Modern Physical Design: Algorithm Technology Methodology (Part I)

Andrew B. Kahng ucla Majid Sarrafzadeh Northwestern

Overall Roadmap Technology											
	_		O 1111		(S)						
Characteristic	~e										
	6										
YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014				
TECHNOLOGY NODE	1007				2000						
DENSE LINES (DRAM HALF-PITCH) (nm)	250	180	130	100	70	50	35				
ISOLATED LINES (MPU GATES) (nm)	200	140	100	70	50	35	25				
Logic (Low-Volume—ASIC)‡											
Usable transistors/cm2 (auto layout)	8M	14M	24M	40M	64M	100M	160M				
Nonrecurring engineering cost	50	25	45	40	-	0.5	4.0				
usable transistor (microcents)	50	25	15	10	5	2.5	1.3				
Number of Chip I/Os — Maximum		•									
Chip-to-package (pads)	1515	1867	2553	3492	4776	6532	8935				
(high-performance)	1313	1007	2333	3492	4770	0332	0933				
Chip-to-package (pads)	758	934	1277	1747	2386	3268	4470				
(cost-performance)	730	534	1211	1747	2300	3200	4470				
Number of Package Pins/Balls – Maximum											
Microprocessor/controller	568	700	957	1309	1791	2449	3350				
(cost-performance)	300	100	331	1303	1731	2770	3000				
ASIC	1136	1400	1915	2619	3581	4898	6700				
high-performance)	1100	1400	1010	2010	0001	4000	0700				
Package cost (cents/pin)	0.78-2.71	0.70-2.52	0.60-2.16	0.51-1.85	0.44-1.59	0.38-1.36	0.33-1.17				
(cost-performance)											
Power Supply Voltage (V)											
Minimum logic Vdd (V)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.37-0.42				
Maximum Power											
High-performance with heat sink (W)	70	90	130	160	170	175	183				
Battery (W)—(Hand-held)	1.2	1.4	2	2.4	2.8	3.2	3.7				
	ICCAD Tu	torial: Novei	nber 11, 199	9		/ Majid Sar	rafzadeh				

Overall Roadmap Technology Characteristics (Cont'd)

YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014
TECHNOLOGY NODE DENSE LINES (DRAM HALF-PITCH) (nm)	250	180	130	100	70	50	35
Chip Frequency (MHz)							
On-chip local clock (high-performance)	750	1250	2100	3500	6000	10000	16903
On-chip, across-chip clock (high-performance)	375	1200	1600	2000	2500	3000	3674
On-chip, across-chip clock (high-performance ASIC)	300	500	700	900	1200	1500	1936
On-chip, across-chip clock (cost-performance)	400	600	800	1100	1400	1800	2303
Chip-to-board (off-chip) speed (high-performance, reduced-width, multiplexed bus)	375	1200	1600	2000	2500	3000	3674
Chip-to-board (off-chip) speed (high-performance, peripheral buses)	250	480	885	1035	1285	1540	1878
Chip Size (mm2) (@sample/introduction)							
DRAM	280	400	560	790	1120	1580	2240
Microprocessor	300	340	430	520	620	750	901
ASIC [max litho field area]	480	800	900	1000	1100	1300	1482
Lithographic Field Size (mm2)	22 x 22 484	25 x 32 800	25 x 36 900	25 x 40 1000	25 x 44 1100	25 x 52 1300	25 x 59 1482
Maximum Number Wiring Levels	6	6–7	7	7–8	8–9	9	10

CCAD Tutorial: November 11, 1999

Technology Scaling Trends

Interconnect

- Impact of scaling on parasitic capacitance
- Impact of scaling on inductance coupling
- Impact of new materials on parasitic capacitance & resistance
- Trends in number of layers, routing pitch

Device

- V_{dd}, V_t, sizing
- Circuit trends (multithreshold CMOS, multiple supply voltages, dynamic CMOS)
- Impact of scaling on power and reliability

CCAD Tutorial: November 11, 1999

Technology Scaling Trends

- Scaling of x0.7 every three years
 - .25u .18u .13u .10u .07u .05u
 - 1997 1999 2002 2005 2008 2011
 - 5LM 6LM 7LM 7LM 8LM 9LM
- Interconnect delay dominates system performance
 - oconsumes 70% of clock cycle
- cross coupling capacitance is dominating
 - cross capacitance \rightarrow 100%, ground capacitance \rightarrow 0%
 - 90% in .18u
 - huge signal integrity implications (e.g., guardbands in static analysis approaches)

