Automated Layout and Migration in Ultra-Deep Submicron VLSI

June 25, 1999

Cyrus Bamji — Cadence Design Systems, Inc.

Maarten Berkens, Chris Strolenberg — Sagantec, Inc.

Andrew B. Kahng — UCLA CS Dept.

Tutorial Overview

- UDSM technology trends and implications
 - new issues and problems in USDM design
 - current context: cell-based place-and-route
- New solutions: Custom layout design
- New solutions: Layout-level modifications for performance and yield
- Applications: Hard-IP reuse and optimization

Logistics

- Tutorial handouts (.pdf) available on web
 - http://vlsicad.cs.ucla.edu/DAC99TUTORIAL/
 - will be updated with reference lists, any new slides
- Lots of material to cover
 - four main sections: 90 minutes each
 - 9:00 10:30 UDSM technology trends and implications
 - 10:45 12:15 New solutions: Custom layout design
 - 1:30 3:00 New solutions: Layout-level mods for perf and yield
 - 3:15 4:45 Applications: Hard-IP reuse and optimization
 - some pruning from what's in the handouts
 - clarifying questions welcome; batch other questions

Logistics

- Tutorial handouts (.pdf) available on web
 - http://vlsicad.cs.ucla.edu/DAC99TUTORIAL/
 - will be updated with reference lists, any new slides
- Schedule and timing
 - four main sections: 90 minutes each
 - 9:00 10:30 UDSM technology trends and implications
 - 10:45 12:15 New solutions: Custom layout design
 - 1:30 3:00 New solutions: Layout-level mods for perf and yield
 - 3:15 4:45 Applications: Hard-IP reuse and optimization
 - some pruning from what's in the handouts
 - clarifying questions welcome; batch other questions

Silicon Complexity and Design Complexity

- Silicon complexity: physical effects cannot be ignored
 - fast but weak gates; resistive and cross-coupled interconnects
 - subwavelength lithography from 350nm generation onward
 - delay, power, signal integrity, manufacturability, reliability all become first-class objectives along with area
- Design complexity: more functionality and customization, in less time
 - reuse-based design methodologies for SOC
- Interactions increase complexity
 - need robust, top-down, convergent design methodology

Guiding Philosophy in the Back-End

- Many opportunities to leave \$\$\$ on table
 - physical effects of process, migratability
 - design rules more conservative, design waivers up
 - device-level layout optimizations in cell-based methodologies
- Verification cost increases
- Prevention becomes necessary complement to checking
- Successive approximation = design convergence
 - upstream activities pass intentions, assumptions downstream
 - downstream activities must be predictable
 - models of analysis/verification = objectives for synthesis
- More "custom" bias in automated methodologies

Overall Roadmap Technology Characteristics

YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014	
TECHNOLOGY NODE	250	180	130	100	70	50	35	
DENSE LINES (DRAM HALF-PITCH) (nm)	250	100	100		70	30	33	
ISOLATED LINES (MPU GATES) (nm)	200	140	100	70	50	35	25	
Logic (Low-Volume—ASIC)‡	Logic (Low-Volume—ASIC)‡							
Usable transistors/cm2 (auto layout)	8M	14M	24M	40M	64M	100M	160M	
Nonrecurring engineering cost	50	25	15	10	5	2.5	1.3	
/usable transistor (microcents)	00	20	10	10	<u> </u>	2.0	1.0	
Number of Chip I/Os – Maximum								
Chip-to-package (pads)	1515	1867	2553	3492	4776	6532	8935	
(high-performance)	1010	1007	2000	0102	1770	0002	0000	
Chip-to-package (pads)	758	934	1277	1747	2386	3268	4470	
(cost-performance)	700	001	1211	17 17	2000	0200	1170	
Number of Package Pins/Balls – Maximum								
Microprocessor/controller	568	700	957	1309	1791	2449	3350	
(cost-performance)	000	700	001	1000	1701	2110	0000	
ASIC	1136	1400	1915	2619	3581	4898	6700	
(high-performance)	1100	1100	1010	2010	0001	1000	0,00	
Package cost (cents/pin)	0.78-2.71	0 70-2 52	0.60-2.16	0 51-1 85	0 44-1 59	0.38-1.36	0.33-1.17	
(cost-performance)	0.70 2.71	0.10 2.02	0.00 2.10	0.01 1.00	0.111.00	0.00 1.00	0.00 1.17	
Power Supply Voltage (V)								
Minimum logic Vdd (V)	1.8–2.5	1.5–1.8	1.2–1.5	0.9–1.2	0.6–0.9	0.5-0.6	0.37-0.42	
Maximum Power								
High-performance with heat sink (W)	70	90	130	160	170	175	183	
Battery (W)—(Hand-held)	1.2	1.4	2	2.4	2.8	3.2	3.7	

Overall Roadmap Technology Characteristics (Cont'd)

YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014
TECHNOLOGY NODE	250	180	130	100	70	50	35
DENSE LINES (DRAM HALF-PITCH) (nm)		100	100	100			
Chip Frequency (MHz)	Chip Frequency (MHz)						
On-chip local clock	750	1250	2100	3500	6000	10000	16903
(high-performance)	700	1230	2100	3300	0000	10000	10000
On-chip, across-chip clock	375	1200	1600	2000	2500	3000	3674
(high-performance)	575	1200	1000	2000	2500	3000	3074
On-chip, across-chip clock	300	500	700	900	1200	1500	1936
(high-performance ASIC)	300	500 700	700	0 900	1200	1500	1930
On-chip, across-chip clock	400	600	800	1100	1400	1800	2303
(cost-performance)	400	000 000	000	1100	1400	1000	2000
Chip-to-board (off-chip) speed							
(high-performance, reduced-width,	375	1200	1600	2000	2500	3000	3674
multiplexed bus)							
Chip-to-board (off-chip) speed	250	480	885	1035	1285	1540	1878
(high-performance, peripheral buses)	230	400	000	1033	1205	1340	1070
Chip Size (mm2) (@sample/introduction)							
DRAM	280	400	560	790	1120	1580	2240
Microprocessor	300	340	430	520	620	750	901
ASIC [max litho field area]	480	800	900	1000	1100	1300	1482
Lithographic Field Size (mm2)	22 x 22	25 x 32	25 x 36	25 x 40	25 x 44	25 x 52	25 x 59
	484	800	900	1000	1100	1300	1482
Maximum Number Wiring Levels	6	6–7	7	7–8	8–9	9	10

DAC99 Tutorial

June 25, 1999

Technology Scaling Trends

• Interconnect

- Impact of scaling on parasitic capacitance
- Impact of scaling on inductance coupling
- Impact of new materials on parasitic capacitance & resistance
- Trends in number of layers, routing pitch

• Device

- $-V_{dd}$, V_t , sizing
- Circuit trends (multithreshold CMOS, multiple supply voltages, dynamic CMOS)
- Impact of scaling on power and reliability

Technology Scaling Trends

Technology Scaling Trends

- Scaling of x0.7 every three years
 - -.25u .18u .13u .10u .07u .05u
 - **1997 1999 2002 2005 2008 2011**
 - -5LM 6LM 7LM 7LM 8LM 9LM
- Interconnect delay dominates system performance
 - consumes 70% of clock cycle
- cross coupling capacitance is dominating
 - cross capacitance \rightarrow 100%, ground capacitance \rightarrow 0%
 - -90% in .18u
 - huge signal integrity implications (e.g., guardbands in static analysis approaches)

New Materials Implications

- Lower dielectric
 - reduces total capacitance
 - doesn't change cross-coupled / grounded capacitance proportions
- Copper metallization
 - reduces RC delay
 - avoids electromigration
 - thinner deposition reduces cross cap
- Multiple layers of routing
 - enabled by planarized processes; 10% extra cost per layer
 - reverse-scaled top-level interconnects
 - relative routing pitch may increase
 - room for shielding

Tutorial Overview

- UDSM technology trends and implications
 - new issues and problems in USDM design
 - current context: cell-based place-and-route
- New solutions: Custom layout design
- New solutions: Layout-level modifications for performance and yield
- Applications: Hard-IP reuse and optimization

UDSM Technology Trends and Implications

June 25, 1999

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Technical Issues in UDSM Design

- Manufacturability (chip can't be built)
 - antenna rules
 - minimum area rules for stacked vias
 - CMP (chemical mechanical polishing) area fill rules
 - layout corrections for optical proximity effects in subwavelength lithography; associated verification issues
- Signal integrity (failure to meet timing targets)
 - crosstalk induced errors
 - timing dependence on crosstalk
 - IR drop on power supplies
- Reliability (design failures in the field)
 - electromigration on power supplies
 - hot electron effects on devices
 - wire self heat effects on clocks and signals

Why Now?

- These effects have always existed, but become worse at UDSM sizes because of:
 - finer geometries
 - greater wire and via resistance
 - higher electric fields if supply voltage not scaled
 - more metal layers
 - higher ratio of cross coupling to grounded capacitance
 - lower supply voltages
 - more current for given power
 - lower device thresholds
 - smaller noise margins

Why Now?

- Focus on interconnect
 - susceptible to patterning difficulties
 - CMP, optical exposure, resist development/etch, CVD, ...
 - susceptible to defects
 - critical area, critical volume

Defect-related Yield Loss

- High susceptibility to spot defect-related yield loss, particularly in metallization stages of process
- Most common failure mechanisms: shorts or opens due to extra or missing material between metal tracks
- Design tools fail to realize that values in design manuals are minimum values, not target values
- Spot defect yield loss modeling
 - extremely well-studied field
 - first-order yield prediction: Poisson yield model
 - critical-area model much more successful
 - <u>fatal defect types</u> (two types of short circuits, one type of open)

Defect-related Yield Loss

fatal defect types (two types of short circuits, one type of open)

