval graphS 2 G of the synthesized IP. SubgraphS
is selected using a statistical methodology that targets inclusion of
nodes with characteristics that are unique or infrequent throughout
G (e.g. number of neighbors, cardinality of the color class, num-
ber of edges in all neighbors, etc.). It is important to stress that the
coloring of the selected subgraph is memorized as a relative col-
oring (i.e., only difference in colors is stored, rather than usage of
particular colors).

In the second subprocedure, the algorithm tries to determine
whether the suspected design (i.e. its interval graph)D contains
a colored subgraph equivalent toS . To achieve this, the detection
procedure searches for a particular structure and its relative color-
ing using a search guided in the increasing likelihood of a particu-
lar node constraint. If the comparison procedure returns a positive
comparison, then the entire original IP is matched against the sus-
pected design in an exhaustive search. The exhaustive search is
greatly facilitated by the fact that most unique parts of the colored
graphs are already matched in the previous phase.

Experimental Confirmation

We have tested our copy detection approach on a set of graph color-
ing examples. The first step was to identify common patterns on a
large set of random and compiler-produced graphs. To identify 100
patterns of length 8 to 15 on a set of 100 large graphs (the num-
ber of nodes was between 200 and 4,000), we required slightly less
than 3 days of run time on a Sun Ultra-5 workstation. Note that
this is one-time expense. Next, we embedded 20 of test graphs in
large graphs and mixed the graphs within a set of 200 graphs. We
were able to identify all 20 graphs. Although there were 41 false
alarms in the first phase, all were detected within the first second of
attempted detailed matching. The total run time for copy detection
was 125 minutes.

3.3 Example: Gate-Level Netlist

In the automated place-and-route domain, we seek to protect a gate-
level cell netlist that may contain embedded placement informa-
tion. Such a design artifact typically arrives in Cadence Design
Systems, Inc. LEF/DEF interchange format; we parse this to yield
a netlist hypergraph with pin direction information. The funda-
mental test for netlist copying isisomorphism checking, i.e., find-
ing subhypergraphs of one (unregistered) netlist in another (regis-
tered) netlist. Isomorphism checking is essentially near-linear time
for rigid graphs, i.e., graphs without automorphisms – and this in-
cludes almost all graphs (cf., e.g., [24] in the VLSI CAD literature).
Nevertheless, we must stillfilter calls to isomorphism checkers, be-
cause there are so many subhypergraphs that are potentially subject
to copying. Filtering depends on (a hierarchy of) comparisons that
span a continuum between “coarse” and “detailed”, and is what en-
ables practically useful methods.5

5For example, checking whether two chips’ netlists have the same number of cells,
same number of macro types, same sorted cell degree sequences, same number of con-



Our filtering approach is based on finding a “signature” for each
individual cell (i.e., vertex in the netlist hypergraph) using a simple
encoding of the cell’s neighborhood. Specifically, we record for
cell ci the sequence of values:6

� jNi;1j = the cardinality of the set of distinct nets incident to
ci ,

� jCi;1j = the cardinality of the set of distinct cells on the nets
in fNi;1g,

� jNi;2j = the cardinality of the set of distinct nets incident to
the cells infCi;1g, etc.

Several practical considerations arise. (1) Because the diame-
ter of a netlist hypergraph is not large, and because we would like
such signatures to identify specific cells even in a small fragment
of the original netlist, we record only the firstk elements of this
sequence (in our experiments below, we usek = 6). On the other
hand, to increase the likelihood that such sequences can uniquely
determine a match, we actually compute such sequences in several
variants of the hypergraph, corresponding to deleting hyperedges
whose degree exceeds some thresholdd. (In the experiments be-
low, we generate three sequences for each cell, corresponding to
d = 4;7;10.) We also break each entry of the sequence into sub-
entries according to pin direction (in, out, in-out). Thus, there are
6� 3�3 = 54 numbers in each cell’s sequence. (2) Finding one
match of all 54 numbers in a sequence is much rarer than, say,
three different matches of 18 numbers. To capture this, we give ge-
ometrically morecredit for a longer match, e.g., credit= 2b(x�1)=9c,
wherex is the number of positions in which two sequences’ entries
match. (3) Finally, because we do not wish to spend CPU time
comparing all cell sequences from the unregistered IP against all
cell sequences from the registered IP, we lexicographically order
the entries of the 54-number sequences with all entries due toi = 1
before entries due toi = 2, etc. Furthermore, we adopt the conven-
tion that the number of positions in which two sequences match is
simply given by the length of the longest common prefix of both
sequences. In this way, finding thebestmatches forall sequences
of the unregistered IP, within the list of sequences for the registered
IP, is accomplished in linear time by pointer-walking in two sorted
lists. Hence, we do not need to resort to use of “rare” signatures for
complexity reduction.7

Experimental Confirmation

We have applied the above procedure to compute cell sequences for
6 industry standard-cell designs in LEF/DEF format. The number
of cells in the designs (Cases A - F) are respectively 3286, 12133,
12857, 20577, 57275 and 117617. Cases E and F are from the
same design team and may contain common subdesigns. Table

nected components, etc. are all coarse but potentially effective comparisons; checking
isomorphism is a detailed comparison.

