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Abstract

Construction of @ minimum rectilinear Steiner tree
(MRST) is a fundamenial problem in the physical de-
sign of VLSI circuits. The problem is NP-complete,
and numerous heuristics have been proposed. We pro-
pose a new “analog” approach which intuitively shrinks
a bubble around the pins of the signal net until a
Steiner tree topology is induced. The method eas-
tly maps to parallel neural-style architectures, as well
as to fairly generic two-dimensional processor arrays.
Eztensive stmulation results show better performance
than virtually all existing MRST approaches. The
result is a rare instance where an “analog” heuris-
tic for an NP-complele problem outperforms existing
combinatorial methods, both in time complezity and in
average-case performance.

1 Introduction

The Minimum Rectilinear Steiner Tree (MRST)
problem in the plane is as follows: Given a set P of
n points, find a set S of Steiner points such that the
minimum spanning tree over {P U S} has minimum
cost. The cost of any edge in the tree is the Man-
hattan distance between its endpoints, and the cost of
a tree is the sum of its edge costs. This is a funda-
mental problem in global routing and wire estimation
for VLSI circuit layout, where we are interested in
Steiner trees connecting the terminals of a signal net.
The MRST problem is NP-complete [6], and over the
years a number of heuristics have been developed [13].

A large subset of the MRST literature involves re-
fining an initial minimum spanning tree (MST) topol-
ogy to yield a heuristic Steiner tree. Hwang [9] showed
that the worst-case ratio of MST cost to MRST cost
is g—, hence MST-improvement methods are attractive

in that they also enjoy the % worst-case bound. Vari-

ations of the MST-based approach have improved the
computation and the subsequent refinement of the ini-
tial MST, culminating with the recent work of Ho,
Vijayan and Wong [SJ which efficiently constructs the
optimal Steiner tree derivable from a given MST.
The standard testbed for MRST heuristics consists
of random sets of n points from a uniform distribution
in the unit square; this testbed reflects the statistical
properties of placed netlists [13]. For such inputs, both
the expected minimum spanning tree (MST) cost and
the expected MRST cost grow as ©(y/n) [14]. There-
fore, MRST heuristics are usually evaluated by their
average cost improvement over the MST routing. Vir-
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tually all algorithms yield from 7% to 9% improve-
ment over MST cost on random inputs (e.g., the op-
timal MST-based method of [8] averages just over 9%
improvement for typical problem sizes). It has been
conjectured that no more than 12% average improve-
ment over MST cost is possible [1].

In addition to good performance as measured by
average improvement over MST cost, desirable prop-
erties of an MRST heuristic include:

e Speed: current methods have high complexity
or large constant-factor overheads in computa-
tional geometry subroutines.

o Tree topology output: Rough tree cost estimates
based on probabilistic wiring models or net
bounding box dimensions are less useful for, e.g.,
congestion analysis.

e Parallelizability: current incremental construc-
tions do not map well to parallel machines.

With this in mind, we propose a new “analog” ap-
proach to Steiner tree computation. The method is
based on the following idea. Represent the points P
of a net by fixed pegs on a flat surface, and suppose
that we have an elastic band which initially bounds a
region containing all of the pegs. If the air is “sucked
out” of this region (or imagine a strong force implod-
ing the band inward from all sides), the band will col-
lapse in on itself until it encloses zero area: this in-
duces a heuristic Steiner tree topology. Such a picture
recalls early ideas in the calculus of variations, partic-
ularly for Plateau’s problem of minimum surfaces. As
early as 1931, C. V. Boys mentioned similarities be-
tween soap-bubble formation and the Steiner problem
[2], and Courant and Robbins discussed related phys-
1cal experiments in [4]. There are also resemblances
between our idea and the “elastic-net” [5] mappings
proposed in the neural network literature for the trav-
eling salesman problem.

In this paper, we formalize the “bubble-shrinking”
heuristic for Steiner tree construction. Our ap-
proach is naturally implemented in parallel, e.g., on
connectionist, neural-style architectures or on two-
dimensional arrays of processors. The generic algo-
rithm described below has been simulated with very
promising results: heuristic tree cost is smaller than
almost all existing methods, and runtimes are very
fast. The remainder of this paper is organized as fol-
lows. Section 2 describes a basic sequential algorithm,



Bubble-MRST, and gives theoretical performance
bounds. Section 3 presents extensive simulation re-
sults. In Section 4, we propose two simple parallel
implementations, and Section 5 concludes with direc-
tions for future work.

