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Abstract 

We present a new 0 (n2) heuristic for hypergraph min-cut bipar- 
titioning, an important problem in circuit placement. Fastest 
previous methods for this problem are O(n2 log n). Our 
approach is based on the intersection gruph G dual to the input 
hypergraph. Paths in G are used to construct purtiul bipartitions 
which can be completed optimally. The method is provably 
good and, in particular, obtains optimum results for “difficult” 
inputs, i.e., hypergraphs with smaller than expected minimum 
cutsize. Computational results for a wide range of inputs are 
also discussed. 

1. Introduction 

In VLSI/PCB CAD, a circuit netlist naturally delinas a 
hypergraph H, with vertices corresponding to modules and edges 
corresponding to signal nets. Some useful definitions concem- 
ing hypergraphs are: 

. A hypergraph H has vertex set V = (vl.vz. . . . ,v,) and 
edge set E= (e1,e2.. . . , e, 1, with each edge a subset of 
V, i.e., ej c V, j = l,..., n. If 1 ej 1 = 2 Vj, H is also a 
graph. 

0 A cuc in H is a partition of V into two disjoint nonempty 
sets V, and V,. An edge crosses the cut if it contains 
vertices v 1 E V, and v2 E V,. The size of a cut is the 
number of edges that cross the cut. 

0 A bisection of H is a cut which satisfies 1 VL ( - J VR ( :S 1. 
The minimum bisection, or min-cut bisection, of H is the 
bisection with minimum size. 

A large body of work confirms hypergraph min-cut bisec- 
tion as a good objective for VLSI and PCB clustering placement 
in applications ranging from standard-cell IC design to two-sided 
board technologies [23]. Breuer [4] proposed three min-cut 
placement heuristics using the netlist hypergraph and a 
bounding-box net model. Following Schweikert and Kemig:han 
[22], Breuer’s methods rely on Kernighan-Lin [17] partitioning 
of the circuit hypergraph. Improvements to the min-cut scheme 
include the “cell gain” metric of Fiduccia and Mattheyses [9], 
the terminal propagation method of Dunlop and Kernighan [S:], 
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and the work of Carter et al. 163. More recently, graph space 
mappings [ll]. network flow [7] and linear programming [16] 
methods have been proposed. The hypergraph min-cut bisection 
problem is NP-complete [ 121. 

Kernighan-Lin variants are attractive for their ease of 
implementation and 0 (n2 log n) complexity, but this bound 
holds only for the lowest-level (2-opt) implementation. Finding 
k-opt cuts with k 2 3 is more expensive. Stochastic (e.g, anneal- 
ing), network flow, graph space and linear programming 
methods generally yield good results for hypergraphs derived 
from logic circuits, but their 0 (n3) or higher complexity render 
them impractical for large problem instances [ 14:1[19]. 

In practice, there is little reason to insist that the numbers 
of nodes on either side of the cut be exactly equal. Since nodes 
of a hypergraph can represent physical modules with widely 
varying attributes (e.g., area, shape, technology), relaxation of 
the bisection criterion is acceptable. [9] proposed an r- 
bipartition metric, where the difference in node cardinalities is 
maintained at r or less. Fukunaga et al. and others [11][14] 
have introduced penalty terms in the placement .metric to reflect 
imbalanced V, and V,. Such cost functions are very natural, as 
the mle goal of circuit partitioning is preservation of logical 
clustering, rather than actual bisection of the netlist. The culmi- 
nation of this trend is the recent introduction in [Z!O] of a quotient 

cut objective: min 
e (VhVd 

with C denoting all possible cuts 
= I VL I - I VR I ’ 

and e denoting the size of a cut. 