Noise Sources

- Analog design concerns are due physical noise sources
 - because of discreteness of electronic charge and stochastic nature of electronic transport processes
 - example: thermal noise, flicker noise, shot noise
- Digital circuits due to large, abrupt voltage swings, create deterministic noise which is several orders of magnitude higher than stochastic physical noise
 - still digital circuits are prevalent because hey are inherently immune to noise
- Technology scaling and performance demands made noisiness of digital circuits a big problem

Courtesy Hormoz/Muddu, ASIC99

Scaling of Noise with Process

- Cross coupling noise increases with
 - process shrink
 - frequency of operation
- Propagated noise increases with decrease in noise margins
 - decrease in supply voltage
 - more extreme P/N ratios for high speed operation
- IR drop noise increases with
 - complexity of chip size
 - frequency of chip
 - shrinking of metal layers

Courtesy Hormoz/Muddu, ASIC99

New Materials Implications

- Lower dielectric
 - reduces total capacitance
 - doesn't change cross-coupled / grounded capacitance proportions
- Copper metallization
 - reduces RC delay
 - avoids electromigration
 - thinner deposition reduces cross cap
- Multiple layers of routing
 - enabled by planarized processes; 10% extra cost per layer
 - reverse-scaled top-level interconnects
 - relative routing pitch may increase
 - room for shielding

CCAD Tutorial: November 11, 1999

Technical Issues in UDSM Design

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Technical Issues in UDSM Design

- Manufacturability (chip can't be built)
 - antenna rules
 - minimum area rules for stacked vias
 - CMP (chemical mechanical polishing) area fill rules
 - layout corrections for optical proximity effects in subwavelength lithography; associated verification issues
- Signal integrity (failure to meet timing targets)
 - crosstalk induced errors
 - timing dependence on crosstalk
 - IR drop on power supplies
- Reliability (design failures in the field)
 - electromigration on power supplies
 - hot electron effects on devices
 - wire self heat effects on clocks and signals

CCAD Tutorial: November 11, 1999

Why Now?

- These effects have always existed, but become worse at UDSM sizes because of:
 - finer geometries
 - greater wire and via resistance
 - higher electric fields if supply voltage not scaled
 - more metal layers
 - higher ratio of cross coupling to grounded capacitance
 - lower supply voltages
 - more current for given power
 - lower device thresholds
 - smaller noise margins
- Focus on interconnect
 - susceptible to patterning difficulties
 - CMP, optical exposure, resist development/etch, CVD, ...
 - susceptible to defects
 - critical area, critical volume

Example: Defect-related Yield Loss

- High susceptibility to spot defect-related yield loss, particularly in metallization stages of process
- Most common failure mechanisms: shorts or opens due to extra or missing material between metal tracks
- Design tools fail to realize that values in design manuals are minimum values, not target values
- Spot defect yield loss modeling
 - extremely well-studied field
 - first-order yield prediction: Poisson yield model
 - critical-area model much more successful
 - fatal defect types (two types of short circuits, one type of open)

Approaches to Spot Defect Yield Loss

- Modify wire placements to minimize critical area
- Router issue
 - router understands critical-area analyses, optimizations
 - spread, push/shove (gridless, compaction technology)
 - layer reassignment, via shifting (standard capabilities)
 - related: via doubling when available, etc.
- Post-processing approaches in PV are awkward
 - breaks performance verification in layout (if layout has been changed by physical verification)
 - no easy loop back to physical design: convergence problems

CCAD Tutorial: November 11, 1999

Example: Antennas

- Charging in semiconductor processing
 - many process steps use plasmas, charged particles
 - charge collects on conducting poly, metal surfaces
 - capacitive coupling: large electrical fields over gate oxides
 - stresses cause damage, or complete breakdown
 - induced V_t shifts affect device matching (e.g., in analog)

Antennas

- Charging in semiconductor processing
- Standard solution: limit antenna ratio
 - antenna ratio = $(A_{poly} + A_{M1} + ...) / A_{gate-ox}$
 - e.g., antenna ratio < 300
 - $A_{Mx} = metal(x)$ area electrically connected to node without using metal(x+1), and not connected to an active area