2 A Practical Heuristic

We motivated our algorithm with the picture of n
points in the plane surrounded by an imaginary “bub-
ble”. Any “analog” algorithm will necessarily lose
some of its flavor when implemented on digital hard-
ware, and our method is no exception. Because of the
rectilinear metric, the bubble is composed of alternat-
ing horizontal and vertical segments in the underlying
grid. Thus, our rectilinear bubble is not as smooth as
a real bubble. However, this allows us to only consider
interactions between parallel segments when we model
attractive forces. When the bubble collapses upon it-
self, parallel segments will attract each other, meet,
and fuse together to form fixed edges in the final tree
topology. (Note that the bubble cannot shrink through
a point, or else an incomplete topology may result.)

We may also use a result of Hanan [7], which states
that all Steiner points in the MRST will be intersec-
tion points of the Hanan grid formed by drawing hori-
zontal and vertical lines through each point of P (Fig-
ure 1).
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Figure 1: The optimal MRST is a subtree of the
Hanan grid.

Thus, at every time step we force all bubble seg-
ments to lie on the Hanan grid, and bubble-shrinking
is equivalent to deleting extremal edges in the grid.
In fact, our construction is a simple iterative process
of removing boundary edges to induce fired edges and
new boundary edges until a final tree topology is de-
termined. In what follows, we use the following terms.

A Hanan edge is a line segment between adjacent
intersection points of the Hanan grid. A boundary edge
is a Hanan edge that is in the current boundary, i.e.,
it is eligible for the shrink operations defined below.
A fized (tree) edge is a Hanan edge that is a perma-
nent part of the solution, i.e., where boundary edges
have already met and fused. The current solution is
the connected union of fixed tree edges and boundary
edges. A current Steiner point is a point in the Hanan
grid that is incident to at least three three or more
fixed tree segments or boundary edges in the current
solution. A wvalid segment in the grid is a mazimal
union of contiguous boundary edges on a single grid-
line such that no point of P nor any current Steiner
point lies within the segment.
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It is instructive to consider a simple example of
the shrinking process. Figure 2 shows an imaginary
bubble shrinking around four points which lie at the
corners of a rectangle. Clearly, the longer parallel seg-
ments should move toward each other in order to in-
duce the optimal Steiner tree topology. In an “analog”
algorithm that models physical forces, this choice can
be enforced by an attraction between parallel bubble
segments that is superlinear in the segment lengths.

Figure 2: Long parallel segments have greater
attraction to induce the proper Steiner tree.

With these observations, the bubble-shrinking is ac-
complished via a single repeated operation:
Definition: A shrink operation deletes the longest
valid segment, along with all edges that are perpen-
dicular to the segment at gridpoints strictly interior
to the segment.

The high-level outline of the Bubble-MRST heuris-
tic is given in Figure 3, and a typical execution of the
Bubble-MRST construction is shown in Figure 4.

Algorithm Bubble-MRST
Build-Grid
mark points on all grid lines which pass
through some point of P;
grid has total total segment cost C)
Initialize-Bubble
set active boundary edges to be perimeter
of grid;
Shrink-Bubble
while C still decreasing,shrink
longest valid segment in grid;

Figure 3: Algorithm Bubble-MRST.

Several results can be proved which bound the per-
formance of our algorithm. First, since the area en-
closed by the bubble goes to zero, the construction is
correct:

Theorem 1: Heuristic Bubble-MRST always outputs
a tree topology. O

We can establish a tight bound on the expected
Bubble-MRST heuristic tree cost by tracing the evo-
lution of boundary edges and using a result of Logan
and Shepp [11]:

Theorem 2: The expected cost of the Bubble-
MRST output for n points randomly chosen in the
unit square is ©/n. 0
The result of Steele [14], that subadditive functionals

(e.g., MRST cost) grow as ©+/n over random pointsets
in the unit square, implies:
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Figure 4: Stages from a sample run of the Bub-
ble-MRST algorithm on a 10-point example,
showing decrease in total edge cost of the re-
maining grid.