Hartoog [15] has noted that no one algorithm in the litera- 
ture consistently gives good results; even annealing has a large 
variance in performance. A crucial observation concerns the fact 
that all of the above approaches will perform arbitrarily poorly 
on hypergraphs with smaller than expected minimum cutsize, 
i.e.. they have no error bound. Since heuristics in the CAD 
literature generally give acceptable performance, this seems to 
imply that circuit partitioning problems are in general “easy”. 
However, in an “easy” problem instance, even a random cut will -- 
differ from the optimum cut by at most a constant factor [2], and 
thus we feel that it is important to find a heuri.stic which per- 
forms significantly better than random. Bui et al. [5] discuss the 
role of “difficult” (i.e., harder than random) inputs in distinguish- 
ing a good heuristic. 

In this paper, we propose a new, provably good O(n2) 
method for hypergraph partitioning, Previous fastest methods 
are 0 (n2 log n). Our method is based on the dual intersection 
graph of the input netlist. The heuristic uses random longest 
breadth-first search (BFS) p th ( a s or mmeters) within the inter- d’ 
section graph to construct partial hypergraph bipartitions in 
0 (n2) time. Such a construction is expected to place all but a 
constant proportion of the nodes in H. Given this initial partial 
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bipartition, we can complete the partition optimally in 
0 (n log n) time. In the section below, we develop the algo- 
rithm; the following section treats some theoretical aspects of 
our method. 

Section 4 briefly compares performance of the method 
with popular heuristics described in [4], [XX], [14] and [18]. We 
close by mentioning possible algorithm enhancements and areas 
for further research. 

2. Finding a Min-Cut Bipartition in a Hypergraph 

The Intersection Graph. 

We begin by dualizing the problem. Given a hypergraph 
H, consider the graph G = (V,E) which has n vertices, one for 
each edge of H (i.e., each signal in the netliit), with two vertices 
adjacent if and only if the corresponding edges in H intersect 
(i.e., the signals have some module in common). G is sometimes 
referred to as the intersection graph of H. Note that for a given 
H, G is well-defined; however, there is no unique reverse con- 
struction. If necessary, to avoid confusion we will sometimes 
call a vertex of H an “H-vertex”, with “G-vertex” defined simi- 
larly. Figure 1 shows a hypergraph with 8 nodes and 5 
hyperedges (labeled A - E) along with its associated intersection 
graph. 

A 

C D 

YEi? B E 

G 

Figure 1 

We now reformulate the min-cut partition of H in terms 
of G, as follows. Notice that an arbitrary cut through G will 
divide the vertices of G into disjoint sets V, and V,. Vertices 
adjacent to the cut, i.e., those elements of V, adjacent to ele- 
ments of VR (and vice versa) are called boundary nodes. We 
denote the set of boundary nodes by B, with 8, and B, defined 
in the obvious way. Every node of V, (I’,) which is not in B 
represents an & in the original hypergraph H all of whose ver- 
tices are placed in the left (right) half of the partition. In other 
words, by construction nodes which are not in B represent sig- 
nals that do not cross the cut. 

Definition: A partial bipartition of G = (V,E), denoted by 
(G,V,,V,), consists of disjoint sets V,,V, c V with no edge 
e;j E E satisfying Vi E VI, Vi E V,. 

Thus. any cut in G naturally induces a partial bipartition. 

Definition: A completion of a partial bipartition (G,V,,V,) 
consists of disjoint sets V,,V, c V with V, c V,, V, c V, and 
v, u v, = v. 

Figure 2 depicts the structure of such an intersection graph. 

An arbitrary cut in G cannot in general be interpreted as a 
cut in H. However, the non-boundary nodes of a cut in G form 
a partial bipartition which can be completed such that the final 

cut in G corresponds to a valid cut in H. In other words, we use 
the graph cut in G to obtain a “handle” on the original hyper- 
graph partition problem. Non-boundary vertices in G implicitly 
partition the vertices in H belonging to the corresponding 
hyperedges. To complete the partition, we need only partition 
the H-vertices which belong to boundary nodes in G. such that 
the final cutsize is minimum. Given the initial partial bipartition, 
it turns out that there is a simple method for assignment of boun- 
dary vertices to the two halves of the partition. The method is 
similar to heuristics for, e.g, PLA folding [ 131. 

G 

r 

Figure 2 

Partitioning the Boundary Set. 