6Even if some sequences are the same, this does not mean that the netlists are
isomorphic. However, the procedure will leave only a few candidates for stolen IP
fragments, and these can be checked in essentially linear time. Vertices can also be
annotated with information (logic type, hierarchy level, etc.) to induce corresponding
marked degree sequences, as discussed below – again, this is to produce a staged
“filtering” before applying detailed isomorphism tests.

7We have also considered copy detection in polygon layouts that may have been
exposed to migration and compaction tools during copying. We initially filter macros
by signatures according to simple attributes (number of features per layer, size, etc.).
A second filter (before actual isomorphism checking) uses vertex signatures in “con-
flict graphs” defined over features in the layout; in a conflict graph, the number of
vertices equals the number of layout features, and there is an edge between vertices if
corresponding features are within distanced of each other (varyingd induces a family
of such graphs). Whend is significantly larger than the minimum feature size/spacing,
then slight changes in layout will not affect the conflict graph.

2 shows the total matching credits when Casei is matched into
Casej , i.e., the best match for each cell in Casei is found within
Case j . Table 3 shows the total matching credits when aportion
of Casei (a connected component of 500 cells, found by breadth-
first search from a randomly chosen cell) is matched into Casej .
(Here, the results are averaged over three separate trials.) We ex-
press the total matching credit as a percentage of the maximum
possible total credit. In our current use model, all registered IPs
are checked against the unregistered IP. Hence, we are able to see
which IPs have higher matching credits relative to the other IPs.
Typically, matching percentages for non-copied IPs are in a fairly
narrow range, while those of copied IPs are significantly higher.8

We see that the proposed signature scheme very effectively identi-
fies the correct potential matches.

Weighted Matching Between Full Designs
A B C D E F

A 100% 7.99% 2.90% 4.19% 2.84% 2.84%
B 2.89% 100% 1.27% 2.12% 1.26% 1.26%
C 0.77% 0.76% 100% 1.20% 0.72% 0.73%
D 2.69% 2.79% 0.42% 100% 0.33% 0.33%
E 0.25% 0.36% 0.25% 0.24% 100% 30.3%
F 0.16% 0.27% 0.16% 0.15% 28.7% 100%

Table 2: Matching percentage between two full designs, based on
weighted sum of credits. The matching percentage between Cases
E and F may be high because of potential reused IP between these
designs.

Weighted Matching of Partial vs. Full Designs
Partial Full Designs

Designs A B C D E F
A 32.6% 8.24% 6.41% 7.21% 6.28% 6.28%
B 5.95% 14.6% 4.80% 6.46% 4.59% 4.59%
C 4.03% 4.03% 19.3% 4.40% 3.98% 3.98%
D 11.2% 12.7% 10.8% 23.6% 10.6% 10.6%
E 6.46% 6.50% 6.43% 6.41% 13.6% 10.1%
F 5.49% 5.63% 5.45% 5.44% 7.13% 15.8%

Table 3: Percentage of matching between partial design and full
design with weighted sum of the credits. Each entry is an average
over three experimental trials.

4 Conclusions and Ongoing Research

In conclusion, we have given the first study of copy detection
techniques for VLSI CAD. Our methods complement the previous
watermarking-based IP protection literature. Our generic method-
ology for copy detection is based on determining basicelements
within structural representations of solutions (IPs), calculatinglo-
cally context-dependentsignatures for such elements, and perform-
ing fast comparisons to filter potential violators of IP rights. Ex-
ample implementations in the scheduling, graph coloring and gate-
level layout domains show the effectiveness and low implementa-
tion overhead of our methods. Ongoing work addresses improve-
ments to scalability of our methods, as well as automatic determina-
tion of thresholds for suspicion of copying. Open areas for research

8Note that in Tables 2 and 3, there was a big difference between matching of Case
E and Case F and matching between any other case and Case F. Larger IPs will tend to
afford better distinction between copied IPs and non-copied IPs, as seen by comparing
the two Tables.



include: (i) the potentially deep and complementary interaction be-
tween watermarking and copy detection, e.g., if watermarks can be
introduced to facilitate copy detection; (ii) development of copy de-
tection methods that are more immune to topology changes such as
buffering, fanout clustering, complementation, etc.; and (iii) devel-
opment of automated techniques to trace the “genealogy” (genes
and ancestors) of given pieces of design IP, much along the lines of
phylogenetic trees in bioinformatics.

References
[1] A.V. Aho, “Algorithms for Finding Patterns in Strings”,Handbook of Theoreti-

cal Computer Science(J. van Leeuwen, ed.), 1990.
[2] “The GNU awk program”, Available by anonymous FTP from

prep.ai.mit.edu.
[3] G. Benson, “An Algorithm for Finding Tandem Repeats of Unspecified Pattern

Size”, Proc. RECOMB98 Second Annual International Conference on Compu-
tational Molecular Biology(S. Istrail, P. Pevzner, M. Waterman, eds.), 1998, p.
20-29.