ICCAD Tutorial: November 11, 1999

Antennas

- Charging in semiconductor processing
- Standard solution: limit antenna ratio
- General solution == bridging (break antenna by moving route to higher layer)
- Antennas also solved by protection diodes
 - not free (leakage power, area penalties)
- Basically, annoying-but-solved problem

Silicon Complexity and Design Complexity

- Silicon complexity: physical effects cannot be ignored
 - fast but weak gates; resistive and cross-coupled interconnects
 - subwavelength lithography from 350nm generation onward
 - delay, power, signal integrity, manufacturability, reliability all become first-class objectives along with area
- Design complexity: more functionality and customization, in less time
 - reuse-based design methodologies for SOC
- Interactions increase complexity
 - need robust, top-down, convergent design methodology

CCAD Tutorial: November 11, 1999

Guiding Philosophy in the Back-End

- Many opportunities to leave \$\$\$ on table
 - physical effects of process, migratability
 - design rules more conservative, design waivers up
 - device-level layout optimizations in cell-based methodologies
- Verification cost increases
- Prevention becomes necessary complement to checking
- Successive approximation = design convergence
 - upstream activities pass intentions, assumptions downstream
 - downstream activities must be predictable
 - models of analysis/verification = objectives for synthesis
- More "custom" bias in automated methodologies

Implications of Complexity

- UDSM: Silicon complexity + Design complexity
 - convergent design: must abstract what's beneath
 - prevention with respect to analysis/verification checks
 - many issues to worry about (all are "first-class citizens"
 - apply methodology (P/G/clock design, circuit tricks, ...) whenever possible
 - must concede loss of clean abstractions: need unifications
 - synthesis and analysis in tight loop
 - logic and layout : chip implementation planning methodologies
 - layout and manufacturing: CMP/OPC/PSM, yield, reliability, SI, statistical design, ...
 - must hit function/cost/TAT points that maximize \$/wafer
 - reuse-based methodology
 - need for differentiating IP → <u>custom</u>-ization

ICCAD Tutorial: November 11, 1999

Wire Spacing and Layout Methodology

- Routing tools do not always optimize for spacing
- Stand-alone spacing
 - layout (GDSII/DEF) -> layout (GDSII/DEF)
- Need tight interface to extraction and timing simulation
- Future: built-in extraction and timing estimates

Courtesy M. Berkens, DAC99

Data Aspects of Post Layout Optimization

- Jogging increases amount of data significantly
- Massive data needs striping
 - minor loss of optimality for large stripes
 - need work across hierarchy
 - fix boundary location, "look" beyond cut-line
 - need propagate net information
- Must support multi-processing for reasonable TAT

Courtesy M. Berkens, DAC99

ICCAD Tutorial: November 11, 1999

Wire Spacing and Shielding

- Pre routing specification
 - convenient, handled by router
 - robust but conservative
 - may consume big area
- Post routing specification
 - area efficient-shield only where needed & have space
 - ease task of router
 - sufficient shielding is not guaranteed

Courtesy M. Berkens, DAC99

Opportunities for Via Strengthening

- · Add cut holes where possible
 - wire widening may need larger/more vias
 - "non square" via cells
- Increase metal-via overhang
 - non uniform overhang

Courtesy M. Berkens, DAC99

Performance Optimization Methodology Design Tradeoffs

- Speed / Power / Area
- Must compromise and choose between often competing criteria
- For given criteria (constraints) on some variables, make best choice for free variables (min cost) => Need to be on boundary of feasible region

Courtesy Bamji, DAC99

ICCAD Tutorial: November 11, 1999

Optimization Methods

- Many different kinds of delay/area optimization are possible
- Many optimizations are somewhat independent
 - use several different optimizations. Apply whichever ones are applicable

Courtesy Bamji, DAC99

CCAD Tutorial: November 11, 1999

Andrew B. Kahn Majid Sarrafzade

Optimization at Layout Level Size Transistors Space/size wires Add/delete buffers Modify circuit locally

Transistor Sizing Methods

- Exact Solutions
 - gradient Search
 - convex Programming
- Approximate methods (very good solutions)
 - iterative improvement on critical path (e.g. TILOS)

ourtesy Bamji, DAC99 ICCAD Tutorial: November 11, 1999 C Majid Sarrafz

Convex Programming Outside Delay Case Add more and more bounds Bound New guess delay is too slow so add new bound: Tangent to curve of equal delay at new guess. New feasible region is to the left (region which contains required delay). Required B. Kaling Majid Sarrafzadeh

Performance Optimization Methodology

- Design Optimization
 - global restructuring optimization -- logic optimization on layout using actual RC, noise peak values etc.
 - localized optimization -- with no structural changes and least layout impact
 - repeater/buffer insertion for global wires
- Physical optimization
 - high fanout net synthesis (eg. for clock nets); buffer trees to meet delay/skew and fanout requirements
 - automatically determine network topology (# levels, #buffers, and type of buffers)
 - wire sizing, spacing, shielding etc.
- Fixing timing violations automatically
 - fix setup/hold time violations
 - fix maximum slew and fanout violations

Courtesy Hormoz/Muddu, ASIC99

Custom Methodology in ASIC(?) / COT

- How much is on the table w.r.t. performance?
 - 4x speed, 1/3x area, 1/10x power (Alpha vs. Strongarm vs. "ASIC")
 - layout methodology spans RTL syn, auto P&R, tiling/generation, manual
 - library methodology spans gate array, std cell, rich std cell, liquid lib,
- Traditional view of cell-based ASIC
 - Advantages: high productivity, TTM, portability (soft IP, gates)
 - Disadvantages: slower, more power, more area, slow production of std cell library
- Traditional view of Custom
 - Advantages: faster, less power, less area, more circuit styles
 - Disadvantages: low productivity, longer TTM, limited reuse

ICCAD Tutorial: November 11, 1999

Custom Methodology in ASIC(?) / COT

- With sub-wavelength lithography:
 - how much more guardbanding will standard cells need?
 - composability is difficult to guarantee at edges of PSM layouts, when PSM layouts are routed, when hard IPs are made with different density targets, etc.
 - context-independent composability is the foundation of cellbased methodology!
- With variant process flavors:
 - hard layouts (including cells) will be more difficult to reuse
- → Relative cost of custom decreases
- On the other hand, productivity is always an issue...

Custom Methodology in ASIC(?) / COT

- Architecture
 - heavy pipelining
 - fewer logic levels between latches
- Dynamic logic
 - used on all critical paths
- Hand-crafted circuit topologies, sizing and layout
 - good attention to design reduces guardbands

The last seems to be the lowest-hanging fruit for ASIC

CCAD Tutorial: November 11, 1999

Custom Methodology in ASIC(?) / COT

- ASIC market forces (IP differentiation) will define needs for xtor-level analyses and syntheses
- Flexible-hierarchical top-down methodology
 - basic strategy: iteratively re-optimize chunks of the design as defined by the layout, i.e., cut out a piece of physical hierarchy, reoptimize it ("peephole optimization")
 - for timing/power/area (e.g., for mismatched input arrival times, slews)
 - for auto-layout (e.g., pin access and cell porosity for router)
 - for manufacturability (density control, critical area, phaseassignability)
 - DOF's: diffusion sharing, sizing, new mapping / circuit topology sol's
 - chunk size: as large as possible (tradeoff between near-optimality, CPU time)
 - antecedents: IBM C5M, Motorola CELLERITY, DEC CLEO
 - "infinite library"recovers performance, density that a 300-cell library and classic cell-based flow leave on the table

Custom Methodology in ASIC(?) / COT

- Supporting belief: characterization and verification are increasingly a non-issue
 - CPUs get faster; size of layout chunks (O(100-1000) xtors) stay same
 - natural instance complexity limits due to hierarchy, layers of interest
- Compactor-based migration tools are an ingredient?
 - migration perspective can infer too many constraints that aren't there (consequence of compaction mindset)
 - little clue about integrated performance analyses
- Tuners are an ingredient ? (size, dual-Vt, multi-supply)
 - . limit DOFs (e.g., repeater insertion and clustering, inverter opts
 - cannot handle modern design rules, all-angle geometries
 - not intended to do high-quality layout synthesis
- Layout synthesis is an ingredient?
 - requires optimizations based on detailed analyses (routability, signal integrity, manufacturability), transparent links to characterization and verification

ICCAD Tutorial: November 11, 1999

Custom Methodology in ASIC(?) / COT

- "Layout or re-layout on the fly" is an element of performance- and cost-driven ASIC methodology going forward
- "Polygon layout as a DOF in circuit optimization" is a very small step from "polygon layout as a DOF in process migration"
 - designers are already reconciled to the latter

Majid Sarrafzadel

Cell-Based P&R: Classic Context

- Architecture design
 - golden microarchitecture design, behavioral model, RT-level structural HDL passed to chip planning
 - cycle time and cycle-accurate timing boundaries established
 - hierarchy correspondences (structural-functional, logical (schematic) and physical) well-established
- Chip planning
 - hierarchical floorplan, mixed hard-soft block placement
 - block context-sensitivity: no-fly, layer usage, other routing constraints
 - route planning of all global nets (control/data signals, clock, P/G)
 - induces pin assignments/orderings, hard (partial) pre-routes, etc.
- Individual block design -- various P&R methodologies
- Chip assembly -- possibly implicit in above steps
- What follows: qualitative review of key goals, purposes

ICCAD Tutorial: November 11, 1999

Placement Directions

- Global placement
 - engines (analytic, top-down partitioning based, (iterative annealing based) remain the same; all support "anytime" convergent solution
 - becomes more hierarchical
 - block placement, latch placement before "cell placement"
 - support placement of partially/probabilistically specified design.
- Detailed placement
 - LEQ/EEQ substitution
 - shifting, spacing and alignment for routability
 - ECOs for timing, signal integrity, reliability
 - closely tied to performance analysis backplane (STA/PV)
 - support incremental "construct by correction" use model

Out-of-Box Uses of Routing Results

- Modify floorplan
 - floorplan compaction, pin assignments derived from top-level route planning
- Determine synthesis constraints
 - budgets for intra-block delay, block input/output boundary conditions
- Modify netlist
 - driver sizing, repeater insertion, buffer clustering
- Placement directives for block layout
 - over-block route planning affects utilization factors within blocks
- Performance-driven routing directives
 - wire tapering/spacing/shielding choices, assumed layer assignments, etc.

CCAD Tutorial: November 11, 1999

Function of a UDSM Router

- Ultimately responsible for meeting specs/assumptions
 - slew, noise, delay, critical-area, antenna ratio, PSM-amenable ...
- Checks performability throughout top-down physical impl.
 - actively understands, invokes analysis engines and macromodels
- Many functions
 - circuit-level IP generation: clock, power, test, package substrate routing
 - pin assignment and track ordering engines
 - monolithic topology optimization engines
 - <u>owns</u> key DOFs: small re-mapping, incremental placement, device-level layout resynthesis
 - is hierarchical, scalable, incremental, controllable, wellcharacterized (well-modeled), detunable (e.g., coarse/quick routing), ...

Routing Directions

- Cost functions and constraints
 - rich vocabulary, powerful mechanisms to capture, translate, enforce
- Degrees of freedom
 - wire widths/spacings, shielding/interleaving, driver/repeater sizing
 - router empowered to perform small logic resyntheses
- "Methodology"
 - carefully delineated scopes of router application
 - instance complexities remain tractable due to hierarchy and restrictions (e.g., layer assignment rules) that are part of the methodology
- Change in search mechanisms
 - iterative ripup/reroute replaced by "atomic topology synthesis utilities": construct entire topologies to satisfy constraints in arbitrary contexts
- Closer alignment with full-/automated-custom view
 - "peephole optimizations" of layout are the natural extensions of Motorola CELLERITY, IBM CM5, etc. methodologies

Andrew B. Kahng
Majid Sarrafzadeh

Planning / Implementation Methodologies

- Centered on logic design
 - wire-planning methodology with block/cell global placement
 - global routing directives passed forward to chip finishing
 - constant-delay methodology may be used to guide sizing
- Centered on physical design
 - placement-driven or placement-knowledgeable logic synthesis
- Buffer between logic and layout synthesis
 - placement, timing, sizing optimization tools
- Centered on SOC, chip-level planning
 - interface synthesis between blocks
 - communications protocol, protocol implementation decisions guide logic and physical implementation

ICCAD Tutorial: November 11, 1999

Andrew B. Kahng
Majid Sarrafzadel