Recall that the initial graph cut in G implicitly partitions 
B into disjoint nonempty sets BL and BR. Consider the subgraph 
of G induced by B, with all e, edges deleted, where u,v E B, or 
u.v E BR. This graph, which we call the boundary graph or G’, 
is bipartite. In the optimal completion of the hypergraph parti- 
tion, each node of G (which is an edge in H) will either cross 
the cut or not cross the cut. Nodes that cross the cut are called 
losers, while nodes whose modules are all on one side of the cut 
are winners. 

Fact: If v E B is a winner, then all nodes adjacent to v in the 
bipartite graph G are losers. 

It follows that minimizing the number of losers gives the h 
, iy?- 

graph mm-cut completion of the original graph cut. (2 is 

thus a trivial upper bound on the cutsize.) Our method for com- 
pleting the psrtition is as follows: 

Complete-Cut: 

cl> If G’ is not the trivial graph, select the vertex v in G’ with 
minimum degree and mark it as a winner. 

<2> Mark all nodes in G’ adjacent to v as losers. 

<3> Delete v, the losers and their incident edges from G’. 

Figure 3 shows an example of the boundary graph; the winners 
are nodes (b,c,e,f, h,i). Our next result can be proven by 
induction. 

Theorem: Given a graph cut in G and an associated initial par- 
tial bipartition which induces a connected graph G , the 
Complete-Cut method yields a cutsize within one of the 
optimum completion of the bipartition. q 
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This means that once we find a cut with non-empty node sets on 
either side of the boundary, we can essentially finish the partition 
optimally. (In practice, a graph cut can be obtained by doing 
breadth-first search from two distant nodes of G until the two 
expanding sets meet to define a cutline.) 

Figure 3 

The Basic Algorithm. 
Our algorithm for hypergraph bipartition can now be 

sketched. 

Algorithm I: 

Given an input hypergraph in the form of an intersection graph 
G: 

<l> Pick an arbitrary node u in G and use BFS to fmd a node v 
furthest from u (0 (n2) time) 

<2> Generate an initial cut in G using BFS from u and v, and 
determine boundary set B (0 (n2) time) 

<3> Partition B between L and R sides, using the heuristic in 
Section 2.2 above (0 (n log n) time) 

Example. 

Let N be the following netlist: 

Signal 

5: 

: 

T 
g 
h 
i 

: 
1 

Modules 
1,2,11 
2,4,11 
1,3,4,8 
4.8 
2.48 
335,637 
35,637 
5.7.8 
6,9,10 
6,7,9,10 
9.10 
11.12 

Thus, the nodes of the input hypergraph H are labeled 1.2, . . . . 12, 
while the hyperedges are denoted by a, b. etc. The resulting 
intersection graph G is shown in Figure 4. 

We iind that nodes k and I form a “furthest-removed” pair in G. 
After breadth-first search, the boundary set is determined to be 
(c.d,e,f,g.h), and the corresponding initial partial bipartition 
separates modules (1,2,4,11,12) from modules (6,7,9,10). 
After processing the bipartite graph G , we see that (d,e!,f,g) 
are winners. The final partition separates (1.2.4.8,11,12) from 
(3.5,6,7,9,10). Signals c and h are the only ones tc cross the 
cut so the crossing count is 2. 

Figure 4 

Algorithm I requires 0 (n’) processing time, where n is 
the number of edges in the original hypergraph. In circuit 
design, average net size is generally constant for a given design 
methodology and technology, so n scales with the number of 
modules in the netlist (order of the input hypergraph). The most 
interesting feature of Algorithm I is that despite its simplicity, it 
is provably good. 

3. Discussion 

Implementation Iswes and the Graph Model. 

Probabilistic analysis of the algorithm relies on bounded 
degree of nodes in G. In practice, some placement algorithms 
are ill-suited to the recent trend of higher average signal size 
(e.g., bus-driven layout). This is usually because of the particu- 
lar net model (complete graph, k-star, MRST) chosen. Thus, 
many CAD programs will ignore signals larger than a heuristic 
threshold during placement. We ask: Are such relaxation 
schemes valid? 