[4] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm”,Communi-
cations of the ACM20(10), 1977, pp. 762-772.

[5] S. Brin, J. Davis and H. Garcia-Molina, “Copy Detection Mechanisms for Digi-
tal Documents”,Proc. ACM SIGMOD International Conference on Management
of Data, (SIGMOD Record) 24(2), 1995, pp. 398-409.

[6] K.-W. Chiang, S. Nahar and C.-Y. Lo, “Time-Efficient VLSI Artwork Analysis
Algorithms in GOALIE2”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems8(6), 1989, pp. 640-648.

[7] B. Cmelik and D. Keppel, “Shade: a fast instruction-set simulator for execution
profiling”, SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems22(1), 1994, pp.128-37.

[8] C. Collberg, C. Thomborson, and D. Low, “Manufacturing Cheap, Resilient,
and Stealthy Opaque Constructs”,Symposium on Principles of Programming
Languages, 1998, pp. 184-196,

[9] M. R. Corazao, M. A. Khalaf, L.M. Guerra, M. Potkonjak and others, “Per-
formance Optimization Using Template Mapping for Datapath-Intensive High-
Level Synthesis”,IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems15(8), 1996, pp. 877-888.

[10] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani and J. Ullman, “Com-
puting Iceberg Queries Efficiently”,Proc. International Conference on Very
Large Databases, New York, August 1998.

[11] D. A. Forsyth and M. M. Fleck, “Finding People and Animals by Guided As-
sembly”,Proc. International Conference on Image Processing, 1997, vol. 3 pp.
5-8.

[12] S. Grier, “A Tool that Detects Plagiarism in PASCAL Programs”, (12th SIGCSE
Technical Symposium on Computer Science Education, St. Louis, Feb. 1981),
SIGCSE Bulletin13(1), 1981, pp. 15-20.

[13] M. Haertel, et al,“The GNU diff program”, Available by anonymous FTP from
prep.ai.mit.edu, 1999.

[14] P. Indyk, R. Motwani, P. Raghavan and S. Vempala, “Locality-Preserving Hash-
ing in Multidimensional Spaces”,Proc. 29th ACM Symposium on the Theory of
Computing, 1997.

[15] K. Keutzer, “DAGON: Technology Binding and Local Optimization by DAG
Matching”, Proc. ACM/IEEE Design Automation Conference, 1987, pp. 341-
347.

[16] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik and others, “Water-
marking Techniques for Intellectual Property Protection”,Proc. ACM/IEEE De-
sign and Automation Conference, 1998, pp. 776-781.

[17] R.M. Karp and M.O. Rabin, “Efficient randomized pattern-matching algo-
rithms”, Technical ReportTR-31-81, Aiken Computation Laboratory, Harvard,
1981.

[18] D. E. Knuth, J. H. Morris and V. R. Pratt, “Fast Pattern Matching in Strings”,
SIAM Journal on Computing6(2), 1977, pp. 323-350.

[19] R. A. Krutar, “Conversational Systems Programming (or Program Plagiarism
Made Easy)”,Proc. 1st USA-Japan Computer Conference, Oct. 1972, pp. 654-
661.

[20] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a tool for eval-
uating and synthesizing multimedia and communications systems. International
Symposium on Microarchitecture, pp.330-5, 1997.

[21] U. Manber, “Finding Similar Files in a Large File System”,Proc. Winter
USENIX Conference, 1994, pp. 1-10.

[22] M. Niewczas, W. Maly and A. Strojwas, “A Pattern Matching Algorithm for
Verification and Analysis of Very Large IC Layouts”,Proc. International Sym-
posium on Physical Design, 1998, pp. 129-134.

[23] M. M. Novak, Correlations in Computer Programs, Fractals 6(2), 1998, pp.
131-138.

[24] M. Ohlrich, C. Ebeling, E. Ginting and L. Sather, “SubGemini: Identifying Sub-
Circuits Using a Fast Subgraph Isomorphism Algorithm”,Proc. ACM/IEEE De-
sign Automation Conference, 1993, pp. 31-37.

[25] A. Parker and J. O. Hamblen, “Computer Algorithms for Plagiarism Detection”,
IEEE Transactions on Education32(2), 1989, pp. 94-99.

[26] P. G. Salmon and R. J. Tracy, “Computer-Generated Computation Exercises”,
Behavior Research Methods and Instrumentation7(3), 1975, p. 307.

[27] N. Shivakumar and H. Garcia-Molina, “Building a Scalable and Accurate Copy
Detection Mechanism”,Proc. 1st ACM International Conference on Digital Li-
braries, 1996, pp. 160-168.

[28] S. Singhe and F. J. Tweedie, “Neural Networks and Disputed Authorship: New
Challenges”,Proc. International Conference on Artificial Neural Networks,
London, 1995, pp. 24-28.

[29] K. L. Verco and M. J. Wise, “Plagiarism a la Mode: a Comparison of Automated
Systems for Detecting Suspected Plagiarism”,Computer Journal39(9), 1996,
pp. 741-750.