Corollary: On average, the Bubble-MRST output
is bounded by a constant factor from the expected
optimal MRST cost. 0O

This average-case performance bound is reflected in
the computational results presented below. However,
the absolute performance ratio of our heuristic is easily
seen to be unbounded. For example, an input of n
points equally spaced on the unit circle will result in
a heuristic tree that passes through the center of the
circle, a highly suboptimal solution. We thus have:

Theorem 3: The performance ratio of Bubble-
MRST is not bounded by any constant. O

Therefore, Bubble-MRST is in the worst-case sense
inferior to existing MST-based methods which have a
performance bound of % However, note that unfavor-
able instances are very rare: of the 180,000 test cases
reported below, only 51 resulted in Bubble-MRST cost
greater than the MST cost.

3 Computational Results

The Bubble-MRST algorithm was implemented in a
UNIX/C environment on Sun-4 hardware. The struc-
ture of the implementation follows the template of Fig-
ure 3, and output is exemplified by Figure 4. Code 1s
available from the author.

Experimental results on pointsets with cardinalities
ranging from 4 to 100 (10000 random instances for
each cardinality) are summarized in Figure 5. Figure
5 also provides comparisons with the MST improve-
ment values reported for the “S-MST” algorithm of
Ho, Vijayan and Wong [8]. For problems of practi-
cal size, Bubble-MRST clearly outperforms this op-
timal MST-derived heuristic construction. As n be-
comes very large (over 40 pins), the performance of
our method worsen while the methods in [8] improve.
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This is because Bubble-MRST essentially forces a star-
like tree topology that is suboptimal for cases such as
points along the unit circle. However, we note that
this may turn out to be a useful side-effect: as feature
sizes decrease, diameter of the global routing gives an
increasingly significant bound on the circuit timing
[3], and Bubble-MRST naturally yields good heuristic
solutions for minimum-diameter (i.e., minimum sig-
nal delay) global routing formulations. In general, the
simulation results indicate that our method not only
provides a new and effective MRST construction, but
1s also a rare example of an “analog” heuristic for a
hard problem that 1s competitive with combinatorial
heuristics.
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Figure 5: Comparison between Bubble-MRST
square dots) and the optimal MST-based
S-MST) method of Ho, Vijayan and Wong
boxes). The horizontal axis gives net size, and
the vertical axis gives improvement over MST
cost averaged over 10000 random instances.

4 Parallel Implementations

Our current implementation has O(n? log n) time
complexity, since pathological examples can force a
quadratic number of shrinking operations, while a
heap data structure allows O(log n) retrieval of longest
valid segments. However, the main advantage of the
method is its amenability to parallel implementation.
In this section, we briefly propose two practical im-
plementations of the Bubble-MRST method: one is a
“physical” method with an attractive force model, and
the other exploits the underlying rectilinear grid to de-
rive a cellular automata style approach. The essential
ideas for each are as follows.

(I) The attractive force (AF) method posits an at-
traction that exists only between parallel valid seg-
ments of the boundary. When parallel edges are at-



tracted to each other, their rate of motion is given by
a high-order polynomial in the length of each mov-
ing edge; this enforces the proper longest-first order-
ing of the shrink operations in Figure 3 above. When
two edges meet and fuse, they are immobilized and
removed from the list of valid segments. A neural-
style implementation of the AF method is via the
elastic net construction of Durbin and Willshaw [5],
where the boundary of the bubble is discretized and
assigned to many distinct processing elements. The
shrinking is accomplished by constructing an energy
functional that is minimized when the bubble encloses
zero area. For example, we want to maximize the dif-
ference between total length of fixed tree segments and
total length of active boundary segments; we also want
to minimize a “potential” term that is polynomial in
the length of and separation between parallel active
boundary segments. An actual implementation will
use a fixed number (proportional to the grid perime-
ter) of processing elements, each carrying position and
orientation information for a small part of the bubble.
To increase the accuracy with which the shrinking pro-
cess is modeled, we dynamically reallocate processing
elements from fixed tree segments to the remaining
active boundary segments.

(II) The 2-D array (2DA) method assumes a two-
dimensional grid architecture and uses local and neigh-
borhood information to implement the “shrink” op-
eration. In order to always shrink the longest valid
segment, information regarding a boundary segment’s
incidence to current Steiner points and points of P
must be passed along entire gridlines, but this only re-
quires constant time (proportional to the fixed grid di-
mension). The straightforward heuristic computation
thus requires quadratic time in a fixed-size grid, and
we suspect that more careful analysis/implementation
will further improve the 2DA time complexity. Note
that in practice, implementations on a fixed grid will
simply yield a tree topology which has coarser resolu-
tion; the result is still useful for global routing.

A more natural “cellular-automata”-like implemen-
tation results if all boundary segments are allowed
to shrink simultaneously. Among other things, this
would yield in a constant-time heuristic Steiner tree
construction, regardless of the size of P. We have
simulated this variant but, as expected, performance
is noticeably worse than that of the original Bubble-
MRST since highly star-like topologies result.

5 Conclusions

We have presented a new parallel approach to
MRST construction for VLSI routing. The theo-
retical complexity of the Bubble-MRST algorithm
is good, and extensive simulations indicate that the
method outperforms virtually all existing combinato-
rial MRST heuristics. Furthermore, parallel speedup
seems straightforward via neural-network or two-
dimensional grid architectures. Our basic algorithm
and the implementation variants extend to other rout-
ing geometries. Extensions to weighted gridgraphs for
routing in congested regions do not seem easy, as our
method seems to rely on a geometric embedding. A
number of other extensions are being pursued, partic-
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ularly the direct implementation of the AF and 2DA
versions of the basic algorithm.

6 Acknowledgements

Jerry Waldorf provided many interesting discus-
sions and implemented the Bubble-MRST algorithm.

References

[1] M. W. Bern and M. Carvalho, “A Greedy Heuristic
for the Rectilinear Steiner Tree Problem”, technical
report UCB-CSD 87-306, 1987.
C. V. Boys, “The Soap-Bubble”, reprinted in The
World of Mathematics, Vol. 11, J. R. Newman, ed.,
Tempus Press, 1988, pp. 877-886.
J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh and
C. K. Wong, “Performance-Driven Global Routing for
Cell Based IC’s”, Proc. IEEE ICCD, Cambridge, Oc-
tober 1991.
R. Courant and H. Robbins, “Plateau’s Problem”,
reprinted in The World of Mathematics, Vol. II, J. R.
Newman, ed., Tempus Press, 1988, pp. 887-895.
R. Durbin and D. Willshaw, “An Analogue Approach
to the Travelling Salesman Problem Using an Elastic
Net Method”, Nature 326(6114) (1987), pp. 689-691.

(2]

[6] M. Garey and D. S. Johnson, “The Rectilinear Steiner
Problem is NP-Complete”, SIAM J. of Applied Math.
32(4) (1977), pp. 826-834.

[7] M. Hanan, “On Steiner’s Problem With Rectilinear
Distance”, SIAM J. of Applied Math. 14 (1966), pp.
255-265.

[8] J.-M. Ho, G. Vijayan and C. K. Wong, “New Al-
gorithms for the Rectilinear Steiner Tree Problem”,
IEEE Transactions on Computer-Aided Design 9(2)
(1990), pp. 185-193.

[9] F. K. Hwang, “On Steiner Minimal Trees with Rec-
tilinear Distance”, SIAM J. Applied Math. 30(1)
(1976), pp. 104-114,

[10] A. Kahng and G. Robins, “A New Family of Steiner
Tree Heuristics With Good Performance: The Iter-
ated 1-Steiner Approach”, Proc. IEEE Intl. Conf.
on Computer-Aided Design, Santa Clara, November
1990, pp. 428-431.

[11] B. F. Logan and L. A. Shepp, “A Variational Prob-
lem for Random Young Tableaux”, Adv. in Math. 26
(1977), pp. 206-222.

[12] B. Preas and M. Lorenzetti, eds., Physical Design
Automation of VLSI Systems, Benjamin Cummings,
1988.

[13] D. Richards, “Fast Heuristic Algorithms for Rectilin-
ear Steiner Trees”, Algorithmica 4 (1989), pp. 191-
207.

[14] J. M. Steele, “Growth Rates of Euclidean Minimal
Spanning Trees With Power Weighted Edges”, The
Annals of Probability 16(4) (1988), pp. 1767-1787.

[15] S. Wolfram, Theory and Applications of Cellular Au-
tomata, Singapore, World Scientific, 1986.