In practice, chips have a bounded number of pins, VLSI 
standard cells have a small, bounded number of ports, and so 
forth. A simple probabilistic argument shows the following: 

Theorem: In a random hypergraph H, if an edge e has degree 
k, e will traverse the min-cut bipartition with probability 
1 -0(2-q. cl 

This result was verified empirically for industry IC net- 
lists by examining the effect of large signals on the heuristic par- 
tition. Simulated annealing (Table 1) and Kemighan-Lin results 
show that in the best heuristic partition, large signals (k 1 14) 
almost always contribute to the cut value. 
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Our analysis shows that we can ignore signals above a size thres- 
hold as low as k L 10 with very small expected error in cutsize. 
Accordingly, we heuristically ignore large edges in the input 
hypergraph. This allows us to assume that G has bounded degree 
in the theoretical analysis below. Furthermore, in practice we 
End that the sparser hypergraph will have greater graph diameter 
of G, so the size of the boundary set is smaller. 

\Technology ] k?ZO ( k114 1 k28 1 

PCB 
crossing % crossing % crossing % 

I 99c I 98 I 97t 
S td-Cell 
Hybrid 

_ 
Gb+ 97 96+ 
99+ 99 97+ 

Table 1 

Table 1. Results averaged over 10 simulated annealing runs for 
each example in the industry test suite. 

Probabilistic Analysis. 

To examine the case of bounded-degree G, we consider 
hypergraphs H (n, d, r,c) with n nodes, node degree I d, edge 
degree I r, and minimum cutsize c. (This naturally fits such 
paradigms as circuit layout.) For large random hypergraphs with 
small r, as with random graphs, expected miniium cutsize is 
@( ] E ] ), so even random cuts are expected to be suboptimal by 
only a constant factor. It is thus useful to evaluate performance 
of a bipartitioning heuristic on those “difficult” inputs which 
have smaller than expected minimum cutsize. 

Following Bui et al. [5], we consider the class H(n.d,r,c) 
with c = o(~t-“~), n + -. Our main result follows from 
expander properties of H and the associated G. 

Theorem: As n -+ 00, for almost all H in H (n,d,r,c) with 
c = o (nl-l’d), Algorithm I will output the min-cut bipartitioa of 
H. Cl 

Essentially, the hyperedges in the minimum cut of H will almost 
always be nodes of the boundary graph G ; if the cut is unique, 
then precisely those nodes will have high degree in G’ and 
become losers. 

Finding Graph Diameters. 

One may have noticed that we cannot find a diameter of 
G in 0 (n’) time during the first step of the heuristic; the fastest 
known methods are 0 @I~‘~) [lo]. In practice, we instead use a 
longest BFS path, starting from a random vertex. This is 
appropriate, by the following 

Theorem: For a connected random graph G with bounded 
degree, the depth of BFS starting at a random node equals 
diam (G) - 0 (1) with probability near 1. 0 

Actually, a stronger result can be proved, namely that any pair of 
vertices in G are “far” from each other with probability 
approaching 1 as the size of G increases. 

We also have the following, due to [3]: 

Theorem: The diameter of random connected graphs with 
bounded degree is 0 (log n). 0 

whence it may be shown that 

Corollary: For a connected intersection graph G with bounded 
degree 2 d, the expected size of the boundary set, ]B 1, is cn, 
where c is a constant. 0 

So, partition quality does not vary with size of the input hyper- 
graph. 

The r-bipartition Constraint. 

Finally, we mention the weighted r-bipartition constraint, 
which has been ignored thus far due to its highly practical 
nature. In addition, as noted above, many practical VLSI appli- 
cations do not require enforcement of the equipartition con- 
straint. It can also be shown that the basic algorithm results in 
near-equal weight partition with high probability. 