DAC99 Tutorial

June 25, 1999

Critical Area for Short Circuits

Critical Area for Shorts

Critical Area for Short Circuits

Approaches to Spot Defect Yield Loss

- Modify wire placements to minimize critical area
- Router issue
 - router understands critical-area analyses, optimizations
 - spread, push/shove (gridless, compaction technology)
 - layer reassignment, via shifting (standard capabilities)
 - related: via doubling when available, etc.
- Post-processing approaches in PV are awkward
 - breaks performance verification in layout (if layout has been changed by physical verification)
 - no easy loop back to physical design: convergence problems

Antennas

- Charging in semiconductor processing
 - many process steps use plasmas, charged particles
 - charge collects on conducting poly, metal surfaces
 - capacitive coupling: large electrical fields over gate oxides
 - stresses cause damage, or complete breakdown
 - induced V_t shifts affect device matching (e.g., in analog)

Antennas

- Charging in semiconductor processing
- Standard solution: limit antenna ratio
 - antenna ratio = $(A_{poly} + A_{MI} + ...) / A_{gate-ox}$
 - − e.g., antenna ratio < 300
 - $-A_{Mx} \equiv metal(x)$ area electrically connected to node without using metal(x+1), and not connected to an active area

Antennas

- Charging in semiconductor processing
- Standard solution: limit antenna ratio
- General solution == bridging (break antenna by moving route to higher layer)
- Antennas also solved by protection diodes
 - not free (leakage power, area penalties)
- Basically, annoying-but-solved problem

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Density Control for CMP

- Chemical-mechanical polishing (CMP)
 - applied to interlayer dielectrics (ILD) and inlaid metals
 - polishing pad wear, slurry composition, pad elasticity make this a very difficult process step
- Cause of CMP variability
 - pad deforms over metal feature
 - greater ILD thickness over dense regions of layout
 - "dishing" in sparse regions of layout
 - huge part of chip variability budget used up (e.g., 4000Å ILD variation across-die)

Min-Variation Objective

• Relationship between oxide thickness and local feature

density

• Minimizing variation in window density over layout preferable to satisfying lower and upper density bounds

Density Control for CMP

- Layout density control
 - density rules minimize yield impact
 - uniform density achieved by post-processing, insertion of dummy features
- Performance verification (PV) flow implications
 - accurate estimation of filling is needed in PD, PV tools (else broken performance analysis flow)
 - filling geometries affect capacitance extraction by > 50%
 - is a multilayer problem (coupling to critical nets, contacting restrictions, active layers, other interlayer dependencies)

Density Rules

- Modern foundry rules specify layout density bounds to minimize impact of CMP on yield
- Density rules control local feature density for $w \times w$ windows
 - e.g., on each metal layer every 2000um \times 2000um window must be between 35% and 70% filled
- Filling = insertion of "dummy" features to improve layout density
 - typically via layout post-processing in PV / TCAD tools
 - boolean operations on layout data
 - affects vital design characteristics (e.g., RC extraction)
 - accurate knowledge of filling is required during physical design and verification

Need for Density Awareness in Layout

• Performance verification flow:

• Filling/slotting geometries affect RC extraction

VICTIM LAYER TOTAL CAPACITANCE (10 F)						
Same layer-i neighbors?	Fill layers i-1, i+1?	$\varepsilon = 3.9$	$\varepsilon = 2.7$			
N	N	2.43 (1.0)	1.68 (1.0)			
N	Y	3.73 (1.54)	2.58 (1.54)			
Y	N	4.47 (1.84)	3.09 (1.84)			
Y	Y	5.29 (2.18)	3.66 (2.18)			

- Up to 1% error in extracted capacitance
- Reliability also affected (e.g. slotting of power stripes)

Need for Density Awareness in Layout

• Performance verification flow:

• Can be considered as ``single-layer'' problem

Middle Victim Conductor Total Capacitance (10 F)							
Fill layer offset	Fill geometry	$\varepsilon = 3.9$	$\varepsilon = 2.7$				
N	10×1	3.776 (1.0)	2.614 (1.0)				
N	1 × 1	3.750 (0.99)	2.596 (0.99)				
Y	10×1	3.777 (1.00)	2.615 (1.00)				
Y	1 × 1	3.745 (0.99)	2.593 (0.99)				

• Caveat: contacting, active+gate layers, other layer interactions

Limitations of Current Techniques

- Current techniques for density control have three key weaknesses:
 - (1) only the average *overall* feature density is constrained, while local variation in feature density is ignored
 - (2) density analysis does not find *true* extremal window densities instead, it finds extremal window densities only over fixed set of window positions
 - (3) fill insertion into layout does not minimize the maximum variation in window density

Layout Density Control Flow

Density Analysis

- find total feature area in each window
- find maximum/minimum total feature area over all w × w windows

• find slack (available area for filling) in each window

Fill synthesis

- compute amounts, locations of dummy fill
- generate fill geometries

DAC99 Tutorial

June 25, 1999

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Subwavelength Optical Lithography — Technology Limits

- Implications of Moore's Law for feature sizes
- Steppers not available; WYSIWYG (layout = mask = wafer) fails after .35µm generation
- Optical lithography
 - circuit patterns optically projected onto wafer
 - feature size limited by diffraction effects
 - Rayleigh limits
 - resolution *R* proportional to λ / NA
 - depth of focus *DOF* proportional to λ / NA^2
- Available knobs
 - amplitude (aperture): OPC
 - phase: PSM

Next-Generation Lithography and the Subwavelength Gap

- EUV
- X-rays
- E-beams
- All at least 10 years away; require significant R&D, major infrastructure changes
- > 30 years of infrastructure and experience supporting optical lithography

Optical Proximity Correction (OPC)

- Corrective modifications to improve process control
 - improve yield (process latitude)
 - improve device performance

OPC Corrections

DAC99 Tutorial

June 25, 1999

Optical Proximity Correction (OPC)

- Mostly cosmetic corrections; complicates mask manufacturing and dramatically increases cost (with little benefit?)
- Post-design verification is essential
- Rule-based OPC
 - apply corrections based on a set of predetermined rules
 - fast design time, lower mask complexity
 - suitable for less aggressive designs

- Model-based OPC
 - use process simulation to
 determine corrections on-line
 - longer design time, increased mask complexity
 - suitable for aggressive designs

OPC Features

- Serifs for corner rounding
- Hammerheads for line-end shortening
- Gate assists (subresolution scattering bars) - for CD control
- Gate biasing for CD control
- Issues for custom, hierarchical and reuse-based layout methodologies

OPC Issues

- WYSIWYG broken → (mask) verification bottleneck
- Pass functional intent down to OPC insertion
 - make corrections that win \$\$\$, reduce performance variation
 - OPC insertion is for predictable circuit performance, function
- Pass limits of manufacturing up to layout
 - don't make corrections that can't be manufactured or verified
 - Mask Error Enhancement Factor, etc.
- Layout needs models of OPC insertion process
 - geometry effects on cost of required OPC to yield function
 - costs of breaking hierarchy (beyond known verification, characterization costs)

Mask Types

- Bright field masks
 - opaque features defined by chrome
 - background is transparent
 - used, e.g., for poly and metal

- Dark field masks
 - transparent features defined
 - background is opaque (chrome)
 - used, e.g., for contacts
 - used also for damascene metals

Photoresist Types

- Positive resists
 - material is removed from exposed areas during development
 - most widely used

- Negative resists
 - material is removed from unexposed areas during development
 - less mature

Post development profile for positive and negative photoresists

DAC99 Tutorial

June 25, 1999

Phase Shifting Masks

Phase Shifting Masks

- no phase shifting: poor contrast due to diffraction
- phase shifting by 180°: reverse electric field on mask, destructive interference yields zero-intensity on wafer (high contrast)
- Background
 - invented in 1982 by Levenson at IBM
 - interest in early 1990s, but near wavelength → no pressing need
- Many forms of phase-shifting proposed
- Key issues: manufacturability, design tools
- Today: subwavelength gap forces PSM into every process (example: Motorola 90nm gates using 248nm stepper, announced in early 1999)

Forms of PSM

- Bright Field Phase-Shifting
 - single exposure
 - phase transitions required, e.g., 0-60-120-180 or 90-0-270 to avoid printing phase edges
 - throughput unaffected
 - limited improvement in process latitude
 - mask manufacturing difficult, mask cost very high

double exposure

- PSM with 0 and 180 degree phase shifters
- define only critical features ("locally bright-field"), rest of mask is chrome
- second exposure with clear-field binary mask protects critical features, defines non-critical features as well
- excellent process latitude
- decrease in throughput (double exposure)

Gate Shrinking and CD Control Using Phase Shifting

Double-Exposure Alternating PSM

1. Alternate PSM Mask

2. Trim Mask (COG)

Benefits of PSM

DAC99 Tutorial

June 25, 1999

Applicability of OPC and PSM

DAC99 Tutorial

June 25, 1999

The Phase Assignment Problem in PSM

Assign 0, 180 phase regions such that

- (dark field) feature pairs with separation < B have opposite phases
- (bright field) features with width < B are induced by adjacent phase regions
 with opposite phases

 $b \equiv minimum separation or width, with phase shifting$

 $B \equiv minimum \text{ separation or width, without } \overline{phase shifting}$

Phase Conflict and the Conflict Graph

- Vertices: features (or phase regions)
- Edges: "conflicts" (necessary phase contrasts) (feature pairs with separation < B)

Odd Cycles in Conflict Graph

- Self-consistent phase assignment is not possible if there is an odd cycle in the conflict graph
- Phase-assignable ≡ bipartite ≡ no odd cycles

Phase Conflict and the Conflict Graph

- Self-consistent phase assignment is not possible if there is an odd cycle in the conflict graph
- Phase-assignable = bipartite = no odd cycles
 - this is a global issue!
 - features on one side of chip can affect features on the other side
- Breaking odd cycles: must change the layout!
 - change feature dimensions, and/or change spacings
 - degrees of freedom include layer reassignment for interconnects

Breaking Odd Cycles

- Must change the layout:
 - change feature dimensions, and/or
 - change spacings
 - PSM phase-assignability is a layout, not verification, issue

Phase Assignment - Bright Field

• Bright Field (dense criticality regime)

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - IR drop
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Crosstalk Induced Errors

- Transition on an adjoining signal causes unintended logic transition
- Symptom: chip fails (repeatably) on certain logic operations

Crosstalk Induced Errors

- Timing dependence on crosstalk
 - timing depends on behavior of adjoining signals
 - symptom: timing predictions inaccurate compared to silicon (effect can be large: 3:1 on individual nets)

Effects of Crosstalk: Delay Uncertainty

Effects of Crosstalk: Delay Uncertainty

Relative Delay vs. Relative Risetime for different coupling percentages

Crosstalk Prevention Strategies

- Placement phase
 - don't know adjacencies, layer assignments, or global routes
 - do know net length, est. wire R/C, driver strength, signal slews
 - establish metrics to tell if net is likely to have problems
 - fixes include driver sizing, buffering
- Global route phase
 - don't know adjacencies, but have idea of congestion
 - do know layer assignments, better R/C estimates
- Can apply timing windows
 - only consider signals that can change at the same time
 - data comes from static timing analysis
- Detailed routing detailed analysis and routing ECOs
- N.B.: In any case, SI brings potential huge infrastructure changes (e.g., statistical centering design w/distributions)

IR Drop

- Voltage drop in supply lines from currents drawn by cells
- Symptom: chip malfunctions on certain vectors
- Biggest problem: what's the worst-case vector?

IR Drop

- Analysis
 - model I/O P/G supply; C extraction must distinguish decoupling cap between P/G and coupling cap between signals, P/G
- Prevention (good design)
 - P/G lines on same layer, close to each other; large decoupling on chip; process solutions (e.g., DEC Alpha)

Electromigration

- Power supply lines fail due to excessive current
- Symptom: chip eventually fails in the field when wire breaks

Electromigration

- Prevention: wire cross-section to current rules
- Maximum current density for particular material (via, layer)
- Modified Black's equation; waveform models
- Higher limits for short, thin wires due to grain effects
- Copper: 100x resistance to EM → not a problem any more?

Hot Electron Effects

- Also called short-channel effect
- Caused by extremely high electric fields in the channel
 - occurs when voltages are not scaled as fast as dimensions
- Effect becomes worse as devices are turned on harder
- Symptom: thresholds shift over time until chip fails

Hot Electron Prevention Strategies

- Allowable region for input slew and output load
- Fluence per transition is function of input slew, output load
- Set maximum allowed degradation over life of device (estimate of total number of transitions) ≡ fluence limit
- Size device as needed
- Output load vs. driver sizes

Wire Self-Heat

- May also be called signal wire electromigration
- Wire heats above oxide temperature as pulses go through
- Symptom: chip eventually fails when wire breaks
- Depends on metal composition, signal frequency, wire sizes, slew rates, and amount of capacitance driven
- Requires different data/formulas from power supply EM

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - IR drop
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts

Cell-Based P&R: Classic Context

• Architecture design

- golden microarchitecture design, behavioral model, RT-level structural HDL passed to chip planning
- cycle time and cycle-accurate timing boundaries established
- hierarchy correspondences (structural-functional, logical (schematic) and physical) well-established

Chip planning

- hierarchical floorplan, mixed hard-soft block placement
- block context-sensitivity: no-fly, layer usage, other routing constraints
- route planning of all global nets (control/data signals, clock, P/G)
- induces pin assignments/orderings, hard (partial) pre-routes, etc.
- Individual block design -- various P&R methodologies
- Chip assembly -- possibly implicit in above steps
- What follows: qualitative review of key goals, purposes

Global Placement Overview

- Context
 - timing- and routability-driven placement of 10⁶ cells and up
 - interconnect more important than transistors
- Formalization
 - -weighted hypergraph represents netlist
 - -cell shapes ignored; cells can overlap
 - -constrained vertex locations, e.g., I/O pads
 - –minimize objective function of unknown vertex locations

Global Placement Overview

- Cell areas must be "distributed uniformly"
- Top-down hierarchical placement
 - solve a "top-level" problem first
 - apply successive refinements
 - e.g., divide/conquer: split design in two pieces, then split each part, continue recursively until pieces are trivial
- Analytic placement
 - based on mathematical programming, e.g., minimize objective function by funding zeros of derivative
- Top-down hierarchical was the leader until recently
- Analytic (FD) placement making a big comeback

Placement Model

- Hypergraphs
 - netlist represented by hypergraph
 - cells represented by vertices ("with area")
 - all pins on a cell are placed in the center

Placement Model

- Objectives
 - Rectilinear Steiner Minimal Tree (RSMT)
 - half-perimeter wirelength (BBox)
 - routing congestion

Approaches To Placement

- Top-down partitioning based
 - divide and conquer strategy
 - divide = hypergraph partitioning
- Simulated annealing
 - iterative-improvement move-based
- Analytical
 - LP-style approach
- Hybrids are of course possible

Top-Down Placers

- Partitioning-driven placers: divide/conquer
 - analytic engines can be used as plug-ins
 - annealing can be used as post-optimization
- Core algorithms
 - min-cut partitioning of large hypergraphs
 - end cases, e.g., 15 cells
- Modern implementations scale well, parallelize naturally

Top-Down Placers

Use model

- batch mode (no support for interactivity or ECO)
- some constraints handled well, but not timing-critical paths
- SA post-processing (detailed placement) to satisfy additional constraints

• Performance

- reasonably fast; best quality of several starts is stable
- basis for leading-edge commercial tools

Top-Down Placer Detail: Hypergraph Partitioning

Top-Down Placer Detail: Hypergraph Partitioning

- Balanced hypergraph partitioning is NP-hard
- Randomized heuristics with many starts
- Best ones based on Fiduccia-Mattheyses 82
 - spectral, annealing, etc. methods not competitive
- Greatly improved in last 2 years with multilevel FM
- Runtime for circuits of 10⁶ nodes: few seconds

Placement Blocks: Many Terminals

- Rent's rule: $\#\text{terminals} = k \cdot (\#\text{cells})^p$
- For given Rent parameter value p, below what #cells will more than y% of vertices be terminals?
- Makes life easier for partitioners!

Rent parameter	y=5%	y=10%	y=20%
p = 0.60	40992	7250	1281
p = 0.65	186943	25800	3561
p = 0.70	1413600	140250	13915

Fiduccia-Mattheyses Approach

- Fiduccia-Mattheyses (1982)
 - start with some initial solution
 - perform passes until a pass fails to improve solution quality
- Pass:
 - start with all vertices free to move to the other partition (unlocked)
 - label each possible move with immediate change in cost that it causes (gain)
 - iteratively select and execute a move with highest gain, lock the moving vertex, and update gains
 - best solution seen during the pass is adopted as starting solution for next pass

Pass Structure in FM

The Multilevel Paradigm

Multilevel FM and Advanced Techniques

- Key implementation decisions
 - tie-breaking
 - handling balance constraints and cell/cluster areas
 - efficient data structures and pitfalls
 - clustering
 - heavy-edge matching-based
 - hierarchy based
 - signal flow analysis, netlist structure based
 - electrically appropriate clustering
- Other objectives
- Other issues: relaxations, 2-way vs. k-way, floorplanor placement-driven formulations, etc.

Analytic Placement

Core algorithms

- minimization of convex functions
- well-studied numerical methods: solving sparse linear systems
- deterministic, predictable runtime/quality, off-the-shelf or easy to implement

• Use models

- simple objective functions and linear constraints supported
- discrete constraints are hard to deal with
- little or no support for interactivity and ECO
- solutions can only be interpreted as hints to other placers (too many cell overlaps; solutions must be "legalized")
- however: very powerful if applied with multilevel paradigm

Analytic Placement Details

- Reduction of hypergraphs to graphs
 - clique and star models for nets

- Objective functions
 - total weighted "wirelength" of all edges
 - linear (Manhattan) WL
 - squared (Euclidean) WL

More Analytic Placement Details

- BBox: common objective function (wirelength est.)
 - for one hyperedge: half-perimeter of the bounding box of incident vertices
 - sum over all hyperedges
 - not everywhere differentiable
 - can be complemented by other, e.g., non-linear terms
 - typically dominates other terms

Quadratic vs Linear Wirelength Minimization

- $\min_{\mathbf{x}} \sum_{i>j} a_{ij} (\mathbf{x}_i \mathbf{x}_j)^2$ subject to $\mathbf{H}\mathbf{x} = \mathbf{b}$
 - $\mathbf{x} = \text{unknown node positions}$, $\mathbf{H} = \text{linear constraints}$
 - Benefits: objective function is differentiable and convex
 - Fast unique solution (PROUD [Tsay et al. `88])
 - Drawback: questionable relevancy
- $\min_{\mathbf{x}} \sum_{i>j} a_{ij} | \mathbf{x}_i \mathbf{x}_j |$ subject to $\mathbf{H}\mathbf{x} = \mathbf{b}$
 - Benefits: better model of routed wirelength
 - Mahmoud et al. `94
 - Drawbacks: not differentiable, and nonconvex
 - typically *many* minimizers
 - minimized by slow linear programming or heuristically by *GORDIAN-L* (*Sigl* et al, *DAC* `91)

Smooth Approximations

- Problem: combine benefits of both objectives
- Solution: smooth approximations
 - high accuracy
 - minimizers must be "very close"
 - quickly computable (= free of numerical problems)
 - twice continuously differentiable
 - partials not too large
- Problem: combine accuracy and speed
- Solution: parameterized approximations:
 - trade-offs between approximation quality and runtime

Regularization and "Weiszfeld method"

- Regularization: $|x| \rightarrow (x^2 + \beta)^{1/2}$
- $\beta > 0$ gauges trade-off: quality vs run time
- GORDIAN-L a special case $\beta = 0$ of Weiszfeld iteration (*Eckhardt* `80)
- Regularization allows for faster numerical methods (see Alpert et al., *Proc. ISPD-97*)

Simple Regularization

Symbolic Regularization

- Look at symbolic representation of objective function
- Find symbolic fragments responsible for singularities
- Relevant fragments often are
 - univariate functions
 - absolute value or more general case analysis
- Hence our interest in piece-wise linear functions
- Approximate ("regularize") the fragments
 - e.g., send |x| into $(|x|^p+\beta)^{1/p}$
- Produce new symbolic representation by substituting in approximations of fragments

e.g.,
$$min(a,b)=(a+b-|a-b|)/2$$
 by $(a+b-((a-b)^p+\beta)^{1/p})/2$

Example of β – regularization

Detailed Placement

- Detailed placement optimizations
 - EEQ/LEQ substitution
 - module orientation
 - shifting/alignment
- Routability and wiring estimation
 - A priori, on-line and a posteriori wiring estimators for placement

Placement Directions

Global placement

- engines (analytic, top-down partitioning based, (iterative annealing based) remain the same; all support "anytime" convergent solution
- becomes more hierarchical
 - block placement, latch placement before "cell placement"
- support placement of partially/probabilistically specified design
- Detailed placement
 - LEQ/EEQ substitution
 - shifting, spacing and alignment for routability
 - ECOs for timing, signal integrity, reliability
 - closely tied to performance analysis backplane (STA/PV)
 - support incremental "construct by correction" use model

Taxonomy of Routing Approaches

- Gridded vs. gridless
- Area-based vs. channel-based
- Full-chip vs. switchbox
- Many details
 - search: BFS (A* or maze) vs. DFS (line probe) vs. pattern-based
 - metaheuristic: iterative (recost/ripup/reroute) vs. combinatorial (multicommodity flow, LP+rounding)
 - resouce model: right-way vs. wrong-way, understanding of congestion, costing, pin access, etc.
- High-capacity batch ASIC
 - gridded, area-based, N-layer, symbolic, switchbox, global+detailed, A* search, iterative ripup/reroute
- Lower-capacity, auto-interactive, full-custom/CA/PCB
 - gridless, shape-based, full-chip

How To Model Routing Resources?

- Complete (unit) Grid
 - store all possible paths a route could take
 - high memory overhead
 - simple model
- Connection Grid
 - only some gridlines need be stored/searched
 - a 'strong connection graph' guarantees that the shortest path
 can be made using only lines in the graph
 - lower memory overhead
- Implicit Connection Grid ('Gridless')
 - connection grid can be generated on the fly, as needed
 - lowest memory overhead
 - improves runtime for some algorithms!!

Complete (Unit) Grid

Connection Grid

Implicit Connection Graph

- S.Q. Zheng, et. al TCAD 1996
- Generates the connection grid 'on the fly'
 - a.k.a. gridless
 - saves memory avoids storing large graph for short nets
- Key operation find adjacent nodes
 - given: a node n in the connection graph
 - produce: all neighboring nodes to n
- Operation find_neighbors
 - Lu, Lv be the set of all vertical, horizontal line segments
 - find the (at most 2) members of each set intersecting n
 - trace each segment, starting at n, looking for the next intersection with a member of the other set
 - using balanced binary tree, can be done in O(log e)
 June 25, 1999

Out-of-Box Uses of Routing Results

- Modify floorplan
 - floorplan compaction, pin assignments derived from top-level route planning
- Determine synthesis constraints
 - budgets for intra-block delay, block input/output boundary conditions
- Modify netlist
 - driver sizing, repeater insertion, buffer clustering
- Placement directives for block layout
 - over-block route planning affects utilization factors within blocks
- Performance-driven routing directives
 - wire tapering/spacing/shielding choices, assumed layer assignments, etc.

Function of a UDSM Router

- Ultimately responsible for meeting specs/assumptions
 - slew, noise, delay, critical-area, antenna ratio, PSM-amenable ...
- Checks performability throughout top-down physical impl.
 - actively understands, invokes analysis engines and macromodels
- Many functions
 - circuit-level IP generation: clock, power, test, package substrate routing
 - pin assignment and track ordering engines
 - monolithic topology optimization engines
 - owns key DOFs: small re-mapping, incremental placement, devicelevel layout resynthesis
 - is hierarchical, scalable, incremental, controllable, well-characterized (well-modeled), detunable (e.g., coarse/quick routing),

• • •

Routing Directions

- Cost functions and constraints
 - rich vocabulary, powerful mechanisms to capture, translate, enforce
- Degrees of freedom
 - wire widths/spacings, shielding/interleaving, driver/repeater sizing
 - router empowered to perform small logic resyntheses
- "Methodology"
 - carefully delineated scopes of router application
 - instance complexities remain tractable due to hierarchy and restrictions (e.g., layer assignment rules) that are part of the methodology
- Change in search mechanisms
 - iterative ripup/reroute replaced by "atomic topology synthesis utilities": construct entire topologies to satisfy constraints in arbitrary contexts
- Closer alignment with full-/automated-custom view
 - "peephole optimizations" of layout are the natural extensions of Motorola CELLERITY, IBM CM5, etc. methodologies

Session Overview

- New issues and problems arising in UDSM technology
 - catastrophic yield: critical area, antennas
 - parametric yield: density control (filling) for CMP
 - parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
 - signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons
- Current context: cell-based place-and-route methodology
 - placement and routing formulations, basic technologies
 - methodology contexts -- and the path to automated custom

Physical Planning and Implementation: Methodology Variants

- Centered on logic design
 - wire-planning methodology with block/cell global placement
 - global routing directives passed forward to chip finishing
 - constant-delay methodology may be used to guide sizing
- Centered on physical design
 - placement-driven or placement-knowledgeable logic synthesis
- Buffer between logic and layout synthesis
 - placement, timing, sizing optimization tools
- Centered on SOC, chip-level planning
 - interface synthesis between blocks
 - communications protocol, protocol implementation decisions guide logic and physical implementation

ASIC → Custom Design

- How much is on the table w.r.t. performance?
 - 4x speed, 1/3x area, 1/10x power (Alpha vs. Strongarm vs. "ASIC")
 - layout methodology spans RTL syn, auto P&R, tiling/generation, manual
 - library methodology spans gate array, std cell, rich std cell, liquid lib, ...
- Traditional view of cell-based ASIC
 - Advantages: high productivity, TTM, portability (soft IP, gates)
 - Disadvantages: slower, more power, more area, slow production of std cell library
- Traditional view of Custom
 - Advantages: faster, less power, less area, more circuit styles
 - Disadvantages: low productivity, longer TTM, limited reuse

New Considerations for ASIC vs. Custom

- With sub-wavelength lithography:
 - how much more guardbanding will standard cells need?
 - composability is difficult to guarantee at edges of PSM layouts, when PSM layouts are routed, when hard IPs are made with different density targets, etc.
 - context-independent composability is the foundation of cell-based methodology!
- With variant process flavors:
 - hard layouts (including cells) will be more difficult to reuse
- \rightarrow Relative cost of custom decreases
- On the other hand, productivity is always an issue...

What's Special in a Speed Demon?

- Architecture
 - heavy pipelining
 - fewer logic levels between latches
- Dynamic logic
 - used on all critical paths
- Hand-crafted circuit topologies, sizing and layout
 - good attention to design reduces guardbands

The last seems to be the lowest-hanging fruit for ASIC

Toward Automated-Custom

- ASIC market forces (IP differentiation) will define needs for xtor-level analyses and syntheses
- Flexible-hierarchical top-down methodology
 - basic strategy: iteratively re-optimize chunks of the design as defined by the layout, i.e., cut out a piece of physical hierarchy, reoptimize it ("peephole optimization")
 - for timing/power/area (e.g., for mismatched input arrival times, slews)
 - for auto-layout (e.g., pin access and cell porosity for router)
 - for manufacturability (density control, critical area, phase-assignability)
 - DOF's: diffusion sharing, sizing, new mapping / circuit topology sol's
 - chunk size: as large as possible (tradeoff between near-optimality, CPU time)
 - antecedents: IBM C5M, Motorola CELLERITY, DEC CLEO
 - "infinite library" recovers performance, density that a 300-cell library and classic cell-based flow leave on the table

Toward Automated-Custom

- Supporting belief: characterization and verification are increasingly a non-issue
 - CPUs get faster; size of layout chunks (O(100-1000) xtors) stay same
 - natural instance complexity limits due to hierarchy, layers of interest
- Compactor-based migration tools are an ingredient ?
 - migration perspective can infer too many constraints that aren't there (consequence of compaction mindset)
 - little clue about integrated performance analyses
- Tuners are an ingredient? (size, dual-Vt, multi-supply)
 - limit DOFs (e.g., repeater insertion and clustering, inverter opts
 - cannot handle modern design rules, all-angle geometries
 - not intended to do high-quality layout synthesis
- Layout synthesis is an ingredient?
 - requires optimizations based on detailed analyses (routability, signal integrity, manufacturability), transparent links to characterization and verification

Toward Automated-Custom

- "Layout or re-layout on the fly" is an element of performance- and cost-driven ASIC methodology going forward
- "Polygon layout as a DOF in circuit optimization" is a very small step from "polygon layout as a DOF in process migration"
 - designers are already reconciled to the latter

Summary of Part I

- Lots of new issues to worry about
 - Downstream analyses and verifications must be understood in hard-IP library design and abstraction (modeling)
 - Problems, problems (next two sections: solutions)
- Manufacturability and business (== \$/wafer) considerations will have wider scope and impact
 - "Custom QOR" can be a differentiator along with TTM
 - Relative cost of automated-custom methodologies may be decreasing