To enforce weight equipartition, we begin by examining 
the boundary graph. Expected boundary set size implies that the 
equipartition of total vertex weight (i.e., module area in the 
VLSI paradigm) will almost never be violated by the initial cut. 
We therefore need worry about weight equipartition only when 
processing the bipartite boundary graph G . Define the weight 
of a side of the partial G bipartition to be the sum of the weights 
of all H-vertices belonging to non-boundary and winner nodes 
on that side. To perform the set partitioning, we use an 
0 (n log n) heuristic rule analogous to the so-called “engineer’s 
method”. 

Rule: If the left (right) side of the partition has less weight 
than the right (left), pick the smallest-degree vertex remaining in 
G, (Gi) as the next winner. 

This method results in a very balanced weight partition, with 
maximum error dependent on d, r, etc. Note that the heuristic 
can also be extended to accomodate weighted edges in G. In 
practice, we find that the improved weight partition is obtained 
at the cost of slightly higher cutsizes, much as one would 
suspect. It would be interesting to study the utility of this 
“engineer’s” heuristic with respect to such “balance-oriented” 
metrics as the minimum quotient cut. 

4. Results 

Algorithm I was implemented and tested on a wide range 
of sample industry VLST/PCB netlists as well as difficult random 
inputs. Typical results for Algorithm I, simulated annealing and 
min-cut are shown in Table 2, where cutsizes have been normal- 
ized to 100.0 and CPU entries denote the average of ratios of 
runtimes, taken over all instances. These results indicate that 
Algorithm I is as good as, or better than, methods in [4] [S][ 181. 

Example Alg I SA 
(Mods,Sigs) Cutsize Cutsize 

Bdl (103,211) 100.0 103.5 
Bd2 (619.1527) 100.0 105.1 
Bd3 (242,502) 100.0 97.0 
ICI (561,800) 100.0 109.6 
IC2 (247 1,3496) 100.0 88.5 
Diffl (500,700) 100.0 812 
Diff? (500,700) 100.0 630 

MinCut-KL 
Cutsize 
98.4 
113.5 
119.9 
109.9 
98.0 
1542 
1270 

Diff3 (500,700) 1 100.0 1 1216 833 
CPU I 1.0 I 110’ I 120 

Table 2 
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For difficult examples with bounded d and r, and with 
optimum cutsize of o (n1’d), Algorithm I always found a min-cut 
bipartition, while Kern&an-Lin and mealing methods often 
became stuck at a terrible bipartition. For completely pathologi- 
cal cases where c = 0, BFS in G fmds the unconnectedness while 
standard heuristics will often output a locally minimum cut of 
size 8( 1 E I). In practice, Algorithm I is significantly faster than 
all existing heuristics. 

A final observation: our example netlists ITypically have 
intersection graph diameter greater than that of random hyper- 
graphs with similar degree sequences. We suspect that this is 
due to natural functional partitions (logical hierarchy) within the 
netlist. This perhaps implies that our partitioning method is 
even better suited to circuit designs than to random hypergraphs. 

Extensions. 

Because the algorithm is so fast, a natural extension of 
our method involves ex amining more than one initial longest 
path in G. The test runs reported below examined 50 random 
longest paths and selected the best result. 

Another extension we are investigating involves netlist 
grunulurizution by replacing larger modules with linked uniform 
small modules. This seems to work particularly well in the 
standard-cell regime, where cell area is roughly proportional to 
the number of I/OS. Our experiments are incomplete, b-ut it 
seems that the weight bipartition is more balanced. 

It is also interesting to consider alternative greedy 
methods for partitioning the boundary graph G’. proving error 
bounds as appropriate. For example we have found success 
with several variants of the Complere Cut method above. 
Finally, we are examining the performance of Algorithm I for 
different metrics, especially the quotient cut. 

5. Conclusions 

In conclusion, we have introduced a fast heuristic for 
hypergraph m&cut partitioning in VLSI placement. The 
method is extremely simple, yet provably good. The theoretical 
complexity bound is O(n2), and tests verify this execution 
speed. Results for circuit partitioning in a wide range of techno- 
logies were very encouraging. For randomly generated 
“difficult” hypergraphs the performance is almost always 
optimum. 